IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002 447

A Performance Analysis of
Transposition-Table-Driven Work
Scheduling in Distributed Search

John W. Romein, Henri E. Bal, Member, IEEE Computer Society,
Jonathan Schaeffer, and Aske Plaat

Abstract—This paper discusses a new work-scheduling algorithm for parallel search of single-agent state spaces, called
Transposition-Table-Driven Work Scheduling, that places the transposition table at the heart of the parallel work scheduling. The
scheme results in less synchronization overhead, less processor idle time, and less redundant search effort. Measurements on
a 128-processor parallel machine show that the scheme achieves close-to-linear speedups; for large problems the speedups are
even superlinear due to better memory usage. On the same machine, the algorithm is 1.6 to 12.9 times faster than traditional

work-stealing-based schemes.

Index Terms—Distributed search, single-agent search, work pushing, Transposition-Table-Driven Work Scheduling (TDS), IDA*.

1 INTRODUCTION

MANY applications heuristically search a state space to
solve a problem. These applications range from logic
programming to pattern recognition and from theorem
proving to chess playing. Achieving high performance, both
in terms of solution quality and execution speed, is of great
importance for many search algorithms, such as real-time
search and any-time algorithms.

Often, search algorithms recursively decompose a state
into successor states. If the successor states are independent
of each other, they can be searched in parallel. A typical
scenario is to allocate a portion of the search space to each
processor in a parallel computer. A processor is assigned a
set of states to search, performs the searches, and reports
back the results. During the searches, each processor
maintains a list of work yet to be completed (the work
queue). When a processor completes all its assigned work, it
can be proactive and attempt to acquire additional work
from busy processors, rather than sit idle. This approach is
called work stealing.

In its basic form, work stealing is a clean and simple
approach. Often, however, application-specific heuristics
and search enhancements introduce interdependencies
between states, making efficient parallelization a much
more challenging task. One of the most important search
enhancements is the transposition table, a large cache in
which newly expanded states are stored [36]. The table has

o J.W. Romein, H.E. Bal, and A. Plaat are with the Vrije Universiteit,
Faculty of Sciences, Department of Mathematics and Computer Science, De
Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands.

E-mail: {john, bal, aske/@cs.vu.nl.

o |. Schaeffer is with the University of Alberta, Department of Computing
Science, Edmonton, Alberta, Canada T6G 2H1.

E-mail: jonathan@cs.ualberta.ca

Manuscript received 15 Feb. 2001; revised 28 June 2001; accepted 1 Oct. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 113631.

many benefits, including preventing the expansion of
previously encountered states, move ordering, and tighten-
ing the search bounds. The transposition table is particu-
larly useful when a state can have multiple predecessors
(i.e., when the search space is a graph rather than a tree).
The basic tree-based recursive node expansion strategy
would expand states with multiple predecessors multiple
times. A transposition table can result in time savings of
more than a factor 10, depending on the application [27].
Unfortunately, in a distributed environment it is difficult
to share the transposition table information in an effective
way. Usually, the transposition table is partitioned among
the local memories of the processors (for example, the
distributed chess programs Zugzwang [13] and *Socrates
[17] partition the table). Before a processor expands a node,
it first does a remote lookup: It sends a message to the
processor that manages the entry and then waits for the
reply. This can result in sending many thousands of
messages per second, introducing a large communication
overhead. Moreover, each processor wastes much time
waiting for the results of remote lookups. The communica-
tion overhead can be reduced (e.g., by sending fewer
messages), but this usually increases the size of the search
tree that needs to be explored. One can also overlap
communication and computation, but the computations are
often speculative and may turn out to be superfluous.
Extensive experimentation may be required to find the
“right” amount of communication to maximize performance.
In this paper, we discuss a different approach for
implementing distributed transposition tables, called Trans-
position-Table-Driven Work Scheduling (or Transposition-Dri-
ven Scheduling, TDS, for short). The idea is to integrate the
parallel search algorithm and the transposition table
mechanism: Drive the work scheduling by the transposi-
tion-table accesses. The state to be expanded is migrated
to the processor that may contain the corresponding

1045-9219/02/$17.00 © 2002 IEEE

448 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

transposition-table entry. This processor performs the
local table lookup to see whether the state has already
been searched. If this is not the case, or if the state has
not been searched deeply enough, the state is stored in the
transposition table and in the local work queue for
expansion later. The receiver thus is responsible for
further expansion (search) of the state.

TDS eagerly pushes work where traditional schemes
lazily steal work. Although this approach may seem
counterintuitive due to the frequent migration of work, it
has important advantages:

1. All communication is asynchronous (nonblocking).
A processor expands a state and pushes its children
to their home processors, where they are entered
into the transposition table and in the work queue.
After sending the messages the processor continues
with the next piece of work. Processors never have to
wait for the results of remote lookups.

2. The asynchronous nature of TDS allows combining
multiple pieces of work into a single, large network
message. This optimization reduces the communica-
tion overhead since less time is spent in the protocol
stack of the network software.

3. The network latency is hidden by overlapping
communication and computation. This latency hid-
ing is effective as long as there is enough bandwidth
in the network to cope with all the asynchronous
messages. With modern high-speed networks such
bandwidth usually is amply available.

4. Assuming the table is large enough to cache all
visited states, TDS guarantees that no redundant
search effort is performed. If a state has multiple
parents, the state is searched only once.

The idea of transposition-driven scheduling can apply to

a variety of search algorithms. In this paper, we describe the
algorithm and present performance results for single-agent
search (IDA* [20]). We have implemented TDS on a large-
scale cluster computer consisting of Pentium Pro PCs
connected by a Myrinet network. The performance of this
algorithm is compared with the traditional work stealing
scheme. Performance measurements on 128 processors for
several applications show that TDS is 1.6 to 12.9 times
faster than work-stealing-based approaches. Moreover,
TDS scales much better to large numbers of processors.
On 128 processors, TDS is 122 to 138 times faster than on
a single processor, while the work stealing algorithm
obtains speedups of only 10 to 79. TDS can exploit the
increasing transposition table size to decrease the search
effort and, therefore, sometimes even achieves superlinear
speedups, especially for hard search problems that require
large runtimes.

In traditional parallel search algorithms, the algorithm
revolved around the work queues, with other enhance-
ments, such as the transposition table, added in as an
afterthought. With TDS, the transposition table is at the
heart of the algorithm, recognizing that the search space

1. Unfortunately, the term “agent” has multiple meanings. In this paper,
“agent” refers to the type of tree being searched, not to the processor
searching the tree.

bound =28 result = 30

bound =27

bound = 26

Fig. 1. One IDA* iteration.

really is a graph, not a tree. The result is a simple parallel
search algorithm that achieves high performance.

The main contribution of this paper is to show how
effective the new approach is for single-agent search. We
discuss in detail how TDS can be implemented efficiently
and we explain why it works so well compared to work
stealing. The rest of this paper is organized as follows: First,
we give some background information on (parallel) IDA*
and discuss related work. Then, we describe the transposi-
tion-driven scheduling approach and discuss several of its
implementation issues. Next, we evaluate the performance
of the new approach and compare TDS to traditional
work-stealing based implementations of IDA*. We
analyze the sensitivity to bandwidth, latency, and over-
head of the network. Finally, we summarize the
contributions of this work.

2 BACKGROUND AND RELATED WORK

Although the idea of TDS is not limited to the IDA* search
algorithm, we use IDA* for our experiments. Below, we will
describe the IDA* search algorithm and the transposition
table and how they are traditionally implemented to run on
a distributed system. People familiar with these concepts
can skip the remainder of this section.

2.1 Sequential IDA*

Iterative Deepening A* (IDA*) [20] is used for searching
single-agent state spaces like those of the 15-puzzle (sliding-
tile puzzle), route planners, optimizing schedulers, Rubik’s
cube, and DNA sequence alignment. The objective is to find
the shortest solution path from a given problem position to
a target position (or one out of a number of target positions).
IDA* is a memory-efficient variant of A* [26]. IDA* searches
a search tree, where the nodes in the tree represent states (in
practice, the terms state, node, and position are used
interchangeably). Vertices represent possible state transi-
tions; for example, in games, the children of a node are
those positions that can be reached by a legal move,
according to the rules of the game.

IDA* repeatedly descends the search tree, starting from
the root position. Each iteration, the tree is searched to an
increased depth, until a solution is found.

An example of an IDA* iteration is shown in Fig. 1. The
tree is traversed depth first, left to right. Each node is
searched with a search bound that controls the maximum
search depth. The search bound is decreased by 1, the cost
to go from one state to another. Some applications (like the
traveling-salesman problem) use a nonunity cost function;

ROMEIN ET AL.: A PERFORMANCE ANALYSIS OF TRANSPOSITION-TABLE-DRIVEN WORK SCHEDULING IN DISTRIBUTED SEARCH 449

FUNCTION IDA(Root) : INTEGER
NewBound := Evaluate(Root);
REPEAT
OldBound := NewBound;
NewBound := Search(Root, NewBound) ;
UNTIL OldBound = NewBound;
RETURN NewBound;
END
FUNCTION Search(Node, Bound) : INTEGER

MinDist := Evaluate(Node);

IF MinDist <= Bound AND NOT IsTarget (Node) THEN

MinDist := INFINITY;

Child ;= FirstChild(Node) ;

REPEAT
Childval := Search(Child, Bound — 1);
MinDist := MIN(MInDist, Childval + 1);
Child := NextSibling(Child);

UNTIL Child = NULL OR MinDist = Bound;

END

RETURN MinDist;
END

Fig. 2. The sequential IDA* search algorithm.

for simplicity, we assume a unity cost function in the
remainder of this paper. A node can be evaluated using an
evaluation function. In the figure, the numbers inside the
circles represent evaluation values. The evaluation function
examines the position and returns a lower bound on the
number of moves required to reach a target state. If the
evaluation value of a node exceeds its search bound, it is not
possible to reach the target state within the maximum
number of moves left and the subtree below the node is
pruned. Otherwise, the node is expanded and its children
are (recursively) searched.

In the example, the root is initially searched with a search
bound of 28. Since its evaluation value does not exceed its
search bound, the root is expanded and its first child is
searched with bound 27. Here, the evaluation value (29)
exceeds the search bound and the node is pruned. The
search is continued at the next child. Since the evaluation
value of this node does not exceed the search bound, its
children are searched too.

IDA* returns a search result for each node that is visited in
the tree. The search result denotes the new minimum
solution length and is returned to the parent of the node.
The search result of a pruned node equals its evaluation
value. The search result of an expanded node is obtained by
taking the minimum of its children’s search results and
adding 1 (accounting for the move from the parent to the
child). The figure shows the search results for the expanded
nodes. The search result of the root equals 30, stating that
the minimal solution length is 30. The algorithm will start a
new iteration with search bound 30; this tree will be deeper
than the one shown in the figure. New iterations are started
as long as the root’s search result exceeds its search bound;
this indicates that no solution was found so far. The pseudo
code for the IDA* algorithm is shown in Fig. 2.

The evaluation function plays an important role during
the search. To guarantee that IDA* will find a shortest
solution, the evaluation function must not overestimate the
distance to the target. Such an evaluation function is said to
be admissible. A well-known example of an admissible
evaluation function is the Manhattan distance for the
sliding-tile puzzle, which sums the distances between each
tile’s current position and the tile’s target position. To prune
as much work as possible, the evaluation function should
estimate the minimum solution length as accurately as
possible, but must not overestimate the solution length if
minimal solutions are desired.

2.2 Parallel IDA*

To decrease the search time, one can search an IDA*-tree in
parallel. Numerous parallel versions of IDA* have appeared
in the literature. Most algorithms use task distribution
schemes that partition the search tree over the available
processors [29]. Task distribution can be simplified by
expanding the tree in a breadth-first fashion until the
number of states on the search frontier matches the number
of processors [23]. This can cause load balancing problems
(the search effort required for a state varies widely),
implying that enhancements, such as work stealing, are
necessary for high performance. A different approach is
Parallel Window Search (PWS) [28], where each processor is
given a different IDA* search bound for its search. All
processors search the same tree, albeit to different depths.
Some processors may search the tree with a search bound
that is too high. Since sequential IDA* stops searching after
using the right search bound, PWS results in much wasted
work. Asynchronous IDA* (AIDA¥) [31] uses a combination
of a data partitioning scheme and work stealing and allows
processors to search to different depths concurrently.

All these schemes essentially considered only the basic
IDA* algorithm, without important search algorithm en-
hancements that significantly reduce the search tree size
(such as transposition tables).

IDA* uses less memory than A*. This comes at the
expense of repeatedly expanding some states: a state can be
expanded again in a subsequent iteration. The simple
formulation of IDA* does not include the detection of
duplicate states (transpositions), such as a cycle, or
transposing into a state reached by a different sequence of
state transitions. Treating the search space as a tree, while in
fact it is a graph, leads to duplicated search of the subtree
below a transposition. The transposition table is a con-
venient mechanism for using memory to solve these search
inefficiencies, both in single-agent [30] and two-agent [36]
search algorithms. There are other methods, such as finite
state machines [38], but they are not as generally applicable
or as powerful as transposition tables.

2.3 The Transposition Table

A transposition table is a large (possibly set-associative)
cache that stores intermediate search results. Each time a
state is to be searched, the table is checked to see whether it
has been searched before. If the state is in the table, the table
entry contains a value that denotes a lower bound on the
number of moves required to reach the target state. If the
lower bound is greater than the search bound of the node,

450 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

the state and the subtree below it can be pruned. If the state
is not in the table, or if the lower bound in the table is not
sufficient to prune the state, then the search engine
examines the successors of the state recursively, storing
the search results into the transposition table.

Mapping a state to a transposition table entry is usually
done by hashing the state to a large number (usually 64 bits
or more) called the signature [39]. Some of the bits in the
signature are used to index the table; the remaining bits (the
tag) are used to distinguish different states that map to the
same index. The information in the table depends on the
search algorithm. For the IDA* algorithm, the table entry
contains a lower bound on the solution length. In addition,
each entry may contain information used by table entry
replacement algorithms, such as the effort (number of nodes
searched) to compute the entry.

2.4 Distributed Transposition Tables

In parallel search programs the transposition table is
typically shared among all processes because a position
analyzed by one process may later be researched by another
process. Implementing shared transposition tables effi-
ciently on a distributed-memory system is a challenging
problem because the table is accessed frequently. Several
approaches are possible. With partitioned transposition
tables, each processor contains part of the table. The
signature is used to determine the processor that manages
the table entry corresponding to a given state. To read or
update a table entry, a message must be sent to that
processor. Hence, most table accesses will involve commu-
nication. Lookup operations are usually implemented using
synchronous communication, where requesters wait for
results. Update operations can be sent asynchronously. An
advantage of partitioned tables is that the size of the table
increases with the number of processors (more memory
becomes available). The disadvantage is that lookup
operations are expensive: the delay is at least twice the
network latency (for the request and the reply messages). In
theory, remote lookups could be done asynchronously,
where the node expansion goes ahead speculatively before
the outcome of the lookup is known [14]. However, this
approach is complicated to implement efficiently and
suffers from thread-switching and speculation overhead.

Another approach is to replicate the transposition table
entries in the local memory of each machine. This has the
advantage that all lookups are local and updates are
asynchronous. The disadvantage is that updates must
now be broadcast to all machines. Even though broadcast
messages are asynchronous and multiple messages can be
combined into a single physical message, the overhead of
processing the broadcast messages is high and increases
with the number of processors. Moreover, replicated tables
have fewer entries than partitioned tables, as each entry is
stored on each processor. These facts limit the scalability of
algorithms using this technique and replicated tables are
seldomly used in practice.

A third approach is to let each processor maintain only a
local transposition table, independent from the other
processors [24]. This would eliminate communication over-
head, but results in a large search overhead (different
processors could search the same node). For many applica-

tions, local tables are the least efficient scheme. Also
possible are hybrid combinations of the above. For example,
each processor could have a local table, but replicate the
“important” parts of the table by periodically broadcasting
this information to all processors [8].

The communication overhead for the partitioned and the
replicated distribution schemes is high since each processor
accesses the table tens or hundreds of thousands of times
per second. Several enhancements exist to these basic
schemes. One technique for decreasing the communication
overhead is to not access the distributed transposition table
when searching near the leaves of the tree [35]. The
potential gains of finding a table entry near the root of the
tree are larger because a pruned subtree rooted high in the
tree can save more search effort than a small subtree rooted
low in the tree. Another approach is to optimize the
communication software for the transposition table opera-
tions. An example is given in [3], [32], which describes
software for Myrinet network interface cards that is
customized for transposition tables. One can also prefetch
remote table entries and make the remote lookup asyn-
chronous [32]. This helps for many applications, but the
savings are modest. Like prefetching, concurrently perform-
ing an asynchronous remote lookup and speculatively
generating the node helps hiding the lookup latency [14].

2.5 Scheduling

The table distribution schemes described above are intuitive
ways to implement a distributed transposition table.
However, we believe that the traditional way to implement
distributed search, using work stealing, disallows an efficient
implementation of a distributed transposition table. With-
out a transposition table, work stealing is efficient since
work stealing itself involves little communication overhead.
But if one first parallelizes the search algorithm and
subsequently adds a distributed transposition table as an
afterthought, it is hard to get a table entry to the place
where it is needed: at the processor that processes the
corresponding state.

By integrating transposition table access with work
scheduling, TDS makes all communication asynchronous,
allowing communication and computation to overlap.
Extensive research has been done on overlapping commu-
nication and computation [11]. The idea of self-scheduling
work dates back to research on data flow and has been
studied by several other researchers (see [10] for a
discussion). In the field of problem solving, there are
some cases in which this idea has been applied success-
fully. In software verification, the parallel version of the
Murphi protocol verifier uses its hash function to
schedule the work [37]. In game playing, a parallel
generator of end-game databases (based on retrograde
analysis) uses the Godel numbers of states to schedule
work [2]. In single-agent search, a parallel version of A%,
PRA?, partitions its OPEN and CLOSED lists based on the
state [12]. The parallel theorem prover Peers-mcd [7]
assigns clauses to processors based on common ancestors.
In this, Peers-mcd differs from the others since it uses
surrounding states to schedule the work, rather than a state
itself.

ROMEIN ET AL.: A PERFORMANCE ANALYSIS OF TRANSPOSITION-TABLE-DRIVEN WORK SCHEDULING IN DISTRIBUTED SEARCH 451

trans
table

work
queue

1
trans work trans \
table queue table

Fig. 3. Transposition-Driven Scheduling for IDA*. Black numbers are
referred to in the text.

Interestingly, the last four papers present the data-flow-
like parallelization as solving the problem in a natural way
and, although the authors report good speedups, they do
not compare their approaches to more traditional paralle-
lizations. The paper on PRA* for example, discusses
differences with IDA* parallelizations, but focuses on a
comparison of the number of state expansions, without
addressing the benefit of asynchronous communication for
runtimes.” (A factor may be that PRA* was designed for the
CM-2, a SIMD machine whose architecture makes a direct
comparison with recent work on parallel search difficult.)

Despite the good performance of data-flow-like paralle-
lization, so far no in-depth performance study between
work stealing and data-flow-like approaches such as TDS
has been performed for distributed search algorithms.

3 TRANSPOSITION-DRIVEN SCHEDULING

Transposition-Driven Scheduling (TDS) is a distributed
scheduling algorithm and, like work stealing, is built on top
of a search algorithm. TDS describes where and when states
are expanded. Work stealing naturally clusters subtrees on
individual processors, but TDS scatters the tree over all
processors. At first sight, this seems illogical since TDS
communicates much more than work stealing does; the
basic work-stealing algorithm (without transposition table)
hardly communicates at all. However, it is difficult to
combine a work-stealing-based algorithm and a distributed
transposition table that shares the information in an
efficient way. TDS avoids the problem by integrating the
scheduling and the transposition table, lowering both
communication and search overheads.

Fig. 3 illustrates how TDS works for IDA¥*; the
numbers in this paragraph correspond to the black
numbers in the figure. Each processor stores part of the
transposition table (1) and has a local work queue (2).
The local work queue contains states that need to be
expanded (searched). As long as there are states in the
work queue, the processor takes a job and expands it to
its successor states (3). After expansion, the parent state is
destroyed. Each child is evaluated, using an admissible

2. Evett et al. [12] compare PRA* against versions of IDA* that lack a
transposition table. Compared to IDA* versions with a transposition table,
PRA*s node counts would have been less favorable.

PROCEDURE MainLoop ()
WHILE NOT Finished DO
State := GetLocalJob();
IF State <> NULL THEN
Children := ExpandState(State);
FOR EACH Child IN Children DO
IF Evaluate(Child) <= Child.SearchBound THEN
Dest = HomeProcessor(Signature(Child));
SendState (Child, Dest);
END
END
ELSE
Finished := CheckGlobalTermination();
END
END
END

PROCEDURE ReceiveState(State)
Entry := TransLookup(State);
IF NOT Entry.Hit OR
Entry.SearchBound < State.SearchBound THEN
TransStore(State);
PutLocaldob(State) ;
END
END

Fig. 4. Simplified TDS algorithm.

evaluation function. States that are too far from a target
(i.e., the evaluation function returns a minimum distance that
is greater than the state’s search bound) are pruned (4). Each
of the remaining states is hashed to a transposition table entry
and pushed to the processor that owns the entry (5). Upon
arrival, the state is looked up in the transposition table. If the
state is not there (6), the entry is written both into the
transposition table and into the local job queue (7). If the
state is already in the table (8), the state is a transposition
and there is no need to search it again.

Each state is assigned a home processor, which manages
the transposition table entry for this state. The home
processor is computed from the state’s signature. Some of
the signature bits indicate the processor number of the
state’s home, while some of the remaining bits are used as
an index into the transposition table at that processor.

Fig. 4 shows the pseudocode for the TDS algorithm,
which is executed by every processor. The function
MainLoop repeatedly tries to retrieve a state from its local
work queue. If the queue is not empty, it expands the state
on the head of the queue by generating the children. Then,
for each child, it checks whether the lower bound on the
solution length (obtained by Ewvaluate) exceeds the IDA*
search bound, in which case it causes a cutoff. If not, the
child is sent to its home processor. When the local work
queue is empty, the algorithm checks whether all other
processors have finished their work and no work messages
are in transit. If there is still work somewhere, it waits for
new work to arrive.

The function ReceiveState is invoked for each state that is
received by a processor. The function first does a transposi-
tion table lookup to see whether the state has been searched
before. If not, or if the state has been searched to an
inadequate depth (e.g., by a previous iteration of IDA¥), the
state is stored into the transposition table and put into the
local work queue; otherwise the state is discarded because it

452 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

has transposed into a state that has already been searched
adequately.

The values stored in the transposition table are used
differently for work stealing and TDS. With work stealing, a
table entry stores a search result (a lower bound on the
minimal distance to the target), derived by searching the
subtree below it. Finding a transposition table entry with a
suitably high table value indicates that the state has been
previously searched adequately. With TDS, an entry
contains a search bound. It indicates that the subtree below
the state has either been previously searched adequately (as
above), or is currently being searched with the given bound,
or is pending in the job queue. Note that this point
represents a major improvement over previous distribu-
ted transposition table mechanisms in that it prevents two
processors from ever working on the same subtree
concurrently.

4 IMPLEMENTATION ISSUES

We now discuss some implementation issues of TDS. Since
no results are propagated to the parent, TDS needs a
separate mechanism to detect global termination. TDS
synchronizes after each IDA* iteration and starts a new
iteration if the current iteration did not solve the problem.
There are many distributed termination detection algo-
rithms that can be used. We use the time count algorithm
described in [25], which counts the size of the local work
queues and the number of pieces of work in transit. The
overhead for termination detection is negligible because
new iterations are started infrequently and because the
termination detection algorithm is active only when a work
queue becomes empty.

Another issue concerns the search order. Scheduling
prescribes not only on which processor a state is expanded,
but also in which order. It is desirable to do the parallel
search in a depth-first way as much as possible because
breadth-first search will quickly exhaust the memory for
intermediate states. Depth-first behavior could be achieved
using priority queues, by giving work on the left-hand side
of the search tree a higher priority than that on the right-
hand side of the tree. However, manipulating priority
queues is expensive. Instead, we implement each local work
queue as a stack, at the possible expense of a larger working
set. When searching sequentially, a stack corresponds to
pure depth-first search.

An interesting trade-off concerns when and where to
invoke the evaluation function. One option is to do the
evaluation on the processor that creates a piece of work and
to migrate the work to its home processor only if the
evaluation did not cause a cutoff as in Fig. 4. Another option
is to migrate the work immediately to its home processor,
look it up in the transposition table, and then call the
evaluation function only if the lookup did not cause a
cutoff. The first approach (evaluation at the source
processor) will migrate less work but will always invoke
the evaluation function, even if the state has been searched
before (on the home processor). However, no transposition
table accesses are done for nodes that cause a cutoff after
evaluation. The overhead of evaluating extra states is partly
compensated by having fewer table accesses. Another effect

of the latter approach (evaluation at the destination
processor) is that the extra amount of table writes fills the
table more quickly, increasing the chance of table conflicts
and leading to increased search effort. Which approach is
more efficient depends on the relative costs for migrating
and evaluating states, accessing the transposition table, and
on the rate at which the transposition table is filled.

An important optimization performed by our imple-
mentation is message combining. To decrease the overhead
per migrated state, several states that have the same source
and the same destination processors are combined into one
physical message. Each processor maintains a message
buffer for every other processor. A message buffer is
transmitted when it is full, or when the sending processor
has no work to do; this typically happens during the start
and the end of each iteration, when there is little work.

Many applications increment the root’s search bound of
a new IDA* iteration by a value greater than one. An
admissible evaluation function (for example, the one used
for the 15-puzzle) may return a value that underestimates
the distance to the target, but always returns the right parity
(i.e., if the evaluation function returns an even value, the
real distance is even, otherwise the real distance is odd). As
a result of this, the search bound can be increased by two
after each iteration that did not lead to a solution. The work-
stealing IDA* algorithm, which updates the parent’s search
results, will discover this automatically. For TDS, we
determine the root’s search bound of a new IDA* iteration
as follows: During an iteration we compute for each node
that is pruned the difference between its evaluation value
and its search bound. Each processor maintains the local
minimum of the differences seen so far. If an iteration does
not lead to a solution, the next iteration will be started with
a search bound that is increased by the global minimum of
the differences. Determining the global minimum hardly
requires extra communication since the local minima can be
collected during global termination detection. In this way,
TDS is able to discover the search bound of the next
iteration, just like work stealing.

Since TDS does not backpropagate search results, it
requires some effort to construct a solution path after the
search has succeeded. There are several feasible ways to
retrieve a solution path, none of which require extra
information in the transposition table to be stored. One
option is to tag each state with the moves leading from the
root to the state. Although each move can usually be
represented in a few bits, it considerably enlarges the size of
a state in deep, shallow search trees and increases the
communication overhead accordingly. Another option,
which is the default in our implementation, is to maintain
only the first few moves and to research the subtree starting
from the end of the partial solution path (with a cleared
transposition table), until the complete solution path is
retrieved. A research requires considerably less time than
the original search since the search tree is much smaller and
the search bound of the subtree’s root is known exactly;
therefore no time is wasted in unsuccessful IDA* iterations.

Yet another option is to construct the solution path from
the target to the root, using information that is found in the
transposition table. Initially, only the target is on the partial

ROMEIN ET AL.: A PERFORMANCE ANALYSIS OF TRANSPOSITION-TABLE-DRIVEN WORK SCHEDULING IN DISTRIBUTED SEARCH 453

solution path. Then, repeatedly, all possible parents of the
head of the partial solution path are created and looked up
in the transposition table (possibly on another machine). If
the search bound (i.e., the distance to the target) of the head
equals n, then there is at least one parent with a search
bound n + 1. From the list of possible parents, we add the
one with search bound n + 1 to the partial solution path (if
there are multiple such parents, the head is a transposition
and any parent will do) and repeat the process until the
entire solution path is created. More effort is needed when
transposition table information from the possible parents is
lost and no parent with search bound n + 1 can be found. If
there is only one possible parent missing from the table, it
must be the real parent; otherwise, we proceed with a
backward search, until one of the ancestors is found in the
transposition table. Such a backward search is best
implemented with breadth-first search because depth-first
tends to lose its way searching for an ancestor on the
solution path.

In our experience, the latter method is the most efficient
method when the transposition table is sufficiently large;
when the table is so small that most of the parents are
already evicted from the table, one of the other solutions is
preferred.

5 DiscussIioN

Transposition-Driven Scheduling has six advantages:

1. All transposition table accesses are local.

All communication is asynchronous; processors do
not wait for messages (except for termination
detection, of which the overhead is negligible). As
a result, the algorithm scales well to large numbers
of processors. The total bandwidth requirements
increase approximately linearly with the number of
processors.

3. As long as the table is large enough to cache all
states, no duplicate searches are performed. With
work stealing, multiple processors may concurrently
search a transposition because the transposition-
table update occurs after the subtree below it was
searched. With TDS this cannot occur; all attempts to
search a given subtree must go through the same
home processor. Since TDS has a record of all
completed and in-progress work in the transposition
table, it will not allow redundant effort.

4. TDS uses the memory of multiple processors in an
efficient way. The extra memory is used to cache
more states during long searches, which decreases
the likelihood that entries are evicted from the table.

5. TDS produces more stable execution times for trees
with many transpositions than the work-stealing
algorithm because TDS does not randomly allocate
work to processors.

6. No separate load-balancing scheme is needed.
Previous algorithms require work stealing or some
other mechanism to balance the work load. Load
balancing in TDS is done implicitly, using the hash
function. Most hash functions, including the one we
use [39], are uniformly distributed, causing the load

to be distributed evenly over the machines. This
works well as long as all processors are of the same
speed. If this is not the case, the stacks of the slow
processors will grow and may exhaust memory. A
flow control scheme can be added to keep processors
from sending states too frequently. In our experi-
ments, we have not found the need to implement
such a mechanism.

An important property in our TDS implementation of
IDA* is that a child state does not report its search result to
its parent. As soon as a state has forked off new work for its
children, work on the state itself has completed. Traditional
implementations of IDA* determine a parent’s search result
as the minimum of the children’s search results plus one.
Without propagating the result back to the parent, addi-
tional search effort may be required, especially in trees
where the evaluation value of a parent often differs much
from those of its children. Many applications build search
trees in which this scenario rarely occurs. For example, in
the sliding-tile puzzle the evaluation value of a parent state
is seldomly® off by more than 1 from the minimum of the
children’s evaluation values. However, there are applica-
tions in which the scenario occurs frequently. For example,
in Sokoban (a puzzle where a man must push barrels over a
grid floor to target positions) a deadlock situation arises if a
barrel is pushed into a corner [18]. When all children of a
state are deadlocks, the state itself is a deadlock. To
recognize such deadlocks in subsequent search iterations
it is much better to include backpropagation of search
results in TDS. Other search algorithms that backpropagate
search results, such as Alpha-Beta search [19], also need this
mechanism. However, for the applications we use, back-
propagation is not necessary.

6 PERFORMANCE MEASUREMENTS

We compare the performance of TDS with that of work
stealing, enhanced with partitioned, replicated, or nonshared
transposition tables. Our test suite consists of three games:
the 15-puzzle, the double-blank puzzle, and Rubik’s cube. The
double-blank puzzle is a modification of the 15-puzzle,
where we removed the tile labeled “15.” By having two
blanks, we create a game with many transpositions because
two consecutive moves involving both blanks can usually
be interchanged. All three games were implemented in
Multigame [32], [33], a high-performance environment for
distributed game-tree search.

The 15-puzzle uses a state-of-the-art evaluation function.
It includes the Manhattan distance, linear conflict heuristic
[16], last move heuristic [22], and corner conflict heuristic
[22]. The double-blank puzzle uses the same evaluation
function, adapted for two blanks. The Rubik’s cube
evaluation is done using pattern databases [21], one each
for corners and edges.

Both the replicated and partitioned variants of the 15-
puzzle reduce the amount of transposition-table commu-

3. With an evaluation function that only implements the Manhattan
distance, the evaluation value is never off by more than 1. Additional
heuristics, such as the linear-conflict heuristic, sometimes cause greater
differences.

454 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO.5, MAY 2002
(linear) (linear) (linear)
1281 —1ps 1287 ——1o8 1281 108
—=— non-shared —=— |ocal —=— non-shared
96 -~ replicated 96- -~ replicated 96- -~ replicated
o ---- partitioned o --=-- partitioned o --=-- partitioned .
3 --- no table < 3 = --- no table L
8 64- g 64- g 64+ Lo e
- P 2
32 P 32-] L
0 i T T T | 0 1 T T T 0 T T T 1
0 32 64 96 128 0 32 64 96 128 0 32 64 96 128

processors

(@)

processors

processors

(b) (©)

Fig. 5. Average application speedups. (a) 15-puzzle. (b) Double-blank puzzle. (c) Rubik’s Cube.

nication by avoiding remote accesses near the leaves.
Replicated performs an update for a node when it
searched at least 64 nodes in the subtree below it. For
partitioned such an approach to reduce lookups is not
possible because the lookup occurs before the subtree
below it has been searched and, at the time of the lookup
the size of the subtree is not known. We therefore use the
following heuristic: A lookup for a node is done if the
lookup for the parent or the lookup for the grandparent
was successful. If neither lookup was successful, the node
probably has not been visited by a previous iteration of
IDA* and it is likely that the node is somewhere near the
leaves. Using this heuristic increases the number of visited
nodes by 23 percent, but reduces the communication costs
by 76 percent.

The test positions used for the 15-puzzle are nine of the
hardest positions known [15].* To avoid long sequential
searches, we stopped searching after the search iteration
with a 76-move search bound. By stopping searching before
a solution is found, we circumvent another problem: the last
iteration (in which a solution is found) needs an unpredict-
able amount of search time since a solution can appear
anywhere in the tree. All previous iterations build the same
trees, which require the same search effort. By not searching
the last iteration, we obtain reproducible execution times.
For the double-blank puzzle, we used the same positions
with the “15”-tile removed, limited to a 66-move search
bound. Rubik’s cube was tested using five random problems.
Since a random problem requires weeks of CPU time to solve,
we limited the search bound to 17 moves.

We studied the performance of each of the algorithms on
a cluster of 128 Pentium Pros running at 200 MHz. Each
machine has 128 Megabytes of RAM. All machines run the
RedHat 6.2 Linux operating system. The machines are
connected through Myrinet [6], a 1.2 Gigabit/second
switching network. For the 15-puzzle and the double-blank
puzzle, we use 2% transposition table entries (64 MB) per
machine. The transposition table is organized as a four-way
associative cache and always stores a new result, evicting
the least valuable entry in the cache line when the cache line

4. Most parallel 15-puzzle programs are benchmarked on the 100 test
problems in [20]. Unfortunately, using a sophisticated lower bound means
that many of these test problems are solved sequentially in a few seconds.
Hence, a more challenging test suite is needed.

is full. Since the 15-puzzle has relatively few transpositions,
we include numbers for a variant that uses no transposition
table at all. For Rubik’s cube we use 2?! entries, to leave
room in the memory for pattern databases.

The algorithms against which we compare TDS have
been heavily optimized. Each Myrinet network interface
board contains a programmable network processor. Parti-
tioned runs customized software on the network processor
to speed up remote transposition table accesses [3], [32].
Moreover, partitioned prefetches remote accesses whenever
possible [32]. Replicated relies on the high broadcast
bandwidth provided by the Panda communication library
[4] and the LFC Myrinet control program [5], but does not
run customized network software. TDS runs directly on top
of LFC (without specialized firmware) since it does not
need Panda’s flow control and message fragmentation
capabilities.

Fig. 5 shows speedups with respect to TDS searching on
a single processor, the fastest variant for sequential
searches for all applications. On 128 processors, TDS is
1.6 to 129 times faster than the work-stealing based
variants. TDS scales almost linearly. For the 15-puzzle, we
even obtain superlinear speedups. The overhead for
communication is more than compensated by the decrease
of node expansions when more processors are added
because the transposition table caches more states when
more memory is added. The double-blank puzzle and
Rubik’s cube do not achieve superlinear speedups because
the problems in their test sets did not search enough
states to fill the entire table on 128 processors. The
speedup for TDS increases for larger problem sizes. The
hardest 15-puzzle problem even yielded a speedup of 154.

We were not able to perform measurements for the
replicated variants of the 15-puzzle and the double-blank
puzzle on 128 processors because LFC cannot handle the
communication load when all machines broadcast data too
frequently.

Fig. 6 shows a performance breakdown for the applica-
tions. We measured how much CPU time is spent in several
program parts. We distinguish the following program parts:

ROMEIN ET AL.: A PERFORMANCE ANALYSIS OF TRANSPOSITION-TABLE-DRIVEN WORK SCHEDULING IN DISTRIBUTED SEARCH

? = miéce"aneous
S 9] =local ttaccesses
g == tt communication
] = node expansion
% = node evaluation
£
B 1 mmel |
| | -
i iii--... ""'ill |||
g g g
: | NNRkRKE Illll\q< SR
2 |NNNNNANN NNNONNRN ANANASN
S | NNNNNNNN NNNNNNNN NNNNNNN
TDS - not shared " partitioned
(a)
3z 137 = miscellaneous
_&’ 7] = local tt accesses
® 1 =it communication
g 104 = node expansion
£ A = node evaluation
g |
= 71 l
o]
o
5} il
T 4] |
é] O i S
E CTRIERRR
¢ '|RRARRERN B~ASNNNN SRSNNSS
TDS N not shared - partitioned
(b)
5 27 = miscellaneous
_&’ = local tt accesses
g == tt communication =™
5 = node expansion ! m
€ = node evaluation - I §
Py -
gl
£ "|||“
=]
= iIN =
& | Anana |I|.\§§§ oG
2 | NNONNASN GNANNNAN ENSSNRS
£ AANNANAY DARNEARY AR
NNNNN NANNNNNN NNNNNN
2 [NNNNNANN NNAANNAN NNNANNANN
§ | NNNNNONN NNNNNNAN NNNNNAN
TDS - not shared - partitioned

Node evaluation denotes the amount of time spent in
the evaluation function. For Rubik’s cube, this time
includes the time for doing (local) pattern database
lookups.

Node expansion specifies how much time is needed to
generate new states.

Transposition table communication is the time needed
for doing remote transposition table lookups and
updates and includes both the time to issue requests
and to handle incoming messages. For TDS, the
black areas represent the time to communicate the

()

We

455

w5
mimml| | ENRRINSRRE
) annnds ANAARARY
]G 41 1€ SERENININNNIN RN
N NANNAANE NNNNNANN
N NANNNANZ NNNANNAN
- replicated - no table -

128 |Too much communication

o i o 9
N ERESKSNN
- replicated
RS
N NANNANAA
N NNNANAN
N NNNNNNNN
- replicated -

Fig. 6. Performance breakdown for (a) 15-puzzle, (b) double-blank puzzle, and (c) Rubik’s cube. The horizontal axes lists the number of processors
for each variant.

work to other processors, rather than the time to
communicate remote transposition-table entries.
Miscellaneous is the time spent in the remaining
program parts. These include the search engine,
position repetition detection (in the work-stealing
variants), node allocation and deallocation, and local
job queue overhead.

accumulate the time that all processors spend in a

particular program part and average these times for several
test positions (by taking the geometric mean). The height of
each bar reflects how much time the processors spend in a
particular program part; the total height reflects the

456 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

(average) total amount of CPU time needed to solve a
problem. The y-axes of the graphs are normalized to the
average single-processor TDS runtime, which is the fastest
single-processor variant for all applications. Thus, if the
total height of the bar equals 2 and if 128 processors are
used, the application requires twice as much (accumulated)
CPU time as on a single processor; consequently the
speedup is 64.

The TDS graphs show that the algorithm scales nearly
perfectly. The graphs also show that as more processors are
added, the time spent in the different program parts vary.
The number of node expansions decreases since the
increase in transposition table size reduces the number of
transposition table conflicts. Since less work is generated,
other program parts benefit as well.

The gray shaded areas (which represent the time spent in
remaining program parts) for TDS are smaller than for the
other variants. Due to its simplicity, the search engine of
TDS is considerably faster than the other search engines.
TDS does not require a separate mechanism to detect
forward and backward moves or other cycles in the directed
search graph. TDS detects repetition of positions through
the transposition table because TDS updates the transposi-
tion table before a state is searched.

Fig. 6 also illustrates that TDS performs well on large-
scale systems. The increase in transposition table size and
the resulting decrease in search effort largely compensate
for the increase in communication overhead. Load imbal-
ance turned out to be negligible; the busiest processor does
typically less than 1 percent more work than the least busy
processor.

TDS uses only a small fraction of the available Myrinet
bandwidth, which is about 70 MByte/s per link between
user processes, and about 33 MByte/s under high conten-
tion, when 64 processors send messages to random
destinations as fast as they can. The 15-puzzle requires
2.3 MByte/s, the double-blank puzzle 1.9 MByte/s,
and Rubik’s cube 0.39 MByte/s. Each job is encoded
in 32-68 bytes; compressing the jobs to fewer bytes would
slow down the applications. For the 15-puzzle and the
double-blank puzzle, we combine up to 31 pieces of work
into one message and, for Rubik’s cube, we combine up to
14 pieces of work. The communication overhead for
distributed termination detection (TDS synchronizes after
each iteration) is well below 0.1 percent of the total
communication overhead. The local work queue (implemen-
ted as a stack) remains small: Even for the largest 15-puzzle
problem (searching 2.5 billion positions on 128 processors
in 2 minutes), the stack does not exceed 1 MB in size.

Partitioned suffers from high lookup latencies. Even with
the customized network firmware, a remote lookup takes
12-35 ps, including the overhead for prefetching. The
double-blank puzzle spends 79 percent of the time com-
municating table entries, at a rate of 27,500 remote table
accesses per second per processor.

Like TDS, partitioned benefits from the increase in table
size when more processors are added. Yet the perfor-
mance graph for the double-blank puzzle, which has
many transpositions, shows that the application searches
96 percent more nodes on 128 processors than on a single

=== miscellaneous
— local tt accesses
=mmm communication
=== node expansion
o= node evaluation

early = eval, send, lookup, store, push
mid = send, lookup, eval, store, push
late = send, lookup, store, eval, push

accumulated CPU time

Rubik’s cube

15-puzzie

DB-puzzle

Fig. 7. Evaluation on sending vs. receiving machine, on 64 processors.

processor. We explain this as follows: Partitioned (as well
as replicated and nonshared) updates the transposition table
after the search of a state completes. A transposition is not
recognized as such before the update is performed, thus
partitioned may search a transposition multiple times by
multiple processors to the same depth concurrently. This
phenomenon does not occur with TDS, where the table
update is done before the state is searched.

Replicated passes most of its time handling incoming
broadcast messages when many processors are used. On
128 processors, LFC collapses under the high communica-
tion load of the 15-puzzle and the double-blank puzzle. The
other measurements on many processors show a sig-
nificant communication overhead. The double-blank
puzzle on 64 processors performs 14,500 transposition
table stores per processor per second. These stores are
buffered (64 entries per buffer, 12 bytes per entry) and
broadcast to all processors. This means that each
processor receives 14,500 messages per second, spending
50 percent of the total time communicating transposition
table entries.

Section 4 argued that the evaluation function can be
invoked on either the sending or the receiving processor.
We studied the effects on execution times for the three
different execution orders:

1. Evaluate a node on the sending processor (poten-
tially pruning the node), send the node to its
destination, lookup the node in the transposition
table (cutting of the node if it is a transposition),
store the node in the table, and push the node onto
the work queue. This execution order is called early.

2. Send the node, look it up, evaluate it, store it, and
push it (called mid).

3. Send the node, look it up, store it, evaluate it, and
push it (called late).

The latter method stores a node in the transposition table,
even if it is pruned, where method mid potentially evaluates
a node multiple times if the node causes a cutoff. Fig. 7
shows the effects on execution times for the three applica-
tions on 64 processors. Each bar is composed the same way
as in Fig. 6. Early clearly evaluates more nodes than the

ROMEIN ET AL.: A PERFORMANCE ANALYSIS OF TRANSPOSITION-TABLE-DRIVEN WORK SCHEDULING IN DISTRIBUTED SEARCH 457

others, but spends less time accessing the transposition
table and communicating. Late spends more time accessing
the transposition table since it stores information about all
nodes in the table. In the case of Rubik’s cube, this is even
counter-productive since the many stores of cutoff nodes
thrash the table, increasing the total amount of work done.
In conclusion, all three applications perform best when the
evaluation function is invoked on the sending processor.

The speedups of TDS on 64 processors for the 15-puzzle
are higher than those reported by others (e.g., [9] reports
58.90-fold speedups). Moreover, previous work has only
looked at parallelizing the basic IDA*algorithm, usually
using the 15-puzzle with Manhattan distance as the test
domain. The state-of-the-art has progressed significantly.
For the 15-puzzle, the linear conflicts heuristic [16] reduces
tree size by roughly a factor of 10; transposition tables
reduce tree size by an additional factor of 2.6; and the last
move and corner conflict heuristics [22] reduce the tree size
even more. These reductions result in a less well balanced
search tree, increasing the difficulty of achieving good
parallel performance. Still, our performance is at least as
good as the results in [9]. This is a strong result, given that
the search trees are roughly a hundred times smaller.

7 LATENCY, BANDWIDTH, AND OVERHEAD
ANALYSIS

To predict the performance of TDS on other types of parallel
systems, we analyzed the behavior of the 15-puzzle (the
most communication-intensive among the applications)
under varying latency, bandwidth, and overhead con-
straints, using a model that resembles the LogGP model
[1]. The model characterizes the communication behavior of
an application using different parameters. The message
latency is the delay between the sending and the arrival of a
message. The overhead is the sum of the send overhead
needed to hand off a message to the communication
substrate and the receive overhead needed to deliver a
message to the application. The bandwidth is the number of
bytes that the application can send and receive each second.

We performed the latency, bandwidth, and overhead
analysis as follows: The latency and bandwidth are varied
by delayed delivery to the application. Each incoming
message is tagged with a delivery time and buffered until
the application is allowed to consume it. During that time,
the processor may receive new messages and may expand
new states. The send and receive overheads are increased
by having the processor spin in a tight loop until it can
proceed. During that time, the processor neither receives
new messages nor expands new states.

To better handle large latencies and low bandwidths
we made a few modifications to the code of our basic
TDS implementation. The original global termination
detection algorithm [25] orders the processors in a ring
and sends messages along the ring. The time needed for
(successful) global termination detection is the number of
processors times the message latency. During the first
iterations of the search, when there is little work, the global
termination detection dominates the search times when the
latency is high. To tolerate higher latencies, we changed the

execution time

1s
100 ms

10 ms

latency 2 MB/s

4 MB/s
bandwidth

. 8 MB/s
10 1S3 MB/s 16 MB/s

Fig. 8. Bandwidth and latency sensitivity for the 15-puzzle on 64
processors.

global termination detection algorithm by not sending the
messages in a ring, but by having one processor broadcast a
termination detection request message. Each processor then
replies with a unicast message. Since broadcast and unicast
messages are unordered, it is necessary to include a
timestamp in each message. The broadcast version requires
twice the latency for global termination detection, indepen-
dent of the number of processors.

Another problem occurs when the bandwidth becomes
lower than what the application requires. In this situation
the rate at which new jobs are received is too low to keep a
processor busy. When a processor immediately flushes all
outgoing message buffers with new states when it becomes
idle, the buffers are almost empty; most of the time a
message contains a single job only. Sending many small
messages not only increases the total overhead (which is not
that bad because the processors are underloaded anyway),
but also increases the number of bytes sent since more
message headers are sent. A simple and effective solution is
to wait a short period to give the next message a chance to
arrive before the message buffers are flushed.

During the low bandwidth and high latency experiment,
one of the 15-puzzle test positions buffered so many
messages that flow control became necessary. We use a
credit-based scheme and stop a sender when its destination
has buffered 250 undelivered messages from the same
source. This limits the buffer size to at most 16 MB per
processor. In practice, less than 1 percent of the sends stall.

Fig. 8 shows the effects of increased message latencies
and decreased network bandwidth for the 15-puzzle on
64 processors. We used the same test set as in Section 6.
All axes are in log-scale. The execution times are normal-
ized; the norm is the average execution time with
maximum LFC bandwidth (over 32 MByte/s under
contention) and minimum LFC latency and overhead
(together about 10 us). The graph shows two interesting
results. First, TDS is tolerant to high latencies: latencies of
up to 10 ms are hardly noticeable and even latencies of 100
ms still give reasonable speedups. This is an expected result
since each IDA* iteration is inherently asynchronous.

458 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

execution time (normalized)

0 200 400 600

overhead (us)

Fig. 9. Varying the overhead for the 15-puzzle on 64 processors.

Second, TDS is intolerant to low bandwidths. The execution
time increases inversely proportional with the bandwidth
when the bandwidth drops below the required bandwidth
(for the 15-puzzle, this is 2.3 MByte/s per link).

Fig. 9 shows the sensitivity to the send and receive
overhead for the 15-puzzle on 64 processors. We already
learned that the application spends a relatively small
amount of time communicating, despite the high band-
width requirements. This is due to the low overhead of
LFC: We measured a send overhead of 7.35 us and a receive
overhead of 1.90 us (LFC achieves such a low receive
overhead because the network processor on the Myrinet
interface does most of the work to receive a message). The
figure shows the application behavior for increasing over-
heads. For this experiment, we use equal send and receive
overheads; the sum is shown on the X-axis of the figure. The
figure shows that the application is moderately sensitive to
overhead: increasing the overhead results in a significant
performance loss, but the performance does not drop as fast
as in the bandwidth experiment.

In summary, TDS can tolerate latencies up to 10-100 ms,
bandwidths down to a few MByte/s, and overheads up to
100 ps. 100 Mbit/s Ethernet, used via a kernel-level socket
interface (either TCP or UDP), operates within these limits,
provided that the network is switched and the switch can
handle the aggregate bandwidth demands. We expect that
the applications will run a few tens of percents slower than
over Myrinet using LFC because the overhead of the socket
interface will be higher. The latency and bandwidth
provided by 100 Mbit/s Ethernet will be sufficient and will
not influence the runtimes at all.

8 CONCLUSIONS

Efficient parallelization of search algorithms that use
transposition tables is a challenging task, due to commu-
nication overhead and duplicate search of subtrees. We
have described a new approach, called Transposition-
Driven Scheduling (TDS), which integrates work schedul-
ing with the transposition table. TDS pushes work eagerly
to the processor that caches intermediate search results. It
makes all communication asynchronous, overlaps commu-
nication with computation, and reduces search overhead.
TDS is applicable to any search algorithm that searches

graphs, such as game-tree search algorithms, retrograde
analysis, constraint satisfaction algorithms, optimization
algorithms, and data-flow algorithms.

We implemented parallel IDA* using TDS and per-
formed a detailed comparison of TDS to the conventional
work stealing approach on a large-scale parallel system.
TDS performs significantly better, especially for large
numbers of processors. On 128 processors, TDS achieves a
speedup between 122 and 138, where traditional work-
stealing algorithms achieve speedups between 10 and 79.
TDS scales well to large numbers of processors because it
effectively reduces both search overhead and communica-
tion overhead. TDS’ beneficial use of memory can even lead
to superlinear speedups, especially for large search pro-
blems. We also performed a latency, bandwidth, and
overhead analysis for the 15-puzzle, the most communica-
tion-intensive application in the test set. TDS is tolerant to
high latencies, somewhat sensitive to high overhead, but
performs poorly on low-bandwidth networks. However,
modern networks like Myrinet amply provide the required
bandwidth.

TDS represents a shift in the way one views a search
algorithm. The traditional view of single-agent search is that
IDA* is at the heart of the implementation and performance
enhancements, such as a transposition tables, are added
afterwards. This approach makes it hard to achieve good
parallel performance when one wants to compare to the
best known sequential algorithm. With TDS, the transposi-
tion table becomes the heart of the algorithm and
performance improves significantly.

ACKNOWLEDGMENTS

The idea of Transposition-Table-Driven Work Scheduling
and a preliminary analysis were originally presented in the
Proceedings of the AAAI National Conference [34].

REFERENCES

[1] A. Alexandrov, M.F. Ionescu, K.E. Schauser, and C. Scheiman,
“LogGP: Incorporating Long Messages into the LogP Model—One
Step Closer Towards a Realistic Model for Parallel Computation,”
ACM Symp. Parallel Algorithms and Architectures, pp. 95-105, 1995.

[2] H.E. Bal and L.V. Allis, “Parallel Retrograde Analysis on a
Distributed System,” Supercomputing '95, Dec. 1995.

[31 R.AF. Bhoedjang, J.W. Romein, and H.E. Bal, “Optimizing
Distributed Data Structures Using Application-Specific Network
Interface Software,” Proc. Int’l Conf. Parallel Processing, pp. 485-492,
Aug. 1998.

[4] R.AF. Bhoedjang, T. Riihl, R. Hofman, K. Langendoen, H.E.
Baland, M.F. Kaashoek, “Panda: A Portable Platform to Support
Parallel Programming Languages,” Proc. Symp. Experiences with
Distributed and Multiprocessor Systems, pp. 213-226, Sept. 1993.

[5] R.AF. Bhoedjang, K. Verstoep, T. Ruhl, H.E. Bal, and R.F.H.
Hofman, “Evaluating Design Alternatives for Reliable Commu-
nication on High-Speed Networks,” Architectural Support for
Programming Languages and Operating Systems, Nov. 2000.

[6] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W. Su, “Myrinet: A Gigabit-per-Second Local
Area Network,” IEEE Micro, vol. 15, no. 1, pp. 29-36 Feb. 1995

[7] M.P. Bonacina, “The Clause-Diffusion Theorem Prover Peers-
mcd,” Proc. 14th Conf. Automated Deduction (CADE), W. McCune,
ed., pp. 53-56, July 1997.

[8] M.G. Brockington, “Asynchronous Parallel Game-Tree Search,”
PhD thesis, Univ. of Alberta, Edmonton, Alberta, Canada Nov.
1997.

ROMEIN ET AL.: A PERFORMANCE ANALYSIS OF TRANSPOSITION-TABLE-DRIVEN WORK SCHEDULING IN DISTRIBUTED SEARCH

]

(10]

(1]

(12]

[13]

[14]

[15]

(16]

(17

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

D. Cook and R. Varnell, “Maximizing the Benefits of Parallel
Search Using Machine Learning,” Proc. Amer. Assoc. Artificial
Intelligence Nat'l Conf., pp. 559-564, July 1997.

D.E. Culler, K.E. Schauser, and T. von Eicken, “Two Fundamental
Limits on Dataflow Multiprocessing,” Proc. IFIP WG 10. 3 Working
Conf. Architectures and Compilation Techniques for Fine and Medium
Grain Parallelism, Jan. 1993.

T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schausser,
“Active Messages: A Mechanism for Integrated Communication
and Computation,” Proc. Int’l Symp. Computer Architecture, pp. 256-
266, May 1992.

M. Evett,]. Hendler, A. Mahanti, and D. Nau, “PRA*: Massively
Parallel Heuristic Search,” J. Parallel and Distributed Computing,
vol. 25, pp. 133-143, 1995.

R. Feldmann, “Game Tree Search on Massively Parallel Systems,”
PhD thesis, Univ. of Paderborn, Aug. 1993.

R. Feldmann, P. Mysliwietz, and B. Monien, “Studying Overheads
in Massively Parallel MIN/MAX-Tree Evaluation,” Proc. ACM
Symp. Parallel Algorithms and Architectures, pp. 94-103, 1994.

R. Gasser, “Harnessing Computational Resources for Efficient
Exhaustive Search,” PhD thesis, ETH Ziirich, Switzerland, 1995.
O. Hansson, A. Mayer, M. Yung, “Criticizing Solutions to Relaxed
Models Yields Powerful Admissible Heuristics,” Information
Sciences, vol. 63, no. 3, pp. 207-227, 1992.

C.F. Joerg and B.C. Kuszmaul, “Massively Parallel Chess,” Third
DIMACS Parallel Implementation Challenge, Oct. 1994.

A. Junghanns and]. Schaeffer, “Single-Agent Search in the
Presence of Deadlocks,” Proc. Amer. Assoc. Artificial Intelligence
Nat'l Conf., pp. 419-424, July 1998.

D.E. Knuth and R.W. Moore, “An Analysis of Alpha-Beta
Pruning,” Artificial Intelligence, vol. 6, no. 4, pp. 293-326, 1975.
R.E. Korf, “Depth-First Iterative Deepening: An Optimal Admis-
sible Tree Search,” Artificial Intelligence, vol. 27, no. 1, pp. 97-109,
1985.

RE. Korf, “Finding Optimal Solutions to Rubik’s Cube Using
Pattern Databases,” Proc. Amer. Assoc. Artificial Intelligence Nat'l
Conf., pp. 700-705, July 1997.

RE. Korf and L.A. Taylor, “Finding Optimal Solutions to the
Twenty-Four Puzzle,” Proc. Amer. Assoc. Artificial Intelligence Nat'l
Conf., pp. 1202-1207, Aug. 1996.

V. Kumar and V. Rao, “Scalable Parallel Formulations of Depth-
first Search,” Parallel Algorithms for Machine Intelligence and Vision,
V. Kumar, P. Gopalakrishnan, and L. Kanal, eds., pp. 1-42, 1990.
T.A. Marsland and F. Popowich, “Parallel Game-Tree Search,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 7, no. 4,
pp. 442-452, July 1985.

F. Mattern, “Algorithms for Distributed Termination Detection,”
Distributed Computing, vol. 2, pp. 161-175, 1987.

N.J. Nilsson, Problem-Solving Methods in Artificial Intelligence. New
York: McGraw-Hill, 1971.

A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin, “Exploiting Graph
Properties of Game Trees,” Proc. Amer. Assoc. Artificial Intelligence
Nat’l Conf., pp. 234-239, Aug. 1996.

C. Powley and R.E. Korf, “Single-Agent Parallel Window Search,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 3, no. 5
pp. 466-477, May 1991.

V. Rao, V. Kumar, and K. Ramesh, “A Parallel Implementation of
Iterative-Deepening-A*,” Proc. Amer. Assoc. Artificial Intelligence
Nat’l Conf., pp. 178-182, July 1987.

A. Reinefeld and T.A. Marsland, “Enhanced Iterative-Deepening
Search,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 16, no. 7, pp. 701-710, July 1994.

A. Reinefeld and V. Schnecke, “AIDA*—Asynchronous Parallel
IDA*,” Proc. Canadian Conf. Artificial Intelligence, pp. 295-302, 1994.
JJW. Romein, “Multigame—An Environment for Distributed
Game-Tree Search,” PhD thesis, Faculty of Sciences, Dept. of
Math. and Computer Science, Vrije Universiteit, Amsterdam, The
Netherlands, Jan. 2001. http://www.cs.vu.nl/john/thesis/.
J.W. Romein, H.E. Bal, and D. Grune, “An Application Domain
Specific Language for Describing Board Games,” Parallel and
Distributed Processing Techniques and Applications, vol. I, pp. 305-
314, July 1997.

J.W. Romein, A. Plaat, H.E. Bal, and]. Schaeffer, “Transposition
Driven Work Scheduling in Distributed Search,” Proc. Amer. Assoc.
Artificial Intelligence Nat’l Conf., pp. 725-731, July 1999.

J. Schaeffer, “Distributed Game-Tree Searching,” . Parallel and
Distributed Computing, vol. 6, pp. 90-114, 1989.

(36]

(371

[38]

[39]

459

D.J. Slate and L.R. Atkin, “CHESS 4.5—The Northwestern
University Chess Program,” Chess Skill in Man and Machine,
P.W. Frey, ed., pp. 82-118, 1977.

U. Stern and D.L. Dill, “Parallelizing the Murphi Verifier,” Proc.
Ninth Int’l Conf. Computer Aided Verification, pp. 256-267, 1997.

L. Taylor and R.E. Korf, “Pruning Duplicate Nodes in Depth-First
Search,” Proc. Amer. Assoc. Artificial Intelligence Nat'l Conf., pp. 756-
761, July 1993.

A.L. Zobrist, “A New Hashing Method with Application for Game
Playing,” Technical Report 88, Computer Science Dept., Univ. of
Wisconsin, Madison, 1970.

John. W. Romein received the MSc and PhD
degrees in computer science from the Vrije
Universiteit in Amsterdam in 1994 and January
2001, respectively. His thesis discusses Multi-
game, a problem-solving environment for dis-
tributed game-tree search. He currently works as
a postdoctoral researcher at the Vrije Universi-
teit. His research interests include distributed
search algorithms, networking, programming
languages, and compiler construction.

Henri E. Bal received the MSc degree in
mathematics from Delft University of Technology
] in 1982 and the PhD in computer science from

¥ the Vrije Universiteit in Amsterdam in 1989. He
- ' is currently a professor at both the Department

i of Computer Systems and the Department of
Physics Applied Computer Science at the Vrije
Universiteit. He does research on parallel
programming environments and their applica-
tions and on cluster and grid computing. He is

the designer of the Orca language and leads the Manta, Albatross, and
other projects. Bal is coauthor of three books: Programming Distributed
Systems, Programming Language Essentials, and Modern Compiler
Design. He is program chairman of the 2002 IEEE International
Symposium on Cluster Computing and the Grid. He is a member of
the IEEE Computer Society and the ACM.

<

Jonathan Schaeffer is a professor of computing
science at the University of Alberta. His research
interests are in artificial intelligence and parallel/
distributed computing. He is best known for his
work on computer games. He is the creator of the
checkers program Chinook, the first program to
win a human world championship in any game.
He is also a cofounder of the bioinformatics
software company BioTools, Inc.

Aske Plaat received the MSc (1993) and PhD
(1996) degrees from the Erasmus University
Rotterdam, The Netherlands. He has worked as
a researcher at the University of Alberta,
Edmonton, AB, Canada, the Massachusetts
Institute of Technology, Cambridge, and the
Vrije Universiteit, Amsterdam, The Netherlands.
His research concentrated on two-player search
algorithms and on parallel and distributed algo-
rithms. Currently, he works as an IT consultant

at the Dutch Ministry of Finance.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

