
Unifying Single-Agent and Two-Player SearhJonathan Shae�er1 and Aske Plaat21 Computing Siene Dept.University of AlbertaEdmonton, AlbertaCanada T6G 2H1jonathan�s.ualberta.a2 Aske PlaatComputer Siene Dept.Vrije UniversiteitAmsterdamThe Netherlandsaske�xs4all.nlAbstrat. The seminal works of Nilsson and Pearl in the 1970's andearly 1980's provide a formal basis for splitting the �eld of heuristisearh into two sub�elds: single- and two-agent searh. The sub�elds arestudied in relative isolation from eah other; eah having its own dis-tint harater. Despite the separation, a lose inspetion of the researhshows that the two areas have atually been onverging. This paper ar-gues that the single/two-agent distintion is not the essene of heuristisearh anymore. The state spae is haraterized by a number of keyproperties that are de�ned by the appliation; single- versus two-agentis just one of many. Both sub�elds have developed many searh enhane-ments; they are shown to be surprisingly similar and general. Given theirimportane for reating high performane searh appliations, it is theseenhanements that form the essene of our �eld. Fousing on their gen-erality emphasizes the opportunity for reuse of the enhanements, allowsthe �eld of heuristi searh to be rede�ned as a single uni�ed �eld, andpoints the way towards a modern theory of searh based on the taxonomyproposed here.1 IntrodutionHeuristi searh is one of the oldest �elds in arti�ial intelligene. Nilsson andPearl [20, 21℄ wrote the lassi introdutions to the �eld. In these works (andothers) searh algorithms are typially lassi�ed by the kind of problem spaethey explore. Two lasses of problem spaes are identi�ed: state spaes andproblem redution spaes. Many problems an be onveniently represented as astate spae; these are typially problems that seek a path from the root to thegoal state. Other problems are a more natural �t for problem redution spaes,typially problems whose solution is a strategy. Sometimes both representations



are viable options. Problem redution spaes are AND/OR graphs; AO* is thebest-known framework for reating searh algorithms for this lass of problems[2, 20℄. State spaes are OR graphs; the A* algorithm an optimally solve thislass of problems [10℄. Note that a state spae (OR graph) is tehnially just aspeial ase of a problem redution spae (AND/OR graph).Sine their ineption, the notions of OR graphs and AND/OR graphs havefound widespread use in arti�ial intelligene and operations researh. Both areashave ative researh ommunities whih ontinue to evolve and re�ne new searhalgorithms and enhanements. Of the two representations, the state spae rep-resentation has proven to be the more popular. It appears that many real-worldproblem solving tasks an be modeled naturally as OR graphs. Well-known ex-amples inlude the shortest path problems, sliding-tile puzzles, and NP-ompleteproblems.One appliation domain that �ts the AND/OR graph model better is two-agent (two-player) games suh as hess. In these games, one player hooses movesto maximize a payo� funtion (the hane to win) while the opponent hoosesmoves to minimize it. Thus, the AND/OR graphs beome MIN/MAX graphs,and the algorithms to searh these spaes are known as minimax algorithms.Curiously, it appears that two-player games are the only appliations for whihAND/OR algorithms have found widespread use. To ontrast A*-like OR graphalgorithms with two-player minimax algorithms, they are often referred to assingle-agent (or one-player) searh algorithms.With the advent of Nilsson's AND/OR framework, two-agent searh hasbeen given a �rm plae within the larger �eld of heuristi searh. Sine AND/ORgraphs subsume OR graphs, there is a satisfying oneptual uni�ation of the twosub�elds. However, the impat of this uni�ed view on the pratie of researh intoheuristi searh methods has been minor. The two sub�elds have ontinued todevelop in parallel, with little interation between them. One reason for the lakof oherene between the two ommunities ould be the di�erene in objetives:a ase an be made that winning hess tournaments requires a di�erent mindset than optimizing industrial problems to inrease revenue.This artile has the following ontributions: to our understanding of heuristisearh:{ Single-agent and two-agent searh algorithms both traverse searh graphs.The di�erene between the two algorithms is not in the graph, but in thesemantis imposed by the appliation. Muh of the researh done in single-and two-agent searh does not depend on the searh algorithm, but on thesearh spae properties.{ Nilsson's [20℄ and Pearl's [21℄ dihotomy|the OR versus AND/OR hoie|is misleading. Heuristi searh onsists of identifying properties of the searhspae and implementing a number of searh tehniques that make e�etiveuse of these properties. There are many suh properties, and the hoie ofbakup rule (minimaxing in two-agent searh; minimization in single-agentsearh) is but one. The impliation of Nilsson's and Pearl's model is that thehoie of bakup rule is in some way fundamental; it is not. This paper argues



for viewing heuristi searh as the proess in whih properties of a searhspae are spei�ed. One that has been done, the relevant searh tehniques(basi algorithm and enhanements) follow naturally.{ Over the years researhers have unovered an impressive array of searh en-hanements that an have a dramati e�et on searh eÆieny. The typialsenario is that the idea is developed in one of the domains and possiblylater reinvented in the other. In this paper we list searh spae propertiesunder whih many searh enhanements are appliable, showing that thedistintion between single- and two-agent searh is not essential. By merg-ing the work done in these two areas, the ommonalities and di�erenes anbe identi�ed. This an be used to onstrut a generi searh framework fordesigning high performane searh algorithms.The message of this artile is that single- and two-agent searh an and should beonsidered as a single undivided �eld. It an, beause the essene of searh is en-hanements, not algorithms as is usually thought. It should, beause researhersan bene�t by taking advantage of work done in a related �eld, without rein-venting the tehnology, if they would only realize its appliability. Given all thesimilarities between the two areas, one has to ask the question: why is it soimportant to make a distintion based on the bakup rule?This artile is organized as follows: Setion 2 disusses the importane ofsearh enhanements. Setion 3 gives a taxonomy of properties of the searhspae, whih are mathed up with the appliable searh tehniques in Setion 4.Setion 5 draws some onlusions. The artile is restrited to lassial searh;algorithms suh as simulated annealing and hill limbing are outside our sope.2 Algorithms vs EnhanementsMost introdutory texts on arti�ial intelligene start o� explaining heuristisearh by di�erentiating between di�erent searh strategies, suh as depth-�rst,breadth-�rst, and best-�rst. Single-agent searh is introdued, perhaps illus-trated with the 15-Puzzle. Another setion is then devoted to two-player searhalgorithms. The minimax priniple is explained, often followed by alpha-betapruning. The fous in these texts is on explaining the basi searh algorithmsand possibly their fundamental di�erenes (the bakup rule and the deision asto whih node to expand next). And that is where most AI books stop theirtehnial disussion.In ontrast, in real-world AI appliations, it is the next step|the searhenhanements|that is the topi of interest, not so muh the basi algorithm. Thealgorithm deision is usually easily made. The hoie of algorithm enhanementsan have a dramati e�et on the eÆieny of the searh. Although it goes toofar to say that the underlying algorithm is of no importane at all, it is fairto say that most researh and development e�ort for new searh methods andappliations is spent with the enhanements.Some of the enhanements are based on appliation-spei� properties; oth-ers work over a wide range of appliations. Examples of appliation-dependent



enhanements inlude the Manhattan distane for the sliding-tile puzzle, and�rst searhing moves that apture a piee before onsidering non-apture movesin hess. Examples of appliation-independent enhanements are iterative deep-ening [24℄ and yle detetion [9, 26℄.The performane gap between searh algorithms with and without enhane-ments an be large. For example, something as simple as removing repeatedstates from the searh an lead to large redutions in the searh tree (e.g. [26℄using IDA* in sliding-tile puzzles; [23℄ using alpha-beta in hess). Combinationsof enhanements an lead to redutions of several orders of magnitude.In the traditional view, new appliations are arefully analyzed until an ap-propriate algorithm and olletion of algorithm enhanements is found that sat-is�es the user's expetations. In this view, eah problem has its own uniquealgorithmi solution; a rather segmented view. In reality, most searh enhane-ments are small variations of general ideas. Their appliability depends on theproperties of the searh spae, and the single/two-agent property is but a minordistintion that e�ets very few enhanements. It is the searh enhanementsthat tie single/two-agent searh together, ahieving the unity that Nilsson's andPearl's models strived for, albeit of a di�erent kind.3 Modeling SearhOur thesis is that most searh enhanements are independent of the single/two-agent distintion. This setion identi�es key properties of a searh appliationthat ditate the appliability of the searh enhanements. The next setion il-lustrates this point with some representative enhanements.Searh program design onsists of two parts. First, the problem solver mustspeify the properties of the state spae. Seond, based on this information, anappropriate implementation is hosen. De�ning the properties of the state spaeinludes not only the domain-spei� onstraints (graph and solution de�nition),but also onstraints imposed by the problem solver (resoures, searh objetives,and domain knowledge).{ Graph De�nition: The problem de�nition allows one to onstrut a graph,where nodes represent states, and edges are state transition operators. Thisis typially just a translation of the transition rules to a more formal (graph)language. It provides the syntax of the state spae.{ Solution De�nition: Goal nodes are de�ned and given their orret value. Arule for ombining the values of a node's suessors to determine the valueof the parent node is provided (suh as minimization, or minimaxing). Thisadds semantis to the state spae graph.{ Resoure Constraints: Identify exeution onstraints that the searh algo-rithm must onform to.{ Searh Objetives: The problem solver de�nes the goal of the searh: anoptimal or satis�ing answer. This is usually inuened by the resoure on-straints.



{ Domain Knowledge: Non-goal nodes may be assigned a heuristi value (suhas a lower bound estimator or an evaluation sore). The properties of theevaluation funtion fundamentally inuene the e�etiveness of many searhenhanements, typially ausing many iterations of the design-and-test yle.One these properties are spei�ed, the problem solver an design the appliationprogram. This is a three step proess.1. Searh Algorithm: The single/two-agent distintion is usually unambiguous,and the algorithm seletion is often trivial (although, for example, thereexists a large number of inventive, lesser-known alternatives, inluding [4, 6,18℄).2. Searh Enhanements: The literature ontains a host of searh enhanementsto exploit spei� properties of the searh spae. The right ombination andramatially improve the eÆieny of the basi algorithm.3. Implementation Choies: Given a searh enhanement, the best implementa-tion is likely to be dependent on the appliation and the hoie of heuristis.These onsiderations are outside the sope of this paper.Typially the hoie of basi algorithm (single/two-agent) is easily made basedon the problem de�nition. For most appliations, the majority of the designe�ort involves judiiously �ne tuning the set of algorithm enhanements [11, 12℄.The appliability of searh algorithm enhanements is determined by the �veategories of properties of the state spae. Figure 1 summarizes the interationbetween the state spae properties (x axis) and step 2 of the algorithm designproess|the enhanements (the y axis). A sampling of enhanements are illus-trated in the �gure. The table shows how the searh enhanements math upwith the properties. An \x" means that the state spae property a�ets thee�etiveness of the searh enhanement. A \v" means that the searh enhane-ment (favorably) a�ets a ertain property of the searh spae. For example, the\v"s on the row for time onstraints indiate that most searh enhanementsmake the searh go faster. Star \*" entries mean that a searh enhanement wasspei�ally invented to attak a property.The �ve ategories of searh properties have been subdivided into individualproperties. The following provides a brief desription of these properties.3.1 Graph De�nitionThe problem spei�ation, the rules of the appliation, impliitly de�ne a graph.Following the terminology of [19℄ a problem spae onsists of states and transitionfuntions to go from one state to another. For example, in hess a state would bea board desription (piee loations, astling rights, et.). The transition funtionspei�es the rules by whih piees move. In the traveling salesperson problem(TSP), a state an be a tour along all ities, or perhaps an inomplete tour. Thetransition funtion adds or replaes a ity.The graph is treated as merely a formal representation of the problem, asyet devoid of meaning. It has not yet been deided what onepts like \payo�



state sp. properties enhanements yle/trans enumeration moveordering iter.deepening sol.database seletivityGraph De�nitionout degree of a node > 1in degree of a node > 1presene of yles xgraph size xSolution De�nitionsolution density x xsolution depth xsolution bakup rule x xResouresspae x x * xtime v v v */x v vSearh Objetivesoptimization v v v v vsatis�ing v v v v vDomain Knowledgeheur eval quality x x * xheur eval granularity xheur parent/hild value x x xheur parent/hild state xnext move to expand * v * v *Fig. 1. Searh Properties vs Enhanementsfuntion" and \bakup rule" mean. The problem graph is purely a syntatialdesription of the problem spae. Semantis are added later.The graph has a number of interesting properties that an be exploited toimprove the eÆieny of the searh. Of interest are the in degree and outdegree (branhing fator) of nodes, the size of the graph, and whether thegraph ontains yles. These properties are self-explanatory.3.2 Solution De�nitionIn this part of the problem solving proess meaning is attahed to some of thestates. If the graph de�nition provides us with a syntati desription of theproblem, then the solution de�nition assoiates semantis to the graph. Themeaning, or value, of ertain states in the graph is de�ned by the appliationrules. For example, in hess all hekmate states have a known value. In the TSP,a tour that visits all ities and ends in the original one is a possible solution.The objetive of the searh is to �nd these goal or solution states, and to reportbak how they an be reahed. Solutions are a subset of the searh spae, and



this spae an be de�ned by the solution density, solution depth, and the bakuprule for solution states.Solution Density. The distribution of solution states determines how hardsearhing for them will be. When there are many solution states it will be easierto �nd one, although determining whether it is a least ost solution (or someother optimality onstraint) may be harder.Solution Depth. An important element of how solution states are dis-tributed in the searh spae is the depth at whih they our (the root of thegraph is at depth 0). Searh enhanements may take advantage of a partiulardistribution. For example, breadth-�rst searh may be advantageous when thereis a high variability in the depth to solution.Solution Bakup Rule. The problem desription de�nes how solution val-ues should be propagated bak to the root. Two-agent games use a minimaxrule; optimization problems use minimization or maximization.3.3 Resoure ConstraintsResoure onstraints (spae and time) play a ritial role in determining whihenhanements are feasible.3.4 Searh ObjetiveOne of the most important deisions to be taken is the objetive of the searh.This deision is inuened by the size of the problem graph, solution densityand depth, and resoure onstraints. It is losely related to the lassial hoie:optimize or satis�e [19℄. The hoie of searh objetive de�nes a global stopondition.Optimization. Optimization involves �nding the best (optimal) value forthe searh problem. Given a problem graph, the properties that determine whetheroptimization is feasible are solution density and depth.Satis�ing. Sometimes optimization is too expensive and one needs real-time or anytime algorithms. In this ase, a payo�, or evaluation funtion, isapplied to a set of states that lie loser to the root of the graph. The evaluationfuntion is a heuristi approximation of the true value of the state. The searhprogresses, trying to �nd the best approximation to the true solution, subjetto the available resoures.3.5 Domain KnowledgeThe heuristi evaluation funtion enodes appliation-dependent domain knowl-edge about the searh. Typially, it is the most important omponent of a searhappliation. Unfortunately, it has to be redeveloped anew for eah problem do-main. Sine the heuristi funtion is appliation dependent, most of its internalsannot be disussed in a general way. The external harateristis, however, an.There are many di�erent types of information that an be returned by aheuristi evaluation. Some examples inlude: lower/upper bound estimates on



the distane to solution, point estimates on the quality of a state, ranges ofvalues, and probability distributions.The most important aspet of the heuristi evaluation funtion is the di�er-ene between the heuristi value h and the true value for a state. In general, thebetter the quality of h, the more eÆient the searh. Related to the quality ofthe heuristis are parent/hild orrelation of state (how muh the statehanges by a state transition), parent/hild orrelation of value (how simi-lar the value is between a parent and hild node), and the granularity [27℄ ofthe heuristi funtion (the oarseness of the values; �ner granularity generallyimplies more searh e�ort).The searh algorithm together with heuristi information is used to deideon the next node to expand in the searh. For some appliations, the deisionmay be mehanial, suh as depth-�rst, breadth-�rst or best-�rst, but heuristiinformation an be instrumental in ordering nodes from most- to least-likely tosueed.4 Searh EnhanementsThis setion lassi�es various searh enhanements used. The enhanements havebeen grouped into lasses, of whih a few of the more interesting ones are dis-ussed (the ones illustrated in Figure 1). For eah lass, a representative teh-nique is given and its appliability to single- and two-agent searh is disussed.The material is intended to be an illustrative sample (beause of spae on-straints), not exhaustive. Sine in most ases the preonditions neessary for us-ing an enhanement are not tied to any fundamental property of an appliation,the searh enhanements presented are appliable to a wide lass of appliations.4.1 State Spae TehniquesThese tehniques depend only on the appliation de�nition and are thereforeindependent of the algorithm seleted.Path Transposition and Cyle DetetionPreondition: In-degree is > 1. Two searh paths an lead to the same state. Idea:Repeated states enountered in the searh need only be searhed one. SearheÆieny an (potentially) be improved dramatially by removing these redun-dant states. Advantages: Redues the searh tree size. Disadvantages: Inreasesthe ost per node and/or storage required. Tehniques: Two-agent: the typialtehnique is to store positions in a hash table to allow for rapid determinationif a state has been previously seen [9℄. Single-agent: in addition to hash tables[17℄, �nite state mahines have been used to detet yles [26℄.4.2 State- and Solution-Spae InterationThese enhanements depend on the state spae graph and on the de�nition ofthe solution spae.



State Spae EnumerationPreondition: Size of the state spae graph and/or solution searh tree be \small."Idea: If the state spae is small enough, then the optimal answer an be om-puted. For some appliations, traversal of the entire state spae may not beneessary; one need only traverse the solution tree, ignoring parts of the statespae that an logially be proven irrelevant. Advantages: Optimal answer forsome/all nodes in the state spae. Disadvantages: May require large amounts oftime and spae to traverse the state spae and save the results. Tehniques: Sev-eral games and puzzles with large state spaes have been solved by enumeration,inluding Nine Men's Morris [7℄, Qubi, Go Moku [1℄, and the 8-Puzzle [22℄ and12-Puzzle.4.3 Suessor Ordering TehniquesThe order in whih the suessors of an interior node are visited may e�et theeÆieny of the searh. For example, in the alpha-beta algorithm, searhing thebest move �rst ahieves the maximal number of uto�s. In single-agent searh,searhing the best move �rst allows one to �nd the solution sooner. These en-hanements depend on one property of the appliation: whether the order ofonsidering branhes inuenes when a uto� ours.There are many tehniques for doing this in the literature inluding previousbest move ordering [25℄ and the history heuristi [23℄. Both ideas have beentried in single- and two-agent appliations (although the bene�ts in optimizationseem to be neessarily small [17℄).4.4 Repeatedly Visiting StatesOne of the major searh results to ome out of the work on omputer hess wasthat repeatedly visiting a state, although seemingly wasteful, may atually proveto be bene�ial. The e�etiveness of this enhanement depends ultimately on theheuristi evaluation funtion, although it works for a large lass of appliations.Iterative DeepeningPreondition: Information from a shallow searh satisfying ondition d must pro-vide some useful information for a deeper searh satisfying d+�. Idea: Searhdown a path until a ondition d is met. After the entire tree has been searhedwith ondition d, and no solution has been found, repeat a deeper searh tosatisfy ondition d+�. Advantages: For two-agent searh, the main advantagesare move ordering and time management for real-time searh. For single-agentthe bene�t is redued spae overhead. Disadvantages: Repeated visitations osttime. The value of the information gathered must outweigh the ost of ollet-ing it. Tehniques: In many two-agent appliations, the searh iterates on thesearh depth. Move ordering is ritial to the eÆieny of alpha-beta searh.By storing the best moves of eah searhed node, in eah iteration the moveordering of another level of the searh tree is improved [24, 25℄. In single-agentsearh, iterative deepening is used to re�ne the upper (lower) bound on the value



being minimized (maximized). It is primarily used beause it redues the spaerequirements of the appliation [14℄.4.5 O�-line ComputationsIt is beoming inreasingly possible to preompute and store large amounts ofinteresting data about the searh spae that an be used dynamially at runtime.Solution DatabasesPreondition: One must be able to identify goal nodes in the searh (trivial).Idea: The databases de�ne a perimeter around the goal nodes. In e�et, thedatabase inreases the set of goal nodes. Advantages: The searh an stop whenit reahes the database perimeter. Disadvantages: The databases may be ostlyto ompute. Furthermore, the memory hierarhy makes random aess to tablesinreasingly ostly as their size grows. Tehniques: In two-agent searh, solution(or endgame) databases have been built for a number of games, in some asesresulting in dramati improvements in the searh eÆieny and in the qualityof searh result. In single-agent appliations solution databases have been triedin the 15-Puzzle. An on-line version of this idea exists, dynamially building thedatabases at runtime (bi-diretional [13℄ or perimeter searh [16℄).4.6 Searh E�ort DistributionThe simplest searh approah is to alloate equal e�ort (searh depth) to all hil-dren of the root. Often there is appliation-dependent knowledge that allows thesearh to make a more-informed distribution of e�ort. Promising states an bealloated more e�ort, while less promising states would reeive less. (Essentially,this enhanement an be regarded as a generalization of suessor ordering.) Insatis�ing single-agent searh this idea is used to onentrate the searh e�orton promising branhes. For optimizing single-agent searh, it is of limited valuesine even if an extended searh, for example, �nds a solution, all possible non-extended nodes must still be heked for a better solution. It is also bene�ial forreal-time single-agent searh suh as RTA* [15℄ and other anytime algorithms.In two-agent searh it is used in forward pruning or seletive searh. Popularideas used in two-agent searh inlude singular extensions [3℄, the null moveheuristi [8℄, and ProbCut [5℄.5 ConlusionFor deades researhers in the �elds of single- and two-agent heuristi searhhave developed enhanements to the basi graph traversal algorithms. Histori-ally the �elds have developed these enhanements separately. Nilsson and Pearlpopularized the AND/OR framework, whih provided a uni�ed formal basis, butalso stressed the di�erene between OR and AND/OR algorithms. The �eldsontinued their relatively separate development.



This paper advanes the view that the essene of heuristi searh is notsearhing either single- or two-agent graphs, but whih searh enhanementsone uses. First, the single/two-agent property is but one of the many propertiesof the searh spae that play a role in the design proess of a high performaneheuristi searh appliation. Seond, the single/two-agent distintion is not thedominant fator in the design and implementation of a high-performane searhappliation|searh enhanements are. Third, most searh enhanements arequite general; they an be used for many di�erent appliations, regardless ofwhether they are single- or two-agent.The bene�t of reognizing the ruial role played by searh tehniques isimmediate: appliation developers will have a larger suite of searh enhanementsat their disposal; ideas �rst oneived of in two-agent searh will not have to beredisovered later independently for single-agent searh, and vie versa. In animplementation the best ombination of tehniques depends on the expetedsearh bene�ts versus the programming e�orts, not on the single- or two-agentalgorithm.For twenty years, most of the researh ommunity has (expliitly and impli-itly) treated single- and two-agent searh as two di�erent topis. Now it is time totake stok and reognize the pivotal role that searh enhanements have ome toplay: the algorithm distintion is minor, and most researh and implementatione�orts are direted towards the enhanements. All the properties of the searhspae|not just the single/two-agent distintion|play their role in determiningthe e�etiveness of that what heuristi searh is all about: enhaning the basisearh algorithms to ahieve high performane.6 AknowledgmentsThis researh was funded by the Natural Sienes and Engineering ResearhCounil of Canada.Referenes1. V. Allis. Searhing for Solutions in Games and Arti�ial Intelligene. PhD thesis,University of Limburg, 1994.2. S. Amarel. An approah to heuristi problem-solving and theorem proving in thepropositional alulus. In J. Hart and S. Takasu, editors, Systems and ComputerSiene, 1967.3. T. Anantharaman, M. Campbell, and F. Hsu. Singular extensions: Adding sele-tivity to brute-fore searhing. Arti�ial Intelligene, 43(1):99{109, 1990.4. H. Berliner. The B* tree searh algorithm: A best-�rst proof proedure. Arti�ialIntelligene, 12:23{40, 1979.5. M. Buro. ProbCut: A powerful seletive extension of the �� algorithm. Journalof the International Computer Chess Assoiation, 18(2):71{81, 1995.6. P. Chakrabarti. Algorithms for searhing expliit AND/OR graphs and their appli-ations to problem redution searh. Arti�ial Intelligene, 65(2):329{345, January1994.
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