
Fault-Tolerant Nanosatellite Computing on a Budget
Christian M. Fuchs∗†, Nadia M. Murillo†, Aske Plaat∗, Erik van der Kouwe∗, and Todor P. Stefanov∗

∗Leiden Institute for Advanced Computer Science †Leiden Observatory;
Leiden University, The Netherlands

I. INTRODUCTION

Satellite miniaturization has enabled a broad variety of
scientific and commercial space missions, which previ-
ously were technically infeasible, impractical or simply
uneconomical. However, due to their low reliability,
nanosatellites as well as light microsatellites are typically
not considered suitable for critical and complex multi-
phased missions and high-priority science. The on-board
computer (OBC) and related electronics constitute a
large part of such spacecraft, and have been shown to be
responsible for a significant share of post-deployment
failure [1]. Indeed, these components often lack even
basic fault tolerance (FT) capabilities.

Due to budget, energy, mass and volume restrictions,
existing FT solutions originally developed for larger
spacecraft can not be adopted. In this paper we describe
an multiprocessor System-on-Chip (MPSoC) that utilizes
conventional hardware, providing FT for miniaturized
satellites. The MPSoC is assembled from well tested
COTS components, library logic (IP), and powerful
embedded and mobile-market processor cores, yielding a
non-proprietary, open architecture. Our key contribution
is a fault tolerant OBC concept that consists only of ex-
tensively validated standard parts, and can be reproduced
with minimal manpower and financial resources.

II. BACKGROUND & RELATED WORK

Aboard nanosatellites, subsystems are controlled by
just one command & data handling system, whereas
aboard a larger satellite these tasks are distributed across
multiple dedicated payload and subsystem computers.
This implies a varying OBC workload throughout a mis-
sion aboard nanosatellites, which traditional FT solutions
only handle through over-provisioning. The tiled MPSoC
design presented in this paper can efficiently handle
faults through thread migration and partial reconfigu-
ration. Major parts of our approach are implemented
in software, allowing the OBC to deliver the desired
combination of performance, robustness, functionality,
or to meet a specific power budget. To enable strong
FT with low-cost commodity hardware, we combine
software-side fault detection, FPGA configuration scrub-
bing with other fault detection, isolation and recovery
(FDIR) measures across the embedded stack.

Nanosatellites utilize almost exclusively COTS
microcontroller- and application processors-SoCs,
FPGAs, and combinations thereof [2], [3]. Due to
manufacturing in fine technology nodes, and the use of
extensively optimized standard IP, they offer superior
efficiency and performance as compared to space-grade
OBC designs. The energy threshold above which highly
charged particles can induce faults (single event effects
– SEE) in such components decreases, while the ratio
of events inducing multi-bit upsets (MBU), and the
likelihood of permanent faults increases. To adapt
hardware-FT based concepts to protect such chips,
additional FT-circuitry is required, inflating logic size
and resulting in diminishing returns, limited scalability
and low clock frequencies [4]–[6]. We can observe
that traditional FT-concepts for space applied to COTS
hardware yield no nanosatellite compatible architectures
due to extreme cost and high overhead [7].

FPGA-based Soft-SoCs have been shown to offer ex-
cellent FDIR potential [8], as transients in large parts of
the FPGA fabric can be corrected, and permanent faults
may be compensated through reconfiguration [9] with
differently routed configuration variants. Total ionizing
dose becomes less of a problem with finer technology
nodes used for recent generation FPGAs [10], [11]. Fine-
grained, non-invasive fault detection in FPGA fabric,
however, is challenging, and subject of ongoing research
[12], [13]. Relevant FT-concepts thus rely on error scrub-
bing, which has scalability limitations and cover only
parts of the fabric [12], [14]. In our technology project,
however, we facilitate fault-detection in software using
coarse-grain lockstep of weakly coupled cores.

Tiled architectures [15], [16] are often used for well
paralellizable applications with many low-performance
processor cores, but attempts have been made to utilize
them for FT [17], albeit only for specially structured
applications such as image processing, not for general
purpose programming. Coarse-Grained Lockstep with
weakly coupled cores [18] can be combined well with
tiled MPSoC architectures, as the thereby implied com-
partmentalization into individual sub-SoCs enables or
drastically simplifies the application of the utilized FDIR
measures. This also enables us to inherit a considerable
amount of testing from COTS components and logic.

III. A HYBRID FAULT-TOLERANCE APPROACH

Conventional FT architectures require proprietary
logic to facilitate fault detection and coverage. In con-
trast, the MPSoC described in this paper can offer strong
FT using just from COTS components and standard
logic. This is made possible through the use of the FT
approach we presented in [18]. The high-level logic of
this approach is depicted in Figure 1, and its consists
of three interlinked fault mitigation stages implemented
across the embedded stack:

Stage 1 implements forward error correction and
utilizes coarse-grain lockstep of weakly coupled cores
to generate a distributed majority decision across tiles.
Fault detection is facilitated through application callback
functions, without requiring deep modifications to an
application or knowledge about intrinsics.

Stage 2 recovers defective tiles through reconfigura-
tion. It assures the integrity of programmed logic and
deploys configuration scrubbing as well as Xilinx SEM
to correct transients in FPGA fabric. Its objective is to
assure and recover the integrity of processor cores and
their immediate peripheral IP through FPGA reconfigu-
ration and the use of alternative configuration variants,
thereby counteracting resource exhaustion.

Stage 3 is activated when too few healthy tiles are
available, and re-allocates processing time to main-
tain reliability. To do so, thread-level mixed criticality
is exploited, assuring sufficient compute resources are
available to high-criticality applications by sacrificing
performance of lower-criticality threads.

Further details including benchmark results are avail-
able in [18]. The main target in our project is the
ARM Cortex-A53 application processor, which is today
widely used in embedded and mobile-market devices.

Tile Supervisor

Bootup

State Update

Checkpoint

Synchonization

Thread
Execution

Read Majority
Decision

Tile Fault
Counter

Tile (Partial)
Reconfig.

Keep
Tile

Spare Tile
Activation

Faulty Tile
Recovery

Alternative
Variants

Reduce
Thread

Mapping

Full FPGA
Reconfig.

&

Replace
Tile

 <= limit

Success

> limit

Done
No Spare
Capacity

Fig. 1: Stage 1 assures fault detection and short-term
coverage, while Stage 2 (blue) and 3 (yellow) counter re-
source exhaustion and adapt to reduced system resources.

However, this research is processor and ISA independent.
In this paper, we describe an MPSoC design consisting of
Microblaze processor cores and Xilinx Library IP, which
can be reproduced in Xilinx Vivado 2017.1 and later.

IV. SUPERVISION & RECONFIGURATION

Stage 1 can be implemented one a single chip, but
we utilize an off-chip supervisor to facilitate FPGA re-
configuration and transient fault scrubbing in the running
configuration. The outlined multi-stage FT approach puts
only minimal load on the supervisor, and it can thus be
again implemented using a traditional radiation hardened
microcontroller. We deployed configuration error mit-
igation through Xilinx Soft-Error-Mitigation (SEM) in
combination with supervisor-side scrubbing to safeguard
logic integrity. However, SEM and scrubbing only detect
faults in specific components of the FPGA fabric (e.g.
not in BRAM), leaving significant parts of the design
unprotected unless logic-side ECC is used.

These measures alone, thus, do not provide sufficient
protection for fine-feature size FPGAs. Thus, we utilize
the mentioned coarse-grain lock step functionality to de-
tect faults and afterwards solve them using reconfigura-
tion. We place tiles in separate configuration partitions to
enable partial reconfiguration of individual tiles, without
affecting the rest of the system.

To allow supervisor access to a tile and its address
space, each tile is equipped with a AXI debug-bridge.
The supervisor can induce a reset and execute self-
test functionality run within a tile to detect faults in
peripherals. It can also trigger an adjustment of a tile’s
thread allocation as part of Stage 1 and 3, making
the MPSoC’s computational performance, robustness and
energy consumption adjustable at runtime.

V. TILE ARCHITECTURE

Our MPSoC design implements multiple isolated SoC-
compartments accessing shared main memory and oper-
ating system code. Even though the purpose and func-

Debug
Bridge

MMU

X

BRAMMemory
Scrub

CoreIRQ

Inter
faces

Supervisor

C
lo

ck
G

en

C
ac

he

R
es

et
G

en

r/o

Tile off

clk

rst

Fig. 2: The logic-side architecture of a tile. Access
to local IP bypasses the cache, while access to global
memory passes is cached for performance reasons.

tion of these compartments is different, the topology
resembles a tiled architecture instead of a conventional
MPSoC design, in which cores share infrastructure and
peripherals. This topology allows to maximize Stage
1’s fault-coverage capacity and allows task mapping
for general-purpose software. Each such tile contains
a processor core, local interconnect, and peripheral IP-
cores and interfaces as depicted in Figure 2, resides in
its own clock domain, and can be reset independently.
Allocating a clock domain to each tile enables improved
timing, reduce logic-overlap and interdependencies be-
tween tiles. Furthermore, we can then also utilize partial
utilization and frequency scaling for each tile.

A tile executes a set of thread replicas, and its loss
can be compensated by the rest of the system. To assure
a failed tile can not cause performance degradation in
the rest of the system e.g. by continuously accessing
DDR or program memory, it can be disconnected off
the global interconnect by the supervisor. Non-masked
faults (due to radiation, ageing, and wear) disrupt the
data or control flow of software running on a tile (state).
Stage 1 builds upon this capability at the thread-level, as
state difference can be detected by other tiles and often
even by the malfunctioning tile itself [18].

Tiles are equipped with the same interfaces, with pe-
ripherals being mapped to identical locations in address
ranges. The tile address space layout is uniform across
the system and tiles are indistinguishable for software.
Hence, application code and data structures are portable
between tiles, simplifying thread migration drastically.
This allows us to reduce the computational cost and
complexity of the software-lockstepping.

Thread allocation and information relevant to the
coarse-grain lockstep is stored in a dedicated dual-ported
on-chip BRAM on each tile. One port is accessible to
the tile’s processor core, while the other is read-only
accessible to the system, allowing low-latency informa-
tion exchange between tiles without requiring inter-tile
cache-coherence or main memory access.

VI. INTERCONNECT TOPOLOGY & SHARED

MEMORY

Figure 3 depicts the MPSoC’s high-level topology
with clock domains, reset lines and supervisor access fa-
cilities. Our MPSoC design utilizes an AXI interconnect
in crossbar mode to allow tiles access to shared main and
non-volatile memory controllers, though we are currently
reworking our MPSoC to instead use a NoC [17].

Main memory is shared between tiles, as SD- and
DDR memory controllers are too large and require too

SPI CTRL MCTLR

MCTLR
Main

Memory

Memory
Scrubber

FeRAM
(OS & Code)

Tile

X

Tile

T1 Partition

. . .

MMU

MMU

MCTLR
NAND Flash

(Payload Data)

QSPI ctlr

SPI CTRL
DDR ctlr
+ ECC

BRAM

BRAM

Tn Partition

S
up

er
vi

so
r

Fig. 3: Simplified topology of our tiled MPSoC design.
Each tile exists in its own reconfiguration partition and
therefore also clock domain, simplifying routing.

much I/O to instantiate for each tile. Each tile has full
access to a segment of main memory, which is mapped to
the same address range on all tiles (the MMU component
in the figures). All tiles can access the main memory
read-only to simplify state synchronization and IPC.

For nanosatellite missions to LEO, often only
SECDED ECC support is required and readily available
in library IP already, while basic error scrubbing can be
facilitated in software. For critical, deep-space, and long-
term missions, block coding should be used instead to
compensate for the increased impact of SEEs and higher
likelihood of MBUs in highly-density SDRAM. Reed-
Solomon ECC as well as error scrubbers are available
commercially, or can be assembled from open-source IP.

To safeguard main memory, FeRAM [19], and mass
memory from SEFIs as well as permanent failure, these
memories and their controllers are implemented redun-
dantly to enable fail-over. This also enables further
protective measures [20], and allows load distribution
for timing critical main memory through segment inter-
leaving, thereby avoiding performance limitations.

VII. I/O SANITATION

A fault resolved in Stage 1 may cause incorrect
data to be emitted through I/O interfaces, an inherent
limitation to coarse-grain lockstep [21] but acceptable
for less critical nanosatellites. Larger spacecraft already
utilize interface replications or even voting to protect I/O
consistency, usually requiring considerable effort in hard-
ware or logic to facilitate this replication. Our MPSoC
architecture inherently provides interface replications by
design, and requiring extra measures to be taken.

Further safeguards are necessary for very small Cube-
Sats where interface replication is often undesirable, e.g.,
due to PCB-space constraints. Most embedded interfaces
like I2C and SPI allow a simple majority decision per I/O

line, which can be implemented on-chip through FIFO-
buffers, as these have low pin count and run at relatively
low clock frequencies. For packet-based interfaces such
as Spacewire, AFDX, CAN, or Ethernet, no logic-side
solution is necessary, as data duplication can be managed
more efficiently at OSI layer 2+ [22].

VIII. APPLICATIONS

To our knowledge, the MPSoC design presented in this
paper is the first practical, non-proprietary, affordable
architecture suitable for FT general-purpose computing
aboard nanosatellites. The design presented in this paper
was implemented on a Xilinx XCKU5P FPGA with
modest resource utilization (28% LUTs, 33% BRAMs,
16%FFs, 5% DSPs) and 1.92W total power consumption,
and we validated the effectiveness of our approach
through fault-injection into RTEMS on ARM Cortex-A.

The relaxed cost, energy, and size constraints aboard
microsatellites and larger spacecraft allow an implemen-
tation of our MPSoC spanning multiple FPGAs. A multi-
FPGA MPSoC variant offers better scalability due to
easier routing, can tolerate chip-level defects, and SEFIs
to the globally shared memory controllers, these can
be distributed to different FPGAs. Thread replicas can
then be distributed across FPGAs, allowing non-stop
operation even during full reconfiguration.

This approach and architecture could very well be
implemented on ASIC without reconfiguration and Stage
2, and we see this as a “big-space" variant of our
approach. An ASIC implementation offers lower energy
consumption, and allows higher clock rates due to re-
duced timing and shorter paths. If manufactured in an in-
herently radiation hard technology such as FD-SoI [23],
it would be less susceptible to transients and more robust
to permanent faults. Due to the increased development
and manufacturing costs, the resulting OBC would not
be viable for most miniaturized satellite applications.

IX. CONCLUSIONS

The MPSoC design described in this summary was
developed for miniaturized satellite use, as ideal platform
for the software-side fault tolerance approach described
in [18]. It utilizes fault tolerance measures across the em-
bedded stack, and combines topological with software-
side functionality to achieve the high level of reliability
required to enable the use of nanosatellites in critical
space missions. The architecture enables an on-board
computer to adapt to varying performance requirements
at run-time, allowing processing capacity, energy con-
sumption or fault-coverage to be maximized.

This MPSoC can be implemented using only COTS
hardware and widely available, pre-existing library IP,
requiring no proprietary logic or costly space-grade
processor cores. Its architecture includes a high level
of spatial isolation for each processor tile, utilizing
architectural features originally conceived for ManyCore
systems to increase performance. Each tile functions as
an stand-alone processing compartment with dedicated
I/O, existing in its own clock domain, thereby minimiz-
ing shared resources and reducing routing complexity.
Tiles were purposefully designed to best support thread-
level coarse-grain lockstep of weakly coupled cores,
while allowing partial reconfiguration independent of the
rest of the system. The architecture was implemented
successfully, and tested on current generation Xilinx
Zynq/Kintex and Virtex FPGAs with 4, 6 and 8 tiles,
and validated through fault-injection.

X. ACKNOWLEDGEMENTS
This MPSoC was developed in a 4-year ESA project. We would like

to thank Gianluca Furano, Giorgio Magistrati, Antonios Tavoularis, Tomasz
Szewczyk at ESTEC/TEC-EDD for their support and feedback.

REFERENCES
[1] M. Langer and J. Bouwmeester, “Reliability of cubesats-statistical data, developers’

beliefs and the way forward,” in AIAA SmallSat, 2016.
[2] F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures for Aerospace Appli-

cations: Soft Errors and Fault-Tolerant Design. Springer, 2016.
[3] R. Carlson, K. Hand, and E. Ozer, “On the use of system-on-chip technology in next-

generation instruments avionics for space exploration,” in IEEE VLSI-SoC, revised
paper. Springer, 2016.

[4] S. Gupta et al., “SHAKTI-F: A fault tolerant microprocessor architecture,” in IEEE
ATS, 2015.

[5] M. Pigno et al., “A testbench for validation of DST fault-tolerant architectures on
PowerPC G4 COTS microprocessors,” in Eurospace DASIA, 2011.

[6] A. S. Jackson, “Implementation of the configurable fault tolerant system experiment
on NPSAT-1,” Ph.D. dissertation, Naval Postgraduate School Monterey, 2016.

[7] K. Reick et al., “FT design of the IBM Power6 microprocessor,” IEEE micro, 2008.
[8] M. Wirthlin, “High-reliability FPGA-based systems: space, high-energy physics, and

beyond,” Proceedings of the IEEE, vol. 103, no. 3, 2015.
[9] L. Bozzoli and L. Sterpone, “Self rerouting of dynamically reconfigurable SRAM-

based FPGAs,” in NASA/ESA AHS. IEEE, 2017.
[10] M. D. Berg, K. A. LaBel, and J. Pellish, “Single event effects in FPGA devices 2014-

2015,” in NASA NEPP/ETW, 2015.
[11] L. A. Tambara et al., “Heavy ions induced single event upsets testing of the 28 nm

Xilinx Zynq-7000 all programmable SoC,” in IEEE REDW, 2015.
[12] M. Ebrahimi et al., “Low-cost multiple bit upset correction in SRAM-based FPGA

configuration frames,” IEEE Transactions on VLSI Systems, 2016.
[13] F. Rittner et al., “Automated test procedure to detect permanent faults inside SRAM-

based FPGAs,” in NASA/ESA AHS. IEEE, 2017.
[14] A. Stoddard, A. Gruwell, P. Zabriskie, and M. J. Wirthlin, “A hybrid approach to

FPGA configuration scrubbing,” IEEE Transactions on Nuclear Science, 2017.
[15] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on multi/many-core

systems: survey of current and emerging trends,” in DAC. ACM, 2013.
[16] P. Meloni et al., “System adaptivity and fault-tolerance in NoC-based MPSoCs: the

MADNESS project approach,” in IEEE DSD, 2012.
[17] N. K. R. Beechu et al., “Hardware implementation of fault tolerance NoC core

mapping,” Springer Telecommunication Systems, 2017.
[18] C. M. Fuchs et al., “Bringing fault-tolerant gigahertz-computing to space,” in IEEE

ATS, 2017.
[19] Z. Zhang et al., “Single event effects in COTS ferroelectric RAM technologies,” in

REDW. IEEE, 2015.
[20] C. M. Fuchs et al., “A fault-tolerant radiation-robust mass storage concept for highly

scaled flash memory,” in Eurospace DASIA, 2015.
[21] B. Döbel, “Operating system support for redundant multithreading,” Ph.D. disserta-

tion, Dresden University, 2014.
[22] Aeronautical Radio, INC, ARINC Specification 664: Avionics Full Duplex Switched

Ethernet (AFDX), 2005.
[23] M. Kochiyama et al., “Radiation effects in silicon-on-insulator transistors with back-

gate control method fabricated with OKI semiconductor 0.20 µm FD-SOI technol-
ogy,” Nuclear Instruments and Methods in Physics Research, 2011.

