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Abstract

The seminal works of Nilsson and Pearl in the 1970’s and early1980’s pro-
vide a formal basis for splitting the field of heuristic search into two subfields:
single-agent and two-agent search. The subfields are studied in relative isolation
from each other; each having its own distinct character. Despite the separation, a
close inspection of the research shows that the two areas have actually been con-
verging. This paper argues that the single/two-agent distinction is no longer of
central importance for heuristic search anymore. The statespace is characterized
by a number of key properties that are defined by the application; single-agent
versus two-agent is just one of many. Both subfields have developed many search
enhancements; they are shown to be surprisingly similar andgeneral. Given their
importance for creating high-performance search applications, it is these enhance-
ments that form the essence of our field. Focusing on their generality emphasizes
the opportunity for reuse of the enhancements, allows the field of heuristic search
to be redefined as a single unified field, and points the way towards a modern the-
ory of search based on the taxonomy proposed here.

1 Introduction

Heuristic search is one of the oldest fields in artificial intelligence. Nilsson and Pearl
wrote the classic introductions to the field [34, 36]. In these works (and others) search
algorithms are typically classified by the kind of problem space they explore. Two
classes of problem spaces are identified: state spaces and problem reduction spaces.
Many problems can be conveniently represented as a state space; these are typically
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problems that seek a path from the root to the goal state. Other problems are a more
natural fit for problem reduction spaces, typically problems whose solution is a strat-
egy. Sometimes both representations are viable options. Problem reduction spaces are
AND/OR graphs; AO* is the best-known framework for creatingsearch algorithms for
this class of problems [3, 34]. State spaces are OR graphs; the A* algorithm can find
optimal solutions to this class of problems [17]. Note that astate space (OR graph) is
technically just a special case of a problem reduction space(AND/OR graph).

Since their inception, the notions of OR graphs and AND/OR graphs have found
widespread use in artificial intelligence and operations research. Both areas have active
research communities which continue to evolve and refine newsearch algorithms and
enhancements. Of the two representations, the state space representation has proven
to be the more popular. It appears that many real-world problem solving tasks can
be modeled naturally as OR graphs. Well-known examples include the shortest path
problems, sliding-tile puzzles, and NP-complete problems(such as the traveling sales-
person, bin packing and job-shop scheduling).

One application domain that fits the AND/OR graph model better is two-agent
(two-player) games such as chess. In these games, one playerchooses moves to maxi-
mize a payoff function (the chance to win) while the opponentchooses moves to min-
imize it. Thus, the AND/OR graphs become MIN/MAX graphs, andthe algorithms
to search these spaces are known as minimax algorithms. Curiously, it appears that
two-player games are theonlyapplications for which AND/OR algorithms have found
widespread use. To contrast A*-like OR graph algorithms with two-player minimax
algorithms, they are often referred to as single-agent (or one-player) search algorithms.

With the advent of Nilsson’s AND/OR framework, two-agent search has been given
a firm place within the larger field of heuristic search. SinceAND/OR graphs subsume
OR graphs, there is a satisfying conceptual unification of the two subfields. However,
the impact of this unified view on the practice of research into heuristic search methods
has been minor. The two subfields have continued to develop inparallel, with little
interaction between them. Few scientists have studied bothareas.

This article has the following contributions:� Single-agent and two-agent search algorithms both traverse search graphs. The
difference between the two algorithms is not in the graph, but in the semantics
imposed by the application. Much of the research done in single-agent and two-
agent search does not depend on the search algorithm, but on the properties of
the search space. In fact, by matching basic graph traversalalgorithms from both
fields, it is shown how similar, if not identical, single-agent and two-agent search
really are.� Nilsson’s [34] and Pearl’s [36] dichotomy—the OR versus AND/OR choice—
is misleading. Heuristic search consists of identifying properties of the search
space and implementing a number of search techniques that make effective use
of these properties. There are many such properties, and thechoice of backup
rule (minimaxing in two-agent search; maximization or minimization in single-
agent search) is but one. The implication of Nilsson’s and Pearl’s model is that
the choice of backup rule is in some way fundamental; it is not. This paper argues
for viewing heuristic search as the process in which properties of a search space
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are specified. Once that has been done, the relevant search techniques (basic
algorithm and enhancements) follow naturally.� Over the years researchers have uncovered an impressive array of search en-
hancements that can have a dramatic effect on search efficiency. The typical
scenario is that the idea is developed in one of the domains and possibly later
reinvented in the other. In this paper we list search-space properties under which
many search enhancements are applicable, showing that the distinction between
single-agent and two-agent search is not essential. By merging the work done
in these two areas, the commonalities and differences can beidentified. This
provides the basis for constructing a generic search framework for designing
high performance search algorithms — given the properties of the domain, an
appropriate set of search enhancements can be automatically selected for con-
sideration.

The message of this article is that single-agent and two-agent search can and should
be considered as a single undivided field. It can, because theessence of search is
enhancements, not algorithms as is usually thought. It should, because researchers
can benefit by taking advantage of work done in a related field,without reinventing
the technology, if they would only realize its applicability. Given all the similarities
between the two areas, one has to ask the question: why is it soimportant to make a
distinction based on the backup rule?

Some might object to the preceding discussion, arguing thattwo-player trees are
searched differently than single-agent trees. In most two-agent search applications
(such as game-playing programs), the search result is basedon a depth-limited search;
no goal is found. In contrast, single-agent searches have the objective of finding a goal
state. The traditional view then is that two-agent search islooking for the best answer
given a time constraint (satisficing) while single-agent search ignores the time con-
straints and searches for the best answer (optimality). While this categorization might
be an accurate reflection of research done in these areas, it is only a generalization.
Consider two counter examples. First, RTA* (Real-Time A*) was developed to search
single-agent trees under tight resource (time) constraints [25]. Since the algorithm usu-
ally cannot find a goal state within its resource constraints, it approximates an answer
by exploring a limited amount of the search space, just like stereotypical two-agent
search programs do. Second, when solving two-player games,such as Tic-Tac-Toe or
Nine Mens Morris, the aim is to find a goal node whose value can be propagated to the
root of the search tree. Here the objective is to find an optimal result, not a satisficing
one. These examples illustrate that the traditional view ofsingle-agent and two-agent
search is but a generalization, and that the characteristichighlighted here (optimality
versus satisficing) is really just a user-defined constrainton the quality of the result. It
is not fundamental to the algorithms.

In effect, single-agent and two-agent search (as well as other AI search algorithms)
are essentially just graph traversal algorithms. There areonly a few basic classes of
ideas for efficiently searching graphs. It makes more sense to classify search im-
plementations on the techniques used to efficiently search the graph, rather than the
backup-rule semantics imposed by the application. An alternative way of looking at
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this is to classify applications by the search-space properties that allow certain search
enhancements to work.

A remark on how the conceptsalgorithm, enhancement, andsearch techniqueare
used. Search algorithms are the basic graph traversal mechanisms as found in the text
books, such as Nilsson’s and Pearl’s. They form the skeletonto which the human
problem solver adds enhancements to achieve performance improvements. The term
search techniques is used in this article to indicate enhancements and algorithms to-
gether. As this article advances the view that the basic algorithm decisions are easy
and that the essence lies in the enhancements, the term search technique will usually
be synonymous with search algorithm enhancement.

This article is organized as follows: Section 2 discusses the importance of search
enhancements. Section 3 pairs up most of the major search algorithms from both
single-agent and two-agent search. Section 4 gives a taxonomy of properties of the
search space as described in Section 5, which are matched up with the applicable search
techniques in Section 6. Section 7 puts this work in perspective. Section 8 draws some
conclusions.

The article is restricted to classical heuristic search (single-agent and two-agent
search) although the ideas are applicable to other graph-based search algorithms.

2 Algorithms vs Enhancements

Most introductory texts on artificial intelligence (AI) start off explaining heuristic
search by differentiating between different search strategies, such as depth-first, breadth-
first, and best-first. Single-agent search is introduced, perhaps illustrated using a sliding-
tile puzzle. Another section is then devoted to two-player search algorithms. The min-
imax principle is explained, often followed by alpha-beta pruning. The focus in these
texts is on explaining the basic search algorithms and possibly their fundamental dif-
ferences (the backup rule and the decision as to which node toexpand next). And that
is where most AI books stop their technical discussion.

In contrast, in real-world AI applications, it is the next step—the search
enhancements—that is the topic of interest, not so much the basic algorithm. The
algorithm decision is usually easily made. However, the choice of algorithm enhance-
ments can have a dramatic effect on the efficiency of the search. Although it goes too
far to say that the underlying algorithm is of no importance at all, it is fair to say that
most research and development effort for new search methodsand applications is spent
with the enhancements.

A search enhancement relies on the presence of specific search-space properties to
improve the efficiency of the underlying algorithm, with respect to (a number of) re-
sources. The presence of these properties suggests that theenhancement is applicable
and is likely to be beneficial. Some of the enhancements are based on application-
specific properties; others work over a wide range of applications all sharing the same
property. Examples of application-dependent enhancements include the Manhattan
distance for the sliding-tile puzzle, and first searching moves that capture a piece be-
fore considering non-capture moves in chess. Examples of application-independent
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enhancements are iterative deepening [42]1 and cycle detection [16, 44].
Consider the example of the transposition table enhancement. Transposition tables

rely on the search space being a graph. If the search space is atree, transposition tables
yield no direct benefits.2 The basic idea, caching previously computed information, is
obviously independent of the single-agent and two-agent distinction and its applicabil-
ity only depends on a property of the underlying graph (is it atree or not). Note also
that the transposition table is often referred to as a hash table; we do not use the latter
terminology since this refers to the details of an implementation.

The performance gap between search algorithms with and without enhancements
can be large. Something as simple as removing repeated states from the search can
lead to large reductions in the search tree (e.g. [44] using IDA* in sliding-tile puzzles;
[40] using alpha-beta in chess). Combinations of enhancements can lead to reductions
of several orders of magnitude. For example, in chess the effectiveness of alpha-beta
pruning really depends on adding the right combination of enhancements [40]. In
single-agent search the same has been found, for example, for sliding-tile puzzles [11]
and Sokoban [20]. In contrast, the choice of search algorithm has often a relatively
small effect. For example, in two-player games, many variations on alpha-beta have
been proposed, but in the end their performance is, at best, asmall improvement [37].3

In the traditional view, new applications are carefully analyzed until an appropriate
algorithm and collection of algorithm enhancements is found that satisfies the user’s
expectations. In this view, each problem has its own unique algorithmic solution; a
rather segmented view. In reality, most search enhancements are small variations of
general ideas. Their applicability depends on the properties of the search space. There-
fore, the basic idea behind most search enhancements are generally applicable to both
single-agent and two-agent search. It is the search enhancements that tie single/two-
agent search together, achieving the unity that Nilsson’s and Pearl’s models strived for,
albeit of a different kind.

Focusing on properties of the search space identifies the differences that one should
take into account when designing a high-performance searcher for a specific applica-
tion. A single search framework can help to identify these differences. We should
realize that heuristic search is usually not about different algorithms, but is mostly
about putting search techniques together like LEGO blocks,exploiting the properties
of the search space. In effect we should stress the things that are the same, not the
differences.

1It is important here to point out that even though an implementation might differ substantially to accom-
modate a search enhancement, it is the difference in the search traversal that differentiates an algorithm from
an enhancement. Therefore we feel justified in calling iterative deepening an enhancement, even though the
implementation differences between, for example, A* and IDA* are significant.

2The transposition table is routinely used to store other information that can benefit the search, such as
move ordering hints. We regard these kinds of benefits as “indirect”.

3This holds true for other minimax search algorithms, such asB* [8] and Conspiracy Numbers [30],
where attempts to improve on alpha-beta have been unsuccessful. These innovative algorithms differ from
alpha-beta in their leaf node values and the backup rule. However, they are still graph-traversal algorithms
and the same set of search enhancement principles apply.
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3 Search Algorithms

In this section we contrast many of the single-agent and two-agent search algorithms.
If there is anything to the claim that the two fields of search should be unified because
the only (artificial) difference is the backup rule, then a comparison of the algorithms
used in the two fields should yield more similarities than differences.

Naive (depth-first single-agent search; no depth restriction minimax search). Both
algorithms traverse a tree in a depth-first, left-to-right manner. Recursion stops
when a terminal node is reached, without any depth restriction. The only application-
dependent knowledge used is for assigning values to terminal nodes and choos-
ing the correct backup rule. The storage requirements are proportional to the
depth of the tree.

Simple (branch-and-bound; no depth restriction alpha-beta). These algorithms also
search a tree depth-first and left-to-right without any depth restriction. They
differ from their naive counterparts in that both use partial results obtained during
the search to cut off parts of the tree that are irrelevant to the solution. Note
that no additional application-dependent knowledge is needed here. The storage
requirements are proportional to the depth of the tree.

Breadth (breadth-first single-agent search; iterative deepening minimax). New nodes
are expanded one depth at a time. Both algorithms can use storage that is pro-
portional to the depth of the tree by using depth-limited depth-first search. If
sufficient storage is available, these algorithms can storethe search tree in mem-
ory, potentially eliminating the repeated node visits thatdepth-first search entails.
Note that single-agent search algorithms can get by with less storage, since they
need only save the frontier of the search (since the search value is the minimum
or maximum of the nodes); two-agent search requires access to the previous it-
eration’s nodes (because it has to build a proof tree).

Informed (A*; SSS*). With the availability of heuristic evaluations, the notion of a
“best” or “most promising” node to expand can be defined. A* and SSS* expand
any one of the “best” nodes next. In both algorithms, a sortedOPEN-list keeps
track of the nodes at the frontier and allows for expanding the best next node.
Although conceptually A* and SSS* are similar algorithms, it is interesting to
note that SSS* is equivalent to a depth-first search variant of alpha-beta (MTD(f)
[37]).

Space efficient informed (iterative deepening A*; iterative deepening alpha-beta). A*
and SSS* both suffer from exponential space requirements. Iterative deepening
turns traditional list-driven best-first searches into multiple depth-first searches
that increase the “depth” limit with each iteration. “Depth” should not be inter-
preted literally; it is synonymous with any useful criteriathat enables a guaran-
teed cutoff of each branch in the search.

Real-time informed search (RTA*; depth-limited iterative deepening alpha-beta). When
given resource constraints do not allow for the complete traversal of the search
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space to find a solution, a (depth or time) limit is introduced. This partial search-
space traversal backs up heuristic values about where a solution is likely to be.
When resources run out, a ”best” move decision is made based on this informa-
tion.

The above list is meant to be illustrative, not comprehensive. The comparison
shows that the basic graph traversal approaches are similar, if not identical, between
the “different” fields. The major perceived difference between single-agent and two-
agent search is in the choice of algorithm that is commonly used. Single-agent ap-
plications usually optimize and hence use an informed (or space efficient informed)
algorithm. Two-agent applications commonly satisfice and typically use a real-time
informed search. However, their respective counterparts exist and are used.

4 Search Application Development

Two distinct issues play a role in the process of designing a high-performance search
application: the properties of the state space, and the search algorithms and techniques
used to find the desired information in that space. Therefore, search program design
consists of two parts. First, the problem solver must specify the properties of the prob-
lem space. Second, based on this information, an appropriate implementation is cho-
sen.� Phase 1:Search Space Definition.The characteristics of the problem space must

be specified.

1. Graph Definition:The problem definition allows one to construct a graph,
where nodes represent states, and edges are state transition operators. This
is typically just a translation of the transition rules to a more formal (graph)
language. It provides the syntax of the state space.

2. Solution Definition:Goal nodes are defined and given their correct value. A
rule for combining the values of a node’s successors to determine the value
of the parent node is provided (such as minimization, or minimaxing). This
adds semantics to the state space graph.

3. Resource Constraints:Identify execution constraints that the search algo-
rithm must conform to.

4. Search Objectives:The problem solver defines the goal of the search: an
optimal or satisficing answer (the quality of the answer).

5. Domain Knowledge:Non-goal nodes may be assigned a heuristic value
(such as a lower bound estimator or an evaluation score). Theproperties of
the evaluation function fundamentally influence the effectiveness of many
search enhancements, typically causing many iterations ofthe design-and-
test cycle.� Phase 2:Program Design and Implementation.Once the search space is speci-

fied, the problem solver can design the application program.The design process
consists of three steps:
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1. Search Algorithm:Typically the choice of basic algorithm is easily made
based on the problem definition. Nilsson’s and Pearl’s modeladdresses the
basic graph traversal questions concerning the backup ruleand breadth-
first/depth-first/best-first search strategy, based on the graph definition and
the performance specifications. The single/two-agent distinction is usually
unambiguous (dictating the backup rule to use), and the algorithm selection
is often trivial.

2. Search Enhancements:The literature contains a host of search enhance-
ments to exploit specific properties of the search space. Theright combina-
tion can dramatically improve the efficiency of the basic algorithm. Text-
book algorithms have to be revised substantially to accommodate inclusion
of common enhancements. Note that an enhancement can even simplify
the basic algorithm. For example, compare the code of iterative deepening
A* to the original A*.

3. Implementation Choices:Given a search enhancement, the best implemen-
tation is likely to be dependent on the application and the choice of heuris-
tics. For most applications, the majority of the design effort involves judi-
ciously fine tuning the set of algorithm enhancements [20, 22]. For these
choices we rely on the programmer’s discretion (trading offprogramming
effort for better search performance), which is beyond the scope of this
paper.

The applicability of search algorithm enhancements is determined by the five cat-
egories of state space properties given above. Figure 1 summarizes the interaction
between the state space properties (vertical axis) and step(b) of the algorithm design
process—the search enhancements (the horizontal axis). A sample of enhancements
are illustrated in the figure. The table shows how the search enhancements match up
with the properties. An “x” means that the state space property affects the effectiveness
of the search enhancement. A “v” means that the search enhancement (favorably) af-
fects a certain property of the search space. For example, the “v”s on the row for time
constraints indicate that most search enhancements make the search go faster. Star “*”
entries mean that a search enhancement was specifically invented to exploit a property.

A detailed description of the search-space properties (vertical axis in Figure 1)
follows in the next section. Each of the enhancements (horizontal axis in Figure 1,
and others), as well as how they relate to the search space properties, are explained in
Section 6.

5 Search Space Properties

This section gives details of the fundamental search-spaceproperties that search en-
hancements attempt to exploit (the vertical axis in Figure 1).
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Search Space Properties
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Graph Definition
out degree of a node > 1 > 1
in degree of a node > 1
presence of cycles x

graph size x
Solution Definition

solution density x x
solution depth x

solution backup rule x x
Resource Constraints

space x x * x
time v v v */x v v

Search Objectives
optimization v v v v v

satisficing v v v v v
Domain Knowledge

heuristic evaluation quality x x * x
heuristic backup rule

heuristic parent/child value x x x
heuristic parent/child state x x

heuristic evaluation granularity x
next move to expand * v * v *

Figure 1: Search Space Properties vs Enhancements
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5.1 Graph Definition

The first part of defining a search space is the problem specification phase. Here the
problem has to be formulated in an unambiguous way, essentially defining a problem
space that is amenable for search. The problem specification, the rules of the appli-
cation, implicitly define a graph. Following the terminology of [33], a problem space
consists of states and transition functions to go from one state to another. For example,
in chess a state would be a board description (piece locations, castling rights, etc.).
The transition function implements the rules by which pieces move. In the traveling
salesperson problem (TSP), a state can be a tour along all cities, or perhaps a partial
tour. The transition function adds or replaces a city from a tour. In graph terminology,
a state is called a vertex or node, and a transition is called an arc or edge.

The graph is treated as merely a formal representation of theproblem, as yet de-
void of meaning. It has not yet been decided what concepts like “payoff function” and
“backup rule” mean. The problem graph is purely a syntactic description of the prob-
lem space. Semantics are added later. The graph has a number of interesting properties
that can be exploited to improve the efficiency of the search.The following features
characterize the properties of the basic graph. We assume that the graph is directed and
finite.

Out Degree: The number of outgoing edges, or children, of a node is called its out
degree or branching factor. The larger the out degree, the more difficult the
search task. The 15-Puzzle has a branching factor that varies from2 to 4. In
chess, the average branching factor is roughly40, although it can range from0
to 100. AnN -city TSP will have nodes with a branching factor ofN�1. Search
techniques may be able to exploit the distribution (absolute size or variability) of
the out degree.

In Degree: The number of incoming edges, or parent nodes, is called the in degree
of a node. Graphs with a constant in degree of1 are called trees. Curiously, the
problem spaces of most games studied by the field of game-treesearch are not
trees [38]. For example, in the game of chess many states can be reached via
multiple move sequences, so-called transpositions. A search technique may be
able to exploit the variability of the in degree.

Cycles: In addition to transpositions, graphs can contain cycles. A cycle is a situation
where, via some path, a node is its own ancestor. The application rules allow
cycles in, for example, chess and the 15-Puzzle, but not in the game of Go.

Graph Size: As noted above, we assume finite size. However, there is more to the size
of the graph than the question of whether it is finite or not. Incombination with
other properties of the problem (such as time constraints, space constraints, and
the computational cost of the transition function), the size of the problem graph
influences the feasibility of finding an answer. The size of the search space, in
part, determines the effectiveness of some search techniques.
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5.2 Solution Definition

In this part of the problem solving processmeaningis attached to some of the states.
If the graph definition provides us with a syntactic description of the problem, then the
solution definition associates semantics to the graph. The meaning of some states in
the graph, mapped into a value, is defined by the application rules. For example, in
chess all checkmate states have a known value. In the TSP, a tour that visits all cities
and ends in the original one is a possible solution. The problem specification usually
specifies a goal, such as checkmate the opponent or finding theshortest tour among a
set of cities. The objective of the search is to find these goalor solution states, and
to report back how they can be reached. Solutions are a subsetof nodes in the search
space, and solution density, solution depth, and the backuprule can be used to describe
the relationship between these sets of nodes.

Solution Density: The distribution of solution states determines how hard searching
for them will be. When there are many solution states it will be easier to find one,
although determining whether it is a least cost solution (orsome other optimality
constraint) may be harder.

Solution Depth: An important element of how solution statesare distributed in the
search space is thedepthat which they occur (the root of the graph is at depth0).
Search enhancements may take advantage of a particular distribution. For exam-
ple, breadth-first search may be advantageous when there is ahigh variability in
the depth to a solution.

Solution Backup Rule: The problem description defines how solution values should
be propagated back to the root. Two-agent games use the minimax rule; opti-
mization problems use minimization or maximization.

5.3 Resource Constraints

Resource constraints (space and time) permeate most of the design and implementation
effort. They play a critical role in determining which enhancements are feasible. There
are interesting trade-offs that can be made between the two [27, 19].

Space: Most algorithms used for solving real-world problems use storage to speed up
their search. Space constraints (RAM or disk) may limit the amount of interme-
diate information that can be used by the search algorithm.

One could argue that with the steady decline in memory and disk prices, these
space constraints are felt much less. While this is true, many algorithms are
emerging that exploit the memory hierarchy to, for example,maximize cache
usage. Algorithms should still be carefully designed to have a small working set
to achieve best performance.

Time: In search, time is the single most important resource constraint. True, it can
be traded off for space, but only up to a point. An unlimited amount of space is
useless if one doesn’t have the time to compute the data to fillit, and since the
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problem graph is normally specified implicitly, it has to be built up during the
search, which takes time that cannot be traded off.

Time constraints are the driving force for all the choices made during the differ-
ent phases of the problem solving process.

5.4 Search Objectives

One of the most important decisions to be made is the objective of the search. This
decision is influenced by the size of the problem graph, solution density and depth, and
resource constraints. The choice of search objective defines a global stop condition.
We distinguish two basic global stop conditions:

Optimization: The basic optimization question is to find theleast cost solution to a
problem. Optimization involves finding the best (optimal) value for the search
problem. As soon as a solution has been found that is guaranteed to be optimal,
the search stops (e.g. A*). (A small variation of this stop condition is to find all
optimal solutions.) Given a problem graph, the properties that determine whether
optimization is feasible are solution density, solution depth and in/out degrees.

Satisficing: Sometimes optimization is too expensive and one needs to get the best-
quality answer possible subject to the resources available. This is the case in
most two-agent problems where it is not possible to search tothe end of the
game, and in single-agent search where it is usually possible to quickly achieve
a good solution, but considerably more expensive to find the optimal solution. In
many other situations finding solutions is expensive, for example in many real-
time situations, such as autonomous vehicle navigation. Recently there has been
much interest in real-time algorithms that continue to find better solutions as their
search time increases. Dean and Boddy have termed this groupof algorithms
anytime algorithms [13].

For satisficing searchers, a payoff, or evaluation function, is applied to each state
encountered in the search. The evaluation function is a heuristic approximation
of the true value of the state. The search progresses, tryingto find the best
approximation to the true solution, subject to the available resources.

The choice for global stop condition is influenced by computational efficiency—
the faster the evaluation function the more states can be examined per time unit—
and by the space and time that are available for the computation.

5.5 Domain Knowledge

The domain knowledge is at the heart of a high-performance search application, since
the quality of the knowledge will significantly influence theefficiency of the search.
At one extreme the application of perfect domain knowledge obviates the need for
search. At the other extreme, a lack of domain knowledge willresult in an ineffective
(exhaustive) search.
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Heuristic Evaluation Function: The heuristic evaluation function encodes application-
dependent domain knowledge about the search. Typically, itis the most impor-
tant component of a search application. Unfortunately, it has to be redeveloped
anew for each problem domain. Since the function is application dependent,
most of its internals cannot be discussed in a general way. The external charac-
teristics, however, can.

There are many different types of information that can be returned by a heuristic
evaluation. Some examples include: lower/upper bound estimates on the dis-
tance to solution (as is typically seen in most single-agentapplications), point
estimates on the quality of a state (as is typically seen in most two-agent applica-
tions), ranges of values (for example, B* [7]), and probability distributions (for
example, BPIP [6]).

Backup Rule: The solution as defined in the problem specification typically gives
a backup rule for propagating solutions back to the root of the search. This is
often a simple minimizing or minimaxing operation. It is an abstract rule that
is defined by the problem specification. In satisficing situations, however, the
choice of heuristics used can change the semantics of the backup rule.

For example, in an AND/OR graph the cost of a solution could bebacked up
according to the MIN/SUM rule (for example, Conspiracy Numbers [30]). If
the heuristic produces a scalar probability, then the backup rule will typically
be product propagation. In some situations multiple valuesare returned, for
example an upper and a lower bound, or the merit of a state and how much
it costs to get there. Backing up a probability distributionrequires even more
elaborate processing.

Quality of Heuristics: The most important aspect of the heuristic evaluation function
is the inherent error. For a given states, the application designer wants to min-
imize jh(s) � h � (s)j, whereh(s) is the heuristic estimate ofs’s true value,
andh � (s) is the perfect-information value (if known). In general, the better
the quality ofh(s), the more efficient the search. Typically, heuristic functions
are good at estimating the true value of certain features, while they fail at others.
The construction of good heuristic functions typically requires a lot of effort and
ingenuity.

Satisficing and anytime algorithms are built on the premise that the error of
search results diminishes with deeper searches. There has been some study into
the pathological case when this assumption does not hold [32, 35]. Typically,
real-world applications do not exhibit pathology (there are numerous studies
showing this phenomenon [45, 9, 31]).

A special case that is of importance to minimization problems is where the
heuristic function is admissible, that is, it never overestimates the cost of reach-
ing a solution state. Its importance stems from the observation that the first
solution found by, for example, iterative-deepening A* is guaranteed to be opti-
mal if the heuristic function is admissible. These bounds can be used to prune
irrelevant parts of the search space.
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Parent/Child Correlation of Value: Related to the quality of the evaluation function is
thestability of the values as one walks the graph. For many best-first and satis-
ficing successor ordering techniques it is important that applying the heuristics
to a parent node yields a value that is highly correlated to the backed up heuristic
value of its children. Obviously, the better the general quality of the heuristics,
that is, the smallerjh(s) � h � (s)j is, the higher the correlation between parent
and child values will be. (Although, in principle, also low quality evaluation
functions can have a good heuristic stability, e.g. always returning 0.) An impor-
tant special case is where the heuristich(s) is admissible and consistent.

Parent/Child Correlation of State: The graph-counterpartof the previous property,
parent/child correlation of state, enables (or disables) the successful implemen-
tation of stable heuristics. The task of constructing heuristics that exhibit good
stability becomes easier when few of the state features change in a transition. In
many application domains one can choose a small number of relatively stable
features in the state representation and use them to construct a good heuristic.
The possible choices of a state representation can have a major impact on how
easy it is to construct heuristics with a small errorjh(s)� h � (s)j that are com-
putationally efficient, so that the part of the problem graphthat can be searched
within the time constraints is as large as possible. It oftentakes numerous design-
and-test iterations before a satisfactory solution has been constructed.

Granularity of Values: The granularity of the heuristic function [46] is another issue
that is partly constrained by properties of the search space, but where the designer
of the heuristics has some degree of freedom.

The granularity of the heuristics can have a large influence on the choice of
search techniques. For example, iterative deepening in single-agent search is a
technique that searches for a solution whose cost does not exceed a threshold.
If no solution is found, the threshold is incremented, and the search is restarted
from the beginning. Its effectiveness is greatly affected by the granularity of
the heuristic function [47]. In the 15-puzzle the heuristic(number of steps to a
solution) is coarse grained, ranging from 0 to 64, with many nodes having the
same value. In TSP the values returned by the heuristic function (length of a
tour) are much more finely distributed, with many tours having a different cost.
Iterative deepening works well with sliding-tile puzzles,but fails in TSP because
of the high number of re-searches.

In satisficing the same phenomenon occurs with search techniques that iterate
over the values returned by the heuristic. For example, mostgame-playing pro-
grams have migrated to manipulating integer values insteadof the finer-grained
floating point values.4

Search techniques exploit general properties of the searchspace in an application-
independent fashion. Heuristics, on the other hand, are application-dependent
search techniques. As stated before, the choice and implementation of heuristics
provides in many ways the glue between the properties of the search space and

4Of course, a second argument is that integer arithmetic is faster than floating point calculations.
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the search techniques. From a scientific viewpoint one wouldlike to decouple
application-specific heuristics from the more general search techniques. How-
ever, from an engineering viewpoint, trying everything conceivable to achieve
the required performance for a certain problem, this separation can often seem
absurd.

Next Node to Expand: The search algorithm together with heuristic information is
used to decide on the next node to expand in the search. For some applications,
the decision may be mechanical, such as depth-first, breadth-first or best-first, but
heuristic information can be instrumental in ordering nodes from most- to least-
likely to succeed. Search is graph traversal. The essence ofwhat any combina-
tion of search algorithm/technique does is influence the choice of which node to
expand next. The next node is influenced directly when descending the search
tree, and indirectly when the decision is made to stop descending and backup to
a parent node.

Select (down): When descending the graph one has to choose a child to expand
next. This choice can have a large impact on the efficiency of the search.
Breadth-first and depth-first are two basic strategies. Manyinventive ways
for choosing the next child to expand have been tried.

Local stop (up): Criteria to stop the search at certain nodescome in a multitude
of flavors. Most search methods are designed not to expand thecomplete
search space. Some techniques have been devised to decide when parts of
the search graph do not have to be visited again. Many different pruning
techniques have been proposed, based on search-space properties (pruning
by domination, alpha-beta pruning), and on application-specific heuristics
(forward pruning in chess).

Next, properties of the search space can be used to decide that a node tem-
porarily will not be explored any deeper. Best-first node selection can be
viewed as such a local stop criterion—stop when the childrenof a node
are no longer the best. Many other search techniques have been devised,
some based on properties of the search space, some on application-specific
heuristics.

Having discussed the main properties of the search space, itis now time to turn our
attention to the search techniques that are designed to takeadvantage of them. In the
next section we switch from the vertical axis of Figure 1 to the horizontal axis.

6 Search Enhancements

This section classifies various search enhancements used. The enhancements have been
grouped into classes, of which a few of the more interesting ones are discussed (the
ones illustrated in Figure 1). Numerous enhancements have been classified, but are not
included for brevity.
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For each class, a representative technique was selected andits applicability to
single-agent and two-agent search is discussed. The material is intended to be an il-
lustrative sample, not exhaustive. Each technique is categorized by the preconditions
of search domain properties that are necessary to use that technique. The effective-
ness of some enhancements depends solely on the properties of the graph—not of the
application—while others depend on the application and noton the graph. Since in
most cases the preconditions necessary for using an enhancement are not tied to any
fundamental property of an application, the search enhancements presented are appli-
cable to a wide class of applications.

The example techniques are analyzed using a number of categories:� Name. The commonly used name of the enhancement.� Precondition. The conditions necessary for the enhancement to be applicable.� Idea. A brief description of the idea behind the enhancement.� Advantages. The benefits of using the enhancement (typically time and/or space).� Disadvantages. The side effects of using the enhancement.� Techniques. A brief summary of the idea as used in single-agent and two-agent
search practice.

6.1 Eliminating Redundant States

Identical states can occur in a search. There are two ways this can happen. First, the
graph may contain cycles. Second, path transpositions are possible (two independent
paths through the graph reaching the same state). Ideally, the state should be searched
once, and repeated occurrences of the state should reuse thepreviously computed in-
formation.

The presence of repeated states depends only on the application definition. There-
fore the techniques for eliminating redundant states is independent of the algorithm
selected.
Name:Cycle detection.
Precondition:In-degree is> 1. Two search paths can lead to the same state.
Idea: Repeated states encountered in the search need only be searched once. Search ef-
ficiency can (potentially) be improved dramatically by removing these redundant states.
Advantages:Reduces the search graph (tree) size.
Disadvantages:Increases the cost per node and/or storage required.
Techniques:The typical technique is to store positions in a hash table toallow for rapid
determination if a state has been previously seen. This works for both cycles and path
transpositions. An alternate technique that only detects cycles but uses little memory
is to save the path used to reach a node and use it to check for a repeated state. Note
that these techniques work for both single-agent [29] and two-agent [16] search. Finite
state machines have been used to detect cycles in single-agent search [44].
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6.2 State Space Enumeration

These techniques depend on the state space graph and on the definition of the solution
space.
Name:Exhaustive search.
Precondition:Size of the state space graph and/or solution search tree be “small.”
Idea: If the state space is “small” enough, then the entire graph can be examined and
the optimal answer for each node computed. For some applications, traversal of the en-
tire state space may not be necessary; one need only traversethe solution tree, ignoring
parts of the state space that can logically be proven irrelevant.
Advantages:Optimal answer for some/all nodes in the state space.
Disadvantages:May require large amounts of time and/or space to traverse the state
space and save the results.
Techniques:Several games and puzzles with large state spaces have been solved by
enumeration (in conjunction with other enhancements), including single-agent applica-
tions (8-Puzzle [39] and the 12-Puzzle) and two-agent applications (Nine Men’s Morris
[14], Qubic [1] and Go Moku [1]).

The definition of “small” may be misleading. Nine Men’s Morris has a state space
size of O(1013), while Go Moku has a state space size of over O(10100), a seemingly
impossibly large number. Solving a problem is a matter not only of the search-space
size, but also the decision complexity [2].

6.3 Successor Ordering

The order in which the successors of an interior node are visited may effect the effi-
ciency of the search.
Name:Move ordering.
Precondition: This enhancement is applicable if the order in which successor nodes
are considered in can effect the size of the search tree.
Idea: Consider branches at an interior node in the order of most to least likely to
achieve the best result.
Advantages:Successor ordering most benefits algorithms that use partial search re-
sults for additional cutoffs—the earlier good bounds are established the more of the
remaining tree can be cut off (branch-and-bound and alpha-beta-based algorithms). In
optimizing searches, searching the best move increases thelikelihood that a (best) so-
lution is encountered earlier in the search.
Disadvantages:Increased processing cost per interior node.
Techniques:There are many techniques for move ordering in the literature including
the killer heuristic [43], previous best move ordering [43], iterative deepening, and the
history heuristic [40]. Limited discrepancy search [18] isbuilt around the notion of
move ordering and relies crucially on its quality.

6.4 Iterative Refinement

Ideally, one should visit a state once, and only once. One of the major search results
to come out of the work on computer chess was that repeatedly visiting a state, al-
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though seemingly wasteful, may actually prove to be beneficial. Numerous iterative
techniques have been used, including iterating on the search depth, search window, set
of enhancements used, etc.
Name:Iterative deepening.
Precondition:Information from a shallow search satisfying conditiond must provide
some useful information for a more extensive search satisfying d+�.
Idea: Search down a path until a conditiond is met. If the entire tree has been searched
with conditiond, and no solution matching the search objective has been found and
resources are not exhausted, then repeat a more extensive search to satisfy conditiond+�.
Advantages:Iterative deepening is primarily used because it reduces the space re-
quirements of the application [24]. For searches under real-time constraints, iterative
deepening facilitates time management, because it provides convenient places to stop
the search with a reliable indicator of the quality of the search result (e.g. the search
depth achieved). Results from previous iterations (storedin a transposition table) may
improve move ordering and thus the potential for cutoffs.
Disadvantages:Repeated visitations cost time. The value of the information gathered
must outweigh the cost of collecting it. In general, since the search trees grow expo-
nentially, the cost of the early iterations is dwarfed by thecost of the last iteration.
Techniques:By storing the best move for each node searched, in each iteration the
move ordering of another level of the search tree is improved[42, 43]. In optimizing
searches, the algorithm usually iterates on a lower (upper)bound on the solution quality
or search depth. The search either succeeds and a minimal (maximal) result has been
found, or the search fails, in which case it is repeated with alarger (smaller) lower
(upper) bound. Satisficing (resource-constraint) searches usually run until resources
are exhausted and use the best result achieved so far. A related technique is recursive
iterative deepening, which will not be discussed here.

6.5 Off-line Computations

It is becoming increasingly possible to pre-compute and store large amounts of inter-
esting data about the search space that can be used dynamically at runtime. There are
many well-known techniques, including pattern databases [12, 21] and opening books.
The effectiveness of this technique depends ultimately on the heuristic evaluation func-
tion, although it works for a large class of applications.
Name:Solution databases.
Precondition:One must be able to identify goal nodes in the search (trivial).
Idea: The databases define a perimeter around the goal nodes. The search can stop
when it reaches the perimeter. In effect, the database increases the set of goal nodes.
Advantages:The search can stop when it reaches the database perimeter.
Disadvantages:The databases may be costly to compute. Furthermore, the memory
hierarchy (e.g., registers, level I cache, level II cache, RAM, and disk) makes random
access to tables increasingly costly as their size grows.
Techniques:Solution (or endgame) databases have been built for a numberof games,
in some cases resulting in dramatic improvements in the search efficiency and in the
quality of search result. In two-player games, theChinookprogram has taken endgame
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databases to the extreme, building a collection of 444 billion positions [41]. These
databases are accessed at runtime, significantly reducing the search tree size and im-
proving the search accuracy. In single-agent applicationssolution databases have been
tried in the 15-Puzzle. An on-line version of this idea exists, dynamically building the
databases at runtime (bi-directional [23] or perimeter search [28]).

6.6 Search Effort Distribution

The simplest search approach is to allocate equal effort (search depth) to all children
of the root. Often there is application-dependent knowledge that allows the search to
make a more-informed distribution of effort. Promising states can be allocated more
effort, while less promising states would receive less. Extensive experimentation in
two-player games shows that within a given time constraint,the quality of the search
answer can be significantly improved by a judicious allocation of effort [4]. In two-
agent search, numerous static methods have been used (see below) for adjusting the
search effort (sometimes called forward pruning, selective search or selective deepen-
ing). Dynamic methods have proved more effective. Here search results are used to
influence where the effort goes. Popular ideas used in practice include singular exten-
sions [5], the null-move heuristic [15], and ProbCut [10].

For optimizing single-agent search, redistributing the search effort is of limited
value since even if an extended search finds a solution, all possible non-extended nodes
must still be checked for a better solution. However, if any solution is acceptable, then
non-admissible heuristics can be used to extend/retract the search effort (both statically
[26] and dynamically [20]). It is also beneficial for real-time single-agent search such
as RTA* [25] and other anytime algorithms. Limited discrepancy search is a schema
with the same intent: distribute the search effort in accordance with the move ordering
heuristic [18].
Name:Static redistribution of search effort.
Precondition:Application-dependent knowledge can be a good predictor ofthe utility
of extending/reducing the search.
Idea: Extend promising lines in the search; reduce the effort for subtrees that appear to
have low potential. The decision is made based on static information about the current
state.
Advantages:In optimizing search, this can increase the chances of discovering a (pos-
sibly non-optimal) solution quickly. In satisficing search, it can increase the reliability
of the search result.
Disadvantages:In optimizing search, the discovery of a solution can be postponed. In
satisficing search this might result in wasted search effortexploring low utility nodes.
Techniques:In single-agent search, numerous simplistic methods have been tried. For
example, WIDA* (Weighted IDA*) scales the heuristic value by a constant (usually
greater than 1) which has the effect of reducing the search more along lines with larger
heuristic values [26]. In two-agent games, there are numerous application-dependent
heuristics that have been used. For example, chess programsusually extend the search
for checking or threatening moves, while lines where one side is down a lot of material
are usually curtailed.
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7 Analysis and Future Work

The previous sections illustrate that the same basic ideas for search enhancements have
found their way into both single-agent and two-agent searchand that even the algo-
rithms are similar if not identical. It is often striking howclosely related these en-
hancements are and how similar the algorithms behave when searching trees that were
thought to belong to fundamentally different classes.

Even for moderately complex domains, the current state of the art requires a large
programming, research and tuning effort to achieve high performance. Application pro-
grammers are required to re-implement general search algorithms and their enhance-
ments over and over again. Even worse, the slow and agonizingprocess of debugging
and tuning a multitude of interacting and counteracting search enhancements in search
trees of millions, even billions, of nodes can be extremely time consuming and error
prone.

The arguments outlined in this paper support the contentionthat the search space
properties define the appropriate search algorithm/enhancements. The user defines the
properties and then queries a catalogue of established techniques looking for those that
match the properties of the application domain. This suggests that it should be possible
to automate this process. One could construct a tool, a LEGO-box of search tech-
niques, that, given a search-space description, automatically puts together a number
of pre-fabricated pieces of template code and adapts them tothe currently considered
problem and its properties. Specifying the backup rule would be only one of many
different properties to consider. Even though user-specified properties could be used in
the beginning, this tool could ultimately detect certain properties itself and enable and
disable, or even parameterize, specific enhancements accordingly [20].

Even though a generic solver likely would not execute as fastas a finely-tuned, cus-
tom built program, it could provide reasonable performancewith the virtual guarantee
of correctness. More importantly, a successful search enhancement can yield orders
of magnitude in performance increase by dampening the exponent of the search-space
complexity, whereas an excellent implementation can only save a small constant fac-
tor. Such a LEGO-program could be a benchmark for both speed and correctness for
further, more specific implementations.

8 Conclusion

For decades researchers in the fields of single-agent and two-agent heuristic search
have developed enhancements to the basic graph traversal algorithms. Historically the
fields have developed these enhancements separately. Nilsson and Pearl popularized
the AND/OR framework, which provided a unified formal basis,but also stressed the
difference between OR and AND/OR graph traversal algorithms. The fields continued
their relatively separate development.

This paper advances the view that the essence of heuristic search is not searching ei-
ther single-agent or two-agent graphs, but which search enhancements one uses. First,
the single/two-agent property is but one of the many properties of the search space that
play a role in the design process of a high performance heuristic search application.
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Second, the single/two-agent distinction is not the dominant factor in the design and
implementation of a high-performance search application—search enhancements are.
Third, most search enhancements are quite general; they canbe used for many different
applications, regardless of whether they are single-agentor two-agent.

The benefit of recognizing the crucial role played by search techniques is imme-
diate: application developers will have a larger suite of search enhancements at their
disposal; ideas first conceived of in two-agent search will not have to be rediscovered
later independently for single-agent search, and vice versa. In an implementation the
best combination of techniques depends on the expected search benefits versus the pro-
gramming efforts, not on the single-agent or two-agent algorithm.

For twenty years, most of the research community has (explicitly and implicitly)
treated single-agent and two-agent search as two differenttopics. Now it is time to
take stock and recognize the pivotal role that search enhancements have come to play:
the algorithm distinction is minor, and most research and implementation efforts are
directed towards the enhancements.All the properties of the search space—not just the
single/two-agent distinction—play their role in determining the effectiveness of that
what heuristic search is all about: enhancing the basic search algorithms to achieve
high performance.
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