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Abstract

A game tree algorithm is an a gorithm computing the minimax value of the root of
agametree. Two well-known game tree search algorithms are alpha-beta and SSS*.
We show arelation between thesetwo algorithms, that are commonly regarded as being
quite different.

Many algorithms use the notion of establishing proofs that the game value lies
above or below some boundary value. We show that this amounts to the construction
of a solution tree. We discuss the role of solution trees and critical trees [KM75] in
the following algorithms: Principal Variation Search, alpha-beta, and SSS*. A general
procedurefor the construction of asolution tree, based on a pha-betaand Null-Window-
Search, is given. Furthermore three new examples of solution tree based-algorithms
are presented, which surpass alpha-beta—i.e., never visit more nodes than al pha-beta,
and often less.

Keywords: Game tree search, apha-beta, SSS*, solution trees.

1 Introduction

In the field of game tree search the alpha-beta algorithm has been in use since the 1950's.
It has proven quite successful, mainly due to the good results that have been achieved by
programs that use it. No other algorithm has achieved the wide-spread use in practical
applicationsthat alpha-beta has.

This does not mean that alpha-beta is the only algorithm for game tree search. Over
the years a number of alternatives have been published. Among these are minimal win-
dow algorithmslike PV S[CM83, Pea84], Proof-Number Search [AvdMvdH94], Best-First
Minimax Search [Kor93], and SSS* [Sto79]. The last one, SSS*, has sparked quite some
research activity. This may have been caused in part by the dlightly provocative nature of
the title of Stockman’s original paper: “A Minimax Algorithm Better than Alpha-Beta?’.
Thistitle alone has provoked afew reactionsin theform of papersby Roizenand Pearl (“Yes
and No” [RP83]), and Reinefeld (* A Minimax Algorithm Faster than Alpha-Beta” [Rei94]).

In the present paper we investigate the relation between alpha-beta, PVS, and SSS*. We
confine ourselves to the basic algorithms, without enhancements like move-reordering,
iterative deepening, or transposition tables (see e.g. [CM83, Sch89, ACH90]).

Alpha-beta, being a strictly depth-first algorithm, is generally regarded to be quite
different in nature from best-first algorithms like SSS*. We will try to show in this paper
how these algorithms are related.

*This paper is also registered as Technical Report EUR-CS-94-04
t Tinbergen Institute, Erasmus University, and Department of Computer Science, Erasmus University.



At the center of our approach are solution trees—a notion that has been used in [Sto79]
to prove the correctness of SSS*. By delving deeper into the nature of solution trees, and
realizing that alpha-betaand PV S/NWS construct such treesaswell, we have cometo view
solution trees as a unifying basis for apha-betaand SSS*-like algorithms.

As an important side effect of this insight we have found a number of new game tree
search algorithms, all like SSS* in the sensethat they search not more nodes than alpha-beta
by exhibiting a best-first behavior. Also, these new algorithms are like SSS* in that they
have a comparable space complexity, since they store solution treesin memory.

By doing more research into the behavior of these algorithms (e.g., memory require-
ments), we hope to show that they are of use for practical applications like game playing
programs.

Preliminary Remarks

We assume that the reader is familiar with notions such as minimax, game tree (see e.g.
[PdB93]). In this paper we assume a game tree to remain of fixed depth during the search
for the best move, in the sense that we do not consider possible search extensions of the
gametree. (See[Sch89] for an overview.)

In our figures, squares represent max nodes, circles min nodes. For a game tree G with
root r, the minimax or game value of anoden isdenoted by f(n); thevalue f(r) isalso called
the minimax value of G, denoted by f(G). In this paper we will not apply negamax-like
formulations: values of nodes will be conform the minimax rule, i.e., as seen by player
MAX.

The notion critical isintroduced as follows: MAX triesto maximize and MIN triesto
minimize the profit of MAX. Therefore, an optimal play will proceed along acritical path
(or Principal Variation), which is defined as a path from the root to aleaf such that f(n) has
the same value for all nodes n on the path. A node on a critical path is called critical.

Overview

We conclude this introduction with an outline of the rest of this paper. In section 2 we
will show that in order to get a bound on the minimax value of a game tree, one has to
construct a solution tree. A solution tree defining an upper bound is called a max solution
tree. Likewise a min solution tree defines alower bound. In order to prove subsequently
that the game value equals acertain value, say f, it is sufficient to find an upper bound and
alower bound with value f. In other words, a max and a min solution tree with this value
are needed. The union of two such treesis called a critical tree.

In section 3 we will investigate how apha-beta, Principal Variation Search (PVYS)
[FF80, Pea84], and SSS-2 [PdB92] use solution trees to construct this critical tree. The
relation between solution trees and Null-Window-Search is discussed. Viewing game tree
search in terms of solution trees enables us to discover relations between two algorithms
which where hitherto considered to be quite unrelated, viz. PV S and SSS* [Sto79, PdB90].

In section 4 we give an enhanced version of apha-betathat determines the game value
of a node n. Unlike the standard version of apha-beta found in many text books, this
procedure al so takes into account information that has been gathered in earlier visits of the
subtree of the game tree rooted in n.

In section 5 we introduce three examples of algorithms that use our enhanced alpha-
beta procedure to efficiently search game trees. From results derived in section 4 these
algorithms search not more nodes than alpha-beta. The results of some preliminary tests
on their behavior are presented.
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Figure 1: Solution Trees

2 Solution Trees and Bounds

In this section we will show that there exists a relation between solution trees and bounds
on the game value, and we will show how solution trees and the critical tree relate.

Given a game tree, it generaly takes a lot of effort to compute f(n) for a node n.
However, establishing an upper or alower bound to f(n) isa simpler task, aswewill show.
In a max node an upper bound is obtained, if an upper bound to each of the children is
available. Inthat case the maximum of the children’s bounds yields a bound to the father.
If at least one child of amin node has an upper bound, this can also act as a father’s upper
bound. The aboverulescan be applied recursively. Inaterminal, the gamevalueisatrivia
upper and lower bound. So, we need a subtree, rooted in n, of a particular shape. This
subtreeis constructed top-down, choosing all children in a max node and exactly one child
in amin node. Such a subtree of a game tree is a called a max solution tree. Likewise,
amin solution tree can be constructed to achieve a lower bound. We have the following
formal definitions:

A max solution tree T* is a subtree of game tree G with the properties:

- if aninner max noden e Gisincludedin T*, then all children of n are
included in T*;

- ifaninner min node n € Gisincluded in T*, then exactly one child is
included in T*.

A min solution tree T~ isa subtree of G with the properties:

- ifaninner min noden € Gisincluded in T, then all children of n are
includedin T—.

- if aninner max node n e G isincludein T, then exactly one child is
includedinT—.

Notice, that every leaf of asolutiontreeisalso aleaf inthe gametree under consideration.
However, the root of asolution treeis not necessarily the root of the game tree.

Given amax solution tree T*, we compute an upper bound to f(n) by applying bottom-
up in T* the aforementioned rules. In fact, we apply the minimax function to T*. Itis
easily seen that determining the minimax value of a node nin a max solution T* amounts



to determining the maximum of the values f(p) for all terminalsp in T that are descendants
of n (seefigure 1). Of course, analogous statements hold for a min solution tree.

The minimax function, restricted to a max or min solution tree T, is denoted by g.
Analogous to f(T), g(T) denotes the g-value in the root of T. So, in a max solution tree
T with root n, the fact that a max solution tree yields an upper bound, is expressed by the
formulag(n) > f(n) or aternatively, g(T) = f(n). For amin solution tree T with root n, we

may write g(n) < f(n) or g(T) < f(n).

Optimal Solution Trees

Having proved that a max solution tree delivers an upper bound, we now show that, in any
gametree G, at least one solution tree has the same minimax value as G has. For instance,
when amax solution tree T with the same root as the game tree is constructed, such that in
every min node a child with the same f-value as the father is chosen, we have g(n) = f(n)
inevery ne T. (It can be shown that, in order to achieve at the root a g-value equal to the
f-value, other construction methods are available aswell.) Since we know that g(T) > f(T)
for any max solution tree T, we come to the following proposition, which was made by
Stockman before [Sto79]. We also state its counterpart for min solution trees.

Let a game tree G with root n be given. Then, the minimum of all values g(T)
with T a max solution tree rooted in n, is equal to f(G).
The maximum of all values g(T), T a min solution tree rooted in n, is equal to

f(G).

This statement will bereferred to as Sockman’stheorem. A solution tree with g-value equal
to the game valueis called an optimal or critical solution tree.

Search Tree

In al game tree algorithms, the game tree is explored step by step. So, at each moment
during execution of a game tree algorithm, a subtree has been visited. This subtree of the
gametreeiscaled a search tree [I1ba86]. We assume that, as soon as at least one child of a
node n is generated or visited, all other children of n are also added to the search tree. So,
asearch tree Shasthe property, that for every noden e Seither al children areincludedin
Sor none.

On a search tree, we want to apply the minimax function tentatively. To that end, we
definevaluesin theleavesof S. Wedistinguish between so-called open and closed leavesin
asearchtree. A leaf thatisnot aterminal inthe gametree, isalwayscalled open. A terminal
is called closed or open, according to whether its final game value has been computed or
not. Only valuesthat surely are bounds, are chosen astentative valuesfor leavesin asearch
tree. This leads to two game trees derived from S, called S" and S—, with game values f*
and f~ respectively. We define f*(p) = +< and f~(p) = —e in every open leaf node p and
f*(p) = f~(p) = f(p) in every closed node. (Recall that the game value f(p) isknownin a
closed node p.) In every node n of a search tree, we have f*(n) > f(n) and f~(n) < f(n),
because this relation also holds in al children, if any, of n. (Inthe leavesof S therelation
holdstrivially.)

Now, we are going to show that there exists a relation between the solution tree in a given
gametree G and the values f*(n) and f~ (n) of anode nin asearch tree Sof G.

Since asearch tree Swith minimax f* or f~ can be viewed as agame tree, Stockman’s
theorem can be invoked. This tells us that f*(n) is equal to the minimum of all values
g(T) with g computed in S, T a max solution tree in S. Two kinds of solution trees are
distinguishedin S. A solution treeswith at least one open leaf in Siscalled open, asolution
tree with just closed terminals as leavesis called closed. A closed solutiontreein Sisalso
a solution tree in the entire game tree. We immediately see that g(T) has a finite value,



Figure 2: A Critical Tree with node types, values (f), and bounds (f*, f~)

if and only if T is closed. Therefore, when applying Stockman’s theorem to S we only
need to take closed max solution trees into account. We conclude that f*(n) is equal to the
minimum of all valuesg(T), T amax solution treein G with root nand T is closed (without
openterminals) in S An analogous statement can be given for f~(n). There are no tighter
bounds for f(n), since it can be shown [PdB94] that every value between f*(n) and £~ (n)
can be made equal to the game value by constructing an appropriate extension of the search
tree.

Critical Tree

Almost every game algorithm builds a search tree and stopswhen £*(r) = £~ (r) and hence,
fH(r) = f~(r) = f(r), with r theroot of the game tree. Due to the relationship, proved in the
previous paragraph, between solution treesand f* and f~, we may say that, on termination,
a max and a min solution tree, called T* and T~ respectively, are obtained, which are
optimal, i.e, g(T*) = g(T~) = f(G). The union of an optimal max and an optimal min
solution treeis called a critical tree. Let ng, ny, ... Nk be the nodes on the intersection path
of T and T~ where ny denotestheroot. In T+ we have:

f(m) <g(m) <g(no) =g(T*), i=01,..k
and in T~ we have:

f(n) >g(m) >g(ng) =g(T~), i=01,..k

Since g(T*) = g(T™) = f(G), dso f(n) = f(G) fori =0,1,... k. We conclude that the
intersection of T+ and T~ isacritical path.

Figure 2isan example of acritical tree. In[KM75] the notion critical tree isintroduced
as aminimal tree that hasto be searched by apha-betain order to find the minimax value
in abest first game tree. The numbersto the left of the nodes indicate what can be deduced
from the tree about the game value of a node. The numbers inside the nodes represent
Knuth & Moore’'s well known node types. For reasons of brevity we will not repeat their
(quite complicated) definition of nodes types. In [PK87, p. 462] an intuitive explanation
of the concept “critical tree” is given in terms of optimal strategies for MAX and MIN.
In [KK84] the link between an optimal strategy for MAX/MIN and an (optimal) min/max
solution tree has been explained. The treein figure 2 is the union of the solution trees of
figure 1.

Given our solution tree view of the critical tree, Knuth & Moore'stype 1, type 2 and
type 3 nodes can be given another interpretation. Type 1 nodes are in the intersection of



1  function alpha-beta(n, o, ) — v;

2 if n =leaf then return eval(n);

3 if n = open then generate al children of n;
4 if n=MAX then

5 V= —oo;

6 ¢ = firstchild(n);

7 whilev< gandc# 1 do

8 v := max(v, alpha-beta(c, @, B));
9 o = max(a, Vv);

10 ¢ := nextbrother(c);

11 if n=MIN then

12 V = +oo)

13 ¢ :=firstchild(n);

14 whileax < vandc# L do

15 v := min(v, a pha-beta(c, «, B));
16 B = min(B, Vv);

17 ¢ := nextbrother(c);

18 returnv;

Figure 3: Alpha-Beta

the optimal solution trees for the player and its opponent—the critical path. Type 2 nodes
are either min nodes of the max solution tree or max nodes of the min solution tree that are
not Type 3 nodes are max nodes in the max solution tree or min nodes in the min solution
tree, that are not on the critical path.

3 Solution Treesin Game Tree Algorithms

In the preceding section the relation between solution trees and bounds on the minimax
value of a node has been treated. An f*(n) is determined by a max solution tree, and an
f~ (n) by amin solution tree. Inthis section wewill see how solution treesfit into anumber
of existing game tree algorithms. We will describe how alpha-beta, Principal Variation
Search and SSS-2 use solution trees. To this end, we will first treat the simple case, and
investigate how a pha-beta traverses solution trees.

Alpha-Beta

The standard analysis of the alpha-beta algorithm is performed by Knuth & Moaoore in
[KM75]. Seefigure 3 for the code of apha-beta. In the present paper we will elaborate on
Knuth & Moore's postcondition slightly by adding the nations f*(n) and f~ (n), the notions
that have been defined in the previous section. (This postcondition is derived from the one
in [PdB94]. The accompanying preconditionis a < f.)

vpB = v=f(n)<fn) D
a<v< B = v=f(n)=f(n)=fn) 2
v<a = v=f"(n)=f(n) (3

We can re-state these implications into the following twofold postcondition. Together with
the theory of the preceding section—the relation between bounds and solution trees—we
find immediately that this postcondition can be enhanced with statements on solution trees.

v>a = Vv=f(n) <f(n)andvisthevalueof amin solution tree 4



v< B = v=f"(n) = f(n)andvisthevalue of amax solution tree (5)

Looking carefully at the code of apha-beta (figure 3), we can see clearly how the solution
treesof implications (4) and (5) are generated. Wewill show how asolutiontreeisgenerated
in a apha-beta call with parameter n. This is done by induction on the height of n. We
only consider the case that n isamax node (the alternate case is similar).

Suppose the procedure call endswith v < . Then the whileloop of line 7 has not been
aborted and each child c has returned avalue v; < . By the induction hypothesis, each
child is the root of a max solution tree. Appending all these treesto n, a max solution tree
with root n is obtained.

Wewill denotetheinput value of parameter alpha(theinitial value of «) by ap. Suppose
the procedure call ends with v > op. The while loop starting at line 7 has the folowing
invariant: v=a > op or v< o = ap. Let ¢y be the node parameter in the latest subcall
that increasesv in line 8. The return value of this subcall also determines the return value
v of the main call. Whenv < a = ap before this subcall, then, since the return value of
the main call is> o, we must have that the return value of this subcall exceeds o = ap.
Whenv = a > ag before this subcall, then the return value of this subcall, since it causes
an updatein line 8, must belarger than v and hence larger than «. In both caseswe have by
induction that the subcall a pha-beta(co, a, ) has generated amin solution tree. Appending
thistree to n yieldsa min solution tree, rooted in n.

Note that if, in the latter case, we have in additionto v > «a that v < 8, also a max
solution tree is constructed, i.e., acritical tree.

Now that we have seen how alpha-beta generated solution trees, we will investigate how
more involved algorithms like PV'S and SSS-2 use solution trees and bounds to construct
the ultimate critical tree that proves the minimax value of the root.

Principal Variation Search

PV S [FF80, CM83, Rei89] and the related algorithm SCOUT [Pea80, Pea84] are two well
known algorithms based on the minimal window search [FF80] or bound-test [Pea30] idea.
Although there is a difference between the two, the following description of PV S holds for
SCOUT aswell.

PV'S constructs a critical tree bottom up. At the start it descends via the left-most
successors to the left-most leaf of the game tree. For the moment it is assumed that the
path to thisleaf, the principal leaf, isthe critical path—the Principal Variation (PV) in PVS
terms. (This is true for the tree in figure 2.) Suppose the value of this leaf isv. Then
the assumption implies that the value of the root equalsv. This assumption is then tested
using a bounding procedure. If the parent of the leaf is a max node, then a proof must be
established that no brother of the PV-node has a higher value. (If the parent of the leftmost
leaf inthe treeisamin node, then the dual procedure hasto be performed.) In other words,
for every brother a solution tree must be constructed yielding an upper bound on its value,
which does not exceed v. If thissucceeds we have built acritical tree rooted in the parent of
theleaf at the end of the PV, proving that itsgamevalueisequal tov. If thisisnot possible,
because some brother of the leaf at the end of the PV has a higher value, the bounding
procedure should provethisby generating a min solution tree defining alower bound on the
value of the brother that is higher than v, showing that the assumption is incorrect. In that
case the path to this better brother then becomesthe new PV-candidate. Since we have only
a bound on its value, the game value of this PV-candidate must be found by re-searching
the node.

Eventually the PV for the parent of the leftmost leaf isfound. Itsvalueis proven by the
solution trees that bound the value of the brothers of the principal leaf. PVS has realized
this by constructing a critical subtree for the current level of the game tree. It then backs
up onelevel along the backbone, to start construction of acritical tree at ahigher level, i.e.,



for the grandparent of the leftmost leaf in the game tree. This proceeds until the root has
been reached and acritical tree below the root hasfinally been constructed.

As was noted before, apha-beta can be used to construct a solution tree and return a
bound by having it search awindow of zero size. To achievethis, the search window (a, )
isreduced to a null-window by substitutingo =y — 1,8 =yor o =1y, =y +1, for some
y. Thiswindow is called a null-window because it cannot contain an integer-valued |eaf
value. The call to alpha-betaisin effect transformed to a one-parameter call. We will state
the postconditions for these cases for convenience, although they are the result of trivial
substitutionsin implications (1), (2), and (3).

a=y—1AB=vy
v<y = v=f'(n)=f(n)
vy = v=f(n)<f(n)

a=yAB=y+1
vy = v=f(n)2f(n)
vy = V=)< f(n)

The overall effect of thisis that after termination, a critical path has been constructed by
the PV-nodes. This critical path is the backbone of the critical tree. Because NWS as an
alpha-beta instance constructs solution trees to prove a bound, PV'S constructs a critical
tree, consisting of the backbone together with solution trees.

SS5-2

SSS-2 has been introduced in [PAB90] (cf. [Fij91, PdB92]) as an attempt to give an easier
to understand, recursive description of SSS*. Bhattacharya & Bagchi have introduced
another recursive version of SSS*, called RecSSS* [BB93]. However, their aim was
different, viz. to obtain an efficient data structure implementing SSS*’s OPEN list.

SSS-2 (seefigure 4) works by establishing successive sharper upper boundsfor theroot,
starting with an upper bound of +. In the code in the figure this upper bound is the value
of amax solution tree which is stored in the global variable T. In each call to diminish the
solution treein T is manipulated such that its value g, an upper bound of f, islowered (or,
if alower value cannot be found, the algorithm terminates with g(T) = f(G), the value of
the solution tree equal to the minimax value of the game tree).

Thealgorithmisbuilt around two procedures, expand and diminish. A call of expand(n, y)
tries to establish an upper bound to the game value of an open node n which is smaller
than y. Expand realizes this by building a max solution tree with value < y. If thisis not
possible, a min solution tree with value > y has been traversed. (In the present formula-
tion(figure 4) the handling of the min solution treeis not made explicit: only max solution
trees are manipulated explicitly.)

The procedure diminish tries to refine an upper bound by transforming a max solution
tree into a better one by searching for suitable open nodes in this tree and performing an
expand on these nodes. After an initia call to expand to construct the first max-solution
tree, the SSS-2 algorithm performs a sequence of calls of diminish applied to the root to
obtain sharper max solution trees, until finally this is no longer possible: no lower upper
bound can be found, so the optimal upper bound f* has been established. Thelast diminish
proves this failure because it establishes a min solution tree with lower bound f~ greater
than or equal to the previous upper bound. But this meansthat f~ = f*, and therefore the
algorithm has generated amax solution tree aswell asamin solution tree of the same value,
i.e. acritical tree.

In PV S the procedure NWS is used to construct a bound on the value of the brothers of
the PV. (For thisproof, children of aMAX node are upper bounded, children of aMIN node



function SSS-2(r) - v;
(T,9) := expand(r, +);
{T isagloba variable containing the current max solution }
repeat
Y=6
g :=diminish(r, y);
until g =v;
returng;

{precondition: y = f*(T) }
function diminish(n, y) — g;
if n=leaf then return(n, y);
if n=MAX then
for ¢ :=firstchild(n) to lastchild(n) do
if y = g(c) then
g :=diminish(c,y);
if y = g then exit for loop;
g := the maximum of g-values of all children of n;
if n=MIN then
¢ :=thesingle child of ninthe searchtree T;
g :=diminish(c, 7);
if y =g then
for b := nextbrother(c) to lastbrother(c) do
(S9) := expand(b, );
if g < ythen
detach in T from n the subtree rooted in ¢ and attach Stonin T;
exit for loop;
returng;

function expand(n,y) — (S 9);
if n=leaf then return eval(n);
if n = open then generateall children of n;
if n=MAX then
c := firstchild(n);
whileg< yandc# 1 do
(S.9) := expand(c, 7);
g :=max(g.9);
¢ := nextbrother(c);
if g < ythen S := the tree composed by attaching all intermediate valuesof S ton;
if n=MIN then
9:=7
c := firstchild(n);
whileg>yandc# 1 do
(S.9) := expand(c,7);
¢ := nextbrother(c);
if g < ythen S :=thetreewith S attached ton;
return (S, g);

Figure 4: SSS-2, an explicit-solution-treeversion of SSS* [PdB90]



lower bounded.) In SSS-2 an expand constructs an upper bound, and returnsamax solution
tree that proves the value of this upper bound. Inspection of the code shows that NWS
for upper bounds and expand traverse the same nodes, and are in fact equivalent in that
respect. (For the dual case—min solution tree and lower bound—a procedure very similar
to expand can be formulated. This procedure is equivalent to NWS for lower bounds.)

The difference between NWS and expand is that expand returns the max solution
tree defining the f* explicitly, whereas NWS, being an al pha-betainstance, just traversesit,
without returning anything but thevalue. So expand isequivalent to asol ution tree-returning
NWS.

Conclusion

Herewefind one of therelations between al pha-betaand SSS* -like al gorithms (in particul ar
SSS-2). First we have shown that it is easy to see how the al pha-beta procedure generates
solution trees. Furthermore we have seen how PV S uses the null-window variant of al pha-
beta to construct solution trees, and how expand generates solution trees to determine an
upper bound in each iteration of the SSS-2 algorithm. The two solution tree generating
proceduresturn out to be in fact equivalent.

The other procedure of SSS-2, diminish, will be discussed in the next section. In that
section we will see the other link between alpha-beta and SSS-2: SSS-2 can be formulated
as a sequence of null-window searches (a sequence of SSNWS calls, to be precise).

4 Using Boundsin the Search Tree

In the previous section the algorithms PVS and SSS-2 were discussed, together with their
solution tree-traversing procedures NWS and expand. These procedures are called by these
algorithms on open nodes.

As has been noted in [MRS87] it would be nice if the information that was gathered
during a subtree-traversal could be used by the algorithm again. To thisend they proposed
INS, or Informed NegaScout, an enhanced version of PV Sthat remembersmoreinformation
from acall to NWS than just the value of the bound. Going even further, we can save the
entire solution tree that proves the value of the bound. This is done by expand, which
returnsthe solution tree. Thistreeisthen used by diminish, that transformstheinput tree to
one defining a sharper bound, that is subsequently returned together with the new tree. So,
where NWS/al pha-beta and expand were called on an empty search tree, diminishis called
on a non-empty search tree (more precisely, on a solution tree).

Where expand and NWS/alpha-beta are called on open nodes, we will now discuss a
version of alpha-betathat can be called, like diminish, on existing nodes.

Alpha-Beta for Non-Empty Search Trees

Alpha-betacan only be called on open nodesn. In figure 5 we show aversion of alpha-beta
that can be called on theroot of anon-empty search tree S. This procedurewill be useful for
the algorithmsto be discussed in the next section. Similar versions of alpha-betaareused in
game playing programsthat usetablesto prevent search overhead caused by transpositions,
and store search results of previous iterations. See e.g. [Mar86, p. 14]. We will see how
the standard version of alpha-beta can be changed so that it will be able to perform this new
task. The procedure will be called S-alpha-beta, since it can be called on asearchtree S
In [PdB92] a version of apha-beta is presented which can be applied to so-called
informed game trees [Iba86]. These are treesfor which in al internal nodes n a heuristic
upper and lower bound to f(n) is available. Theideais that the values f*(n) and £~ (n)
derived from the search tree rooted in n can be used as these heuristic bounds. (In aleaf n
of the game tree f*(n) = f~(n) = f(n) holds.) The precondition (o < B) and postcondition
(implications (1), (2), and (3)), aswell as the correctness proof of S-alpha-beta are the same

10



function S-apha-beta(n, «, 8) — v;
if n=leaf then n.f" :=n.f~ :=eva(n);
ifa>nf"ornf~>pornf =nf" then
ifnf~ >pthenreturnn.f—;
gsereturnn.f;

if n=openthen attach al childrento n with f* = +eo, f~ = —oo;
if n=MAX then

a =max(a,n.f7); B :=min(B,n.f);

g = —oo

for c :=firstchild(n) to lastchild(n) do
g := max(g, S-alpha-beta(c, « , 8));
o = max(a,g);
if g> B then exit for loop;

if n=MIN then
a =max(a,nf7); B :=min(B,n.f);
g = +oo;

for c :=firstchild(n) to lastchild(n) do
g := min(g, S-apha-beta(c, a , 8 ));
B :=min(s,g);
if g< a then exit for loop;
update (n.f~, n.f*);
return g;

Figure 5: S-apha-beta

as for the heuristic bounds version of alpha-beta [PdB92]. S-alpha-betais nothing more
than aversion of apha-betathat usesthe bounds f* and f~ that may exist in the search tree
below n.

The version of NWSthat consists of S-alpha-betacalled withawindow of (y — 1,y +1)
(sometimes (y — 1,y) or (y,y + 1)) will be called SSNWS in the rest of this paper.

S-alpha-beta and SSS-2

Given a search tree that contains max solution trees, one gets a sharper max solution tree
by calling S-alpha-beta(root, y — 1, v) wherey e {f~(roat), f*(root)], by the postcondition
of (S)alpha-beta

Each iteration of SSS-2 yields a max solution tree, which is input to the diminish call
with y-parameter = g(T) in the next iteration. T isthe (explicit) max solution tree between
two iterations of SSS-2. (Of course, T is part of the search tree at that time. This (implicit)
search tree is denoted by S) For every combination of n and ¢y with naminnodein T
and ¢ its single child in T, we have a remarkable property. Every child c of n to the left
of ¢y has been parameter in aformer call to expand or diminish with parameter y > g(T),
which has ended with g = y. Every child to the right of ¢y has not been visited yet by an
expand or diminish call. Thisimpliesfor Sthat f~(c) > g(T) for every c to the left of ¢y,
and f*(co) = g(co) < g(T). To theright of co we have infinite values (see [PdB92] for more
details). For every max node nin T, we have f*(n) = g(n) < g(T). Thisrelation can be
proved bottom-up.

Applying S NWS with parameter y = g(T) to S has the following effect. The nodes
along pathswith constant f*-value(f*(n) = g(T)) are parameter in asubcall of S-alpha-beta.
These pathsbelong to T. For each such path, the open children of the min nodesare visited,
from left to right in the search tree, to find out, whether at least one child ¢ can take avalue
f*(c) < g(T). Thisisequivalent to looking for a sub-max solution tree T, rooted in ¢ with

a(T) < g(T).

11



We find that S-alphabeta works on Sin the same way as diminish. We can replace
diminish calls by S-alpha-beta calls in the code of SSS-2. Since expand is equivalent to
NWS (whichis equivalent to S-al pha-beta on open nodes), we can replace the former code
of SSS-2 by the following:

function SSS-2(n) — v;
g = oo
repeat
Y=6
g := S-aphabeta(n,y — 1,7);
until g =;
return g;

Notethat this formulation of SSS-2 makes construction of the dual of SSS-2 almost trivial:
g := —; g := Saphabeta(n, v,y + 1). Also, it should be noted that « should be read as a
finite number outside the range of leaf values. Hence e~ — 1 < «” in the SSNWS call with
Y = +e in the SSS-2 code above makes sense.

A minor point to noteisthat thereisasmall point on which diminish and S-NWS differ.
Although both take a solution tree as input and produce a (sharper) solution tree as output,
they do not always expand the same nodes. Because the original (diminish) definition of
SSS-2 infigure 4 does not use lower bounds, it searched, in some exceptional cases, more
nodes than the present formulation (just like SSS* searches more nodes). This point of
difference is discussed in [PdB93, p. 29, figure 10]. Following the terminology of that
article, the present (S-alpha-beta) version of SSS-2 should really be called “Maxsearch.”

Narrower Window searches Surpass Wider Window searches

It is a well known feature that the narrower the a-B-window, the more cut-offs occur,
and hence, the smaller the number of generated nodes is [CM 83, Pea84]. The alpha-beta
version in [PdB92], suited for game trees with heuristic bounds in each node, expands less
nodes as the heuristic bounds become tighter or the «-§ gets narrower. (See the proof
ibid.) Accordingly, a cal to S-alpha-beta expands less new nodes, when (a) the size of
the existing search tree Sis greater, or (b) the input window is narrower. Therefore, every
alpha-beta call with anull-window surpasses the al pha-beta algorithm. (Here, surpassing is
used in the sense of Stockmann’s paper on SSS* [Sto79], where the set of nodes, expanded
at least once, is considered. Re-expanding or revisiting actions on such nodes are not taken
into account.) Since S-alpha-beta does not re-expand nodes when searching an existing
search treg, it generates less nodes than when called on an open node. It follows that every
sequence of S-alpha-beta calls with null windows surpasses the al pha-beta algorithmin the
sensethat it never generates more nodes.

Since SSS-2 consists of anumber of SSNWS calls, this algorithm surpasses a pha-beta.
Here, we rediscover a result in [PdB90] extending a weaker result in [Sto79]. (See aso
[Rei89].)

5 Three New Solution Tree Algorithms

Drawing on the knowledge of solution trees and how they are used in other algorithms, we
will present in this section a few examples of new ways of using solution tree generating
procedures. We do not wish to say that these three algorithms are the only possible ways of
using procedures like S-alpha-beta to create new agorithms. We mention these instances
only as examples of interesting new agorithms. At the end of this article, the results of
some experiments to determine the performance of these algorithmswill be discussed.

In the algorithms of this section we need a procedure that not only establishes upper or
lower bounds but onethat in somecasesconstructsacritical treeaswell—cf. implication (2),
the middle part of alpha-beta' s postcondition—becausewe want to test the hypothesis that

12



the game value equals y. In thiscasewe canchoosea =y — 1and g = y + 1, yielding the
following postcondition:

v<y = v=fn):fn)
v=y = v =) = An)
vy = v=f(n)<fn)

First Guess—SSS-0

SSS-2 performs a sequence of callsto establish sharper max solution treesin each iteration.
It can be described as repetitive S-alpha-beta(n, y — 1, ) (see previous section).

A natural variation of theideaof starting the search at +- isto start the search at avalue
that we expect to be closer to the game value. We might save ourselves searching some
nodes by starting closer (hopefully) to our target. The idea to start at some other value
than + can be regarded as a generalization of SSS-2. The resulting generalization will
be called SSS-0. The evaluation of a position may be a good candidate for use as such an
approximating first guess needed by SSS-0.

function SSS-0(n,g) — v;
repeat
Y =G
g :=S-aphabeta(n,y — 1,y + 1);
until g =v;
return g;

If, after thefirst call to S-NWS, the first bound g turns out to be lower than our initial guess,
then we have (by the postcondition) g = f*. We can then call S-alpha-beta(n,y — 1,y) to
lower the upper bound. If, on the other hand, the first bound is higher than our guess, then
we haveg = f~. We can find the game value by increasing the lower bound, which comes
down to calling S-alpha-beta(n, v, y + 1). These two cases have been combined into the call
S-aphabeta(n,y — 1,y + 1) in the code, to make SSS-0's code ook more like SSS-2. It
would be dlightly more efficient to have the original two cases of S-alpha-beta calls. We
have not shown that code here, since we feel itislessclear.

SSS-0 may save work because it starts closer to f, and can probably reach f in fewer
steps than SSS-2 (which starts at ). Given the smaller number of steps, it is hoped that
SSS-0's steps expand about the same number of nodes as SSS-2's steps—in other words,
that the solution trees are about the same size. If this is true, we would have found a
profitable way to make use of heuristic knowledgein the form of afirst guess. Please refer
to section 6 for some test results.

Sepwise Sate Space Search—SS5-4

Another possihility to exploit the idea of “bigger steps get you home sooner” is to lower
S-apha-beta’sinput parameter y in bigger steps than from upper bound to upper bound as
in SSS-2—keeping f~ (r) < y < f*(r), since searching outside the root-window is useless.

function SSS-4(n) — v,

g = teo

repeat
Y=6
g :=S-aphabeta(n,y — 1,y + 1);
g :=max(g — STEPSZE, f~(n));

until g =1v;

return g;
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Figure 6: SSS-like algorithms

This idea should be compared to SSS-0. SSS-0 can be used to speed-up the search when
we have some idea of f beforehand. SSS-4 can be used to get closer to f in less steps. A
danger inherent to SSS-4 is that it can overshoot the target if the steps are too large.

A variation might be to resort to awide window call to S-alpha-beta, when the bounds
have become relatively close: v := S-alpha-beta(n, f~(n), f*(n)). Anacther variation might
beto have avariable STEPSIZE. To achieve good performance some application dependent
fine tuning will probably be necessary.

Bisection—SSS-B

A third possibility is to use a well-known idea from approximation algorithms: bisection.
During the search for the game value two bounds exist, f* and f~. Instead of calling each
S-NWS with a y equal to one of the bounds, we can choose any value in between, for
instance the average of the two bounds. After a call to S'NWS we get a sharper upper or
lower bound. This new bound (say: the upper) can then be used in conjunction with the
other bound (say: the lower) to compute the next pivot valuefor y.

function SSS-B(n) - v;
repeat
v = average(f~(n), f*(n));
g :=S-aphabeta(n,y — 1,y + 1);
until g =v;
return g;

Concluding Remarks

Figure 6 summarizes the behavior of these algorithms with respect to bounds and the input
parameter. It gives an impression how each a gorithms jumps from one bound to the next
bound after each iteration.

The algorithms presented in this section are built around asequence of SNWScalls, and
hence, they surpass al pha-beta(n, —, +=). Theideathat this could lead to good algorithms
is not new. AlphaBounding also usesthisidea. Seee.g. [Sch86, p. 87] for more on this
algorithm.
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large subtree

Figure 7: Two sequences of SSNWScalls.

6 First Test Results

Whether the last three algorithms, SSS-0, SSS-4, and SSS-B, expand fewer nodes than
SSS-2/SSS* depends on the question whether a null-window call that starts near the game
value expands fewer nodes than a call with say +. In other words, does a “bigger steps
get you home sooner” approach work? (Bigger in the sense of big stepsin return value
g, not big solution trees.) Although this may seem obvious at first, some care is needed
here, since it can be shown that there exist game trees in which SNWS with f + x; as
input parameter expands fewer nodes than S-NWS with f + X, as input parameter where
X1 > X and f isthegamevalue. Seefigure7 for an example of such acounter-intuitivetree.
In the first iteration SNWS(n, 1) the empty nodes are expanded. In the second iteration
S-NWS(n, 12) the nodes marked with ¥, are expanded. The values shown next to the nodes
are the resulting values after the respectivetwo S-NWS calls.

To get an impression of the average case performance we have conducted some ex-
periments. We have called the algorithms on a number of artificially constructed uniform
game trees. We only report for trees of width 5 and depth 9, although we believe that the
results hold for wider trees aswell (e.g., w = 20,d = 5). We have generated 180 different
trees, using a procedure based on [MRS87, Hsu90]. The uniformly distributed leaf values
ranged from O to 999. The results shown are the average of 20 different random seeds. In
figure 8 the number of newly expanded nodes (inner nodes plus leaves) is shown relative
to nine levels of node ordering (the probability that the first successor is best). We seethat,
as we would expect, in a perfectly ordered tree every algorithm expands the same number
of nodes. In the graph the performance of “old” algorithms Alpha-beta, PVS, SSS-2 and
Dual is shown, together with the “new” ones, SSS-4 with two stepsizes (50 and 100), and
SSS-B. It turns out that in these tests, on these trees, Dual-2 performs the best. To reduce
unwanted effects we have taken for each of the 20 seedsdifferent game values (e.g., agame
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value close to 0 would give Dual an advantage, a game value close to 500 would favor
SSS-B (sincethe average of 0 and 999 is around 500), and a game value close to 999 would
favor SSS-2—see also figure 10 and its text). More testing is needed to see whether these
results hold for other trees as well.

Concerning SSS-0, there isa small complication, since it is difficult to think of a good
way to emulate the performance of an evaluation function to providethefirst guess on these
artificial trees. Therefore, we have not shown SSS-0 on the trees with random game value.
Instead, we have decided to show the best-case performance of SSS-0in figure 9. In this
graph the game value of all treesis equal to 504. Thisvalue isthen used asthe first guess
for SSS-0. As can be seen—and expected, despite the tree in figure 7—it performs better
than Dual. The actual performance of SSS-0 will vary between the linesfor SSS-2, Dudl,
and SSS-0. Just how it variesis shown in figure 10.

The figures shows a phenomenon that has been noted before in [MRS87], viz. that
Dual expands |ess nodes than primal SSS-2 on odd-depth trees. (On even-depth trees Dual
does not perform better.) This can also be seen in figure 10, which shows the node count of
SSS-0for 6 different levels of node ordering relative to thefirst guess, or the start value for
the search. Onthex-axisthe valuesfor theinput parameter to SSS-0 aretabulated. It can be
seen that theleft-hand side (first guess of O, equivalent to —e or Dual) islower than theright-
hand side (first guess of 999, equivalent to +e or primal SSS-2). Figure 10 indicatesthat on
average starting the search closer to f is a good idea, contrary to the counter-intuitive tree
of figure 7. Figure 10 should not be confused with the “refutation wall” graph in [MRS87],
whichisagraph of single callsto NWS. The nodecount in figure 10 refersto callsto SSS-0,
which consists of a humber of callsto SSNWS. Figure 10 shows that the closer a search
starts to the minimax value of a game tree, the less nodes are expanded, on average. The
gain in performance is less in ordered trees. This implies that the “bigger steps get you
home sooner” idea of SSS-0, SSS-4, and SSS-B may work in principle, athough the actual
gainswill depend on the tree-characteristics of the application at hand.

If the results of these preliminary experiments on artificial trees hold for “real” trees,
encountered in actual application domains, then it would appear that SSS-0, SSS-4, and
SSS-B, are preferable over SSS-2/SSS*. Whether thisis the case is the subject of ongoing
research.
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7 Future Work

We will try to find more, and also more interesting algorithms. For instance, we have
experimented with an algorithm “second best search” that finds the best successor to the
root by trying to establish a proof that it is better than the other root-successors. (In spirit
closeto AlphaBounding, aswefound out later.) Thiscan be done by applying S-al pha-beta
to asuccessor of the root with current highest f*-value, however with a y-parameter equal
to the f*-value of the second highest successor of the root. Here the algorithm stopsas soon
as one root-successor is better than the other, just asin Alpha Bounding and B* [Ber79].

Also, the space complexity of S-alpha-beta must be addressed. By deleting irrelevant
partsof thesearch tree, or by using schemeslike Rsearch [1ba86] or Staged SSS* [CM83], it
should be possibleto manage S-al pha-beta’smemory usage. A transposition tableapproach,
i.e., ascheme comparableto hash tables common in chess programs, might be advantageous
in thisrespect. ([BB86] discusses similar issues for RecSSS*.)

We plan to look into the effect of tree characteristics on the relative performance of the
preceding algorithms. Furthermore we will try to extend this research to parallel versions
of the algorithms.

We believethat the relation of our work to search enhancementslikeiterative deepening
and transposition tables deserves attention. Finaly, the relation with other algorithms like
Proof Number Search [AvdMvdH94], Best-First Minimax Search [Kor93], B* [Ber79], and
H* [Iba87] isworth investigating.
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