
Boosting Quantum Annealing Performance using
Evolution Strategies for Annealing Offsets

Tuning

Sheir Yarkoni1,2, Hao Wang2, Aske Plaat2, and Thomas Bäck2

1 D-Wave Systems Inc., Burnaby, Canada
2 LIACS, Leiden University, Netherlands

Abstract. In this paper we introduce a novel algorithm to iteratively
tune annealing offsets for qubits in a D-Wave 2000Q quantum processing
unit (QPU). Using a (1+1)-CMA-ES algorithm, we are able to improve
the performance of the QPU by up to a factor of 12.4 in probability
of obtaining ground states for small problems, and obtain previously
inaccessible (i.e., better) solutions for larger problems. We also make
efficient use of QPU samples as a resource, using 100 times less resources
than existing tuning methods. The success of this approach demonstrates
how quantum computing can benefit from classical algorithms, and opens
the door to new hybrid methods of computing.

Keywords: Quantum computing · Quantum annealing · Optimization · Hybrid
algorithms

1 Introduction

Commercial quantum processing units (QPUs) such as those produced by D-Wave
Systems have been the subject of many characterization tests in a variety of
optimization, sampling, and quantum simulation applications [1–6]. However,
despite the increasing body of work that showcases the various uses of such QPUs,
application-relevant software that uses the QPUs intelligently has been slow to
develop. This can be most easily attributed to the fact that these QPUs have
a multitude of parameters, with each contributing (possibly in a co-dependent
manner) to the performance of the processor. In practice it is intractable to tune
all parameters, and often a subset of parameters are chosen to be explored in
detail. In this paper we introduce the use of a Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) to heuristically tune one set of parameters, the
so-called annealing offsets, on-the-fly, in an application-agnostic manner. We test
the viability and performance of our tuning method using randomly generated
instances of the Maximum Independent Set (MIS) problem, a known NP-hard
optimization problem that has been tested on a D-Wave QPU before [7]. The
definition of the MIS problem is as follows: given a graph G composed of vertices
V and edges E between them, find the largest subset of nodes V ′ ⊆ V such that

2 S. Yarkoni et al.

no two nodes in V ′ contain an edge in E. The tuning method introduced in this
paper does not exploit the nature of the MIS problem nor makes any assumptions
regarding the structure of the associated graph, and can be used for problem sets
other than MIS instances.

The QPUs available from D-Wave Systems implement a quantum annealing
algorithm which samples from a user-specified Ising Hamiltonian (in a {−1,+1}
basis) or equivalently a quadratic unconstrained binary optimization (QUBO)
problem (in a {0, 1} basis) [8]. Minimizing a QUBO or Ising Hamiltonian is known
to be an NP-hard problem [9], so many interesting and difficult computational
problems can be formulated as Ising models and QUBOs [10]. A QUBO problem
and its associated objective function can be represented as the following:

Obj(x) = xT ·Q · x, (1)

where Q is a matrix ∈ RN×N , and x is a binary string ∈ {0, 1}N .
The rest of the paper is organized as follows. In the next section we introduce

the previous works regarding annealing offsets in D-Wave QPUs. Section 3
describes the motivation and use of annealing offsets as implemented by D-Wave.
In Section 5 we explain in detail the algorithm implemented in this paper: how
the annealing offsets were evolved and then used to solve randomly generated
MIS problems. The results obtained using this algorithm are shown in Section 6,
and are followed by conclusions in Section 7.

2 Previous works

It has been shown experimentally in [11] that the probability of staying in the
ground state of the quantum system can be improved by applying annealing
offsets to small qubit systems. Specifically, the authors use a first-order perturba-
tive expansion of the quantum annealing Hamiltonian to connect ground state
degeneracy and single-spin floppiness to change the annealing offset for particular
qubits. Small instances were chosen (24 qubits) such that exact diagonalization
of the quantum Hamiltonian was possible, which is necessary for the iterative
algorithm presented in [11]. For these instances, which were chosen specifically
to be difficult for quantum annealing, median success probability of the QPU
was improved from 62% to 85% using an iterative algorithm. In a more recent
white paper produced by D-Wave Systems [12], it was shown that for specific
inputs sets it is possible to boost performance of the QPU by up to a factor of
1000. These results were obtained by using a grid-search technique, requiring 2.5
million samples to be generated using the QPU for a single input problem. The
model used to adjust the annealing offsets in this paper was similar to the model
used in [11]. This technique was also applied to 2-SAT problems with 12 Boolean
variables in [13].

It has been shown (using quantum Monte Carlo simulations) that anneal-
ing offsets can mitigate first-order phase transitions, exponentially enhancing
performance when compared to simulated thermal annealing [14]. However, this
work used simple problems that could be solved exactly. Understanding how this

Tuning Quantum Annealing Offsets with Evolution Strategies 3

asymptotic behavior affects NP-hard problems in general is an open question.
Previous work regarding solving maximum independent set problems using a
D-Wave 2000Q QPU shows that the QPU performance suffers greatly as problem
sizes increase, even as problems become easier to solve classically [7]. The new
annealing offset features in the D-Wave 2000Q processor are designed to mitigate
the likely sources of this performance degradation seen in [7]. Tuning these
parameters using a CMA-ES routine is the subject of this work.

3 Quantum annealing offset parameters

In uniform quantum annealing as implemented in D-Wave QPUs [8,15], all qubits
begin their evolution at the same point in time. Consider an annealing procedure
defined as follows:

H(s) = A(s)
∑
i

σx
i +B(s)

∑
i

hiσ
z
i +

∑
ij

Jij σ
z
i ⊗ σz

j

 ,
where A(s) is the initial Hamiltonian driver function (transverse field), B(s) is
the target Hamiltonian driver function (terminal energy scale), h and J define
the target Hamiltonian, s is a normalized time parameter (real time t divided
by total anneal time τ), and σx

i and σz
i are the x and z Pauli spin matrices

operating on the ith qubit respectively. By default, all qubits will begin their
annealing procedure at time s = 0, and terminate at s = 1. However, a feature in
the D-Wave 2000Q processor allows users to set an advance or delay for qubits in
physical time, and in an independent manner. Meaning, each qubit can have its
evolution path advanced/delayed by some user specified3 ∆s. Thus the functions
A(s) and B(s) are now an ensemble of functions, A(s +∆si) and B(s +∆si),
ranging from s = 0 +∆si to s = 1 +∆si, and can differ from qubit to qubit.

The benefit of adding this additional control feature is motivated by the
physics governing quantum annealing. As demonstrated in [4], the distribution of
answers produced by the QPU are more than a result of the finite temperature
Boltzmann distribution, but are also an artifact of ergodicity breaking during the
annealing procedure, and are a result of the annealing path as defined by the A(s)
and B(s) functions in Equation 3. Allowing a programmable method to delay and
advance the anneal schedule of individual qubits allows some mitigation of this
effect, sometimes called ”freeze-out”. It has even been shown that, for careful
construction of these offsets on a per-qubit basis, it may be possible to avoid
forbidden crossings entirely [14]. However, this requires a priori knowledge of the
energy landscape, and is thus computationally impractical for most problems.

3 Each qubit in the QPU has a different range in ∆s that can be set independently.
∆s < 0 is an advance in time and ∆s > 0 is a delay. A typical range for ∆s is
± 0.15. The total annealing time for all qubits is still |s| = 1 (or τ in units of time).

4 S. Yarkoni et al.

4 Covariance Matrix Adaptation Evolution Strategy
(CMA-ES)

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [16] is a
state-of-the-art stochastic optimization algorithm for the continuous black-box
optimization problem. To tune the annealing offsets, we adopt the so-called
(1 + 1)-CMA-ES variant [17], which generates only one candidate search point in
each iteration. The (1 + 1)-CMA-ES algorithm exhibits both fast convergence
and global search ability. The choice of the optimization algorithm is made based
on the following considerations: firstly, QPU time is considered an expensive
resource, and we wish to spend as little QPU time for the tuning as possible.
Secondly, the QPU is a serial device, meaning that problems (a set of annealing
offset parameters in our case) can only be tested sequentially. Therefore, the
search strategies that generate multiple candidate points are not preferred as it
is not possible to parallelize those points in our case.

For the experiments reported in this paper, we run the (1 + 1)-CMA-ES
with its default parameter settings, since it is well known that such a setting
shows quite robust behaviors across many benchmark functions [18]. Only the
method for generating the initial candidate solution is varied in the experiment:
we investigate the effects of initializing the annealing offsets either uniformly
within the corresponding upper/lower bounds, or with a value of zero.

5 Tuning QA parameters with (1+1)-CMA-ES

In this paper, it is proposed to tune the annealing offsets of a D-Wave QPU with
the (1 + 1)-CMA-ES algorithm [17], aiming at improving the performance of the
QPU on specific problem classes, for instance the MIS problem. MIS problem
instances are constructed using the same method as in [7], using random graphs
with edge probability p = 0.2 (the empirically determined difficult point for the
QPU). The minor-embedding techniques applied to solve these problems directly
on the QPU topology are also as in [7]. To solve these problems, the annealing
offsets of qubits should be set up properly and thus are tuned using (1 + 1)-CMA-
ES. We considered the qubits within each chain to be a single logical qubit, as
with the purpose of embedding. Therefore, in calculating the offsets, we consider
the collective minimum and maximum offsets that can be used on the chain as
a whole. Explicitly, we find the highest minimum and lowest maximum shared
between all qubits in every chain, and use those as the boundary for each logical
qubit (chain). Every qubit within every chain is therefore advanced/delayed by
the same amount.

In the tuning experiment, two initialization methods of annealing offsets are
compared: uniform and none. The former is a relatively standard approach: given
a feasible range for each offset, [li, ui] for qubits in chain ci, a random number
is sampled uniformly within this range, which is then used as the initial search
point for all qubits in the chain. This method allows for a fair exploration of
the entire search space. It is especially important in such a quadratic model,

Tuning Quantum Annealing Offsets with Evolution Strategies 5

where the influences of each annealing offset on the others are not obvious and
unpredictable in the worst case. The second method, where all offsets set are
set to zero initially (representing annealing offsets), is also tested because it
represents a “not bad” initial position, and is also the starting point for the
algorithm presented in [11]. This is the default setting when using D-Wave QPUs.
We consider this point to be a local optimum for annealing offsets and attempt
to improve upon this optimum using the CMA-ES procedure.

The fitness function (objective function) of (1 + 1)-CMA-ES is calculated as
the mean energy of the solutions returned by the QPU. This was observed to
be the most stable fitness function (as opposed to the 25% percentile, or the
minimum energy). Due to the stochastic nature of the samples returned by the
QPU, it is important to use a stable metric to evaluate the fitness function in
every iteration. According to some preliminary tests, other metrics are too noisy
to enable the fast convergence of the (1 + 1)-CMA-ES algorithm. Examples of
tuning runs are presented in Appendix A.

Algorithm 1 Tune annealing offsets using (1 + 1)-CMA-ES

1: procedure tune-offset(l,u, B, StepCost)
2: Initialize: σ ← max{u− l}/4, C = I, c← 0
3: if InitialOffsets = 0 then
4: x← 0 . offset: zero initialization
5: else
6: x← U(li, ui) . offset: uniform initialization

7: f(x)← call-qpu(x, StepCost)
8: AA> ← C . Cholesky decomposition
9: while c < B do

10: z←N (0, I) . standard normal distribution
11: x′ ← x + σAz
12: f(x′)← call-qpu(x′, StepCost)
13: σ ← update-step-size(σ)
14: if f(x′) < f(x) then
15: x← x′

16: A← update-cholesky(A, z)

17: c← c+ StepCost

18: return x

Pseudocode outlining the algorithm used to tune the offsets is shown in Alg. 1
and the appropriate terms (along with the values used in our experiments, when
applicable) are defined in Tab. 1. Essentially, the proposed algorithm optimizes
the annealing offsets using the so-called mutation operation (Line 10 and 11),
where the current annealing offset x is perturbed by a Gaussian random vector
σAz (which is transformed and rescaled from the standard normal vector z, Line
10). The resulting mutation x′ is evaluated in the QPU (Line 12) and it is passed
onto the next iteration if its objective value f(x′) is better than f(x) (Line 14

6 S. Yarkoni et al.

and 15). In addition, two procedures, update-step-size and update-cholesky
are adopted to control the step-size σ and the matrix A. The details of those two
procedures are presented in [17]. After the depletion of the total budget, we use

B

Total budget (amount of resources) for tuning QPU annealing
offsets (in units of total number of samples drawn from the
QPU; In total, 10,000 samples are used in our experiment per
instance.).

InitialOffsets

The initial value for each offset of qubits in the problem; we
test either all set to 0 or uniformly between their min/max
range.

StepCost

The cost of each step of the fitness evaluation of the offsets
(in number of samples from the QPU; we used 100 samples
per call).

x The current annealing offsets.

f(x)
Fitness value of the current offsets, measured in units of mean
energy of the samples returned by the QPU.

c
Counter for the budget (measured in number of samples from
the QPU).

call-qpu
The objective function that calls the QPU, takes x and
StepCost as arguments.

σ The step-size that scales the mutation of offsets.

C The matrix of covariances between the annealing offset values

A The Cholesky decomposition of C

update-step-size
The procedure to control the step-size σ. Please see [17] for
the detail.

update-cholesky
The procedure to adapt the Cholesky decomposition A of the
covariance matrix C. Please see [17] for details.

U(a, b) Uniform random distribution in [a, b].

N (0, I) Standard multivariate normal distribution.

Table 1. Explanation of variables and procedure used in Alg. 1.

the final annealing offsets produced by CMA-ES to solve the problem instances:
10, 000 samples are assigned to the QPU and the final annealing offsets x from
Alg. 1 are used. Given a budget of 20, 000 samples per MIS instance, this means
that 50% of the budget (per MIS instance) is allocated for offset tuning while the
remaining 50% are used for problem solving. The goal is to allocate a sufficient
amount of resources for calibration, and then solve the MIS problems with the
remaining QPU time.

6 Experimental results

Similar to previous work [7], 50 random graphs with 20-60 variables were generated
using edge probability p = 0.2, and the MIS problem was solved for each. The

Tuning Quantum Annealing Offsets with Evolution Strategies 7

20 25 30 35 40 45 50 55 60
Problem size

10−5

10−4

10−3

10−2

10−1

100

Su
cc

es
sp

ro
ba

bi
lit

y

Tuning method
CMA (initial = 0)
CMA (initial = uniform)
No tuning

20 25 30 35 40 45 50 55 60
Problem size

0

10

20

30

40

50

Nu
m

be
ro

fu
ns

olv
ed

in
sta

nc
es

Tuning method
CMA (initial = 0)
CMA (initial = uniform)
No tuning

Fig. 1. Left: Mean success probability (of instances where tuned solvers found the
optimum) for increasing problem sizes. Higher success probabilities are better, indicating
improved performance in finding optima. Right: Bar chart showing how many problems
remained unsolved by the solvers, before/after tuning with different configurations.
As problem sizes increase, the no tuning version of the QPU solves relatively fewer
instances.

QPU annealing offsets were tuned using 10,000 samples per instance as described
in Section 5. Each tuned annealing offset configuration was then used to collect
10,000 samples from the QPU for each MIS instance, as well as the “no offsets”
configuration for comparison. Figure 1 (left) shows the mean probability of
success for configurations that found the presumed optimum. We show the two
configurations of tuning (without initial offsets and uniform offsets) relative to
the naive performance of no tuning. It is possible for certain configurations to
not find the global optimum, even after tuning, as shown in Figure 1 (right). As
expected, using the QPU with no annealing offsets leads to the highest amount
of unsolved instances at the largest problem sizes. This means that, on average,
the tuned annealing offsets find optima (larger independent sets) that cannot be
obtained without tuning. Surprisingly, however, there are problem instances that
remain unsolved even for smaller problem sizes with tuning. Additionally, the
initial point for the CMA-ES routine (i.e., uniform vs. null initial offsets) affects
the number of unsolved problems at smaller sizes.

The null initial offsets, which can be viewed as a stable local minimum for
smaller problems, typically solve more instances than the uniform initial offsets
configuration, although both are outperformed by no offsets (Figure 1, right).
This is consistent with previous observations [7] where the QPU with no offsets
was able to outperform even simulated thermal annealing at small problem sizes.
However, in the cases where both tuning configurations found the optimum,
Figure 1 shows that the probability of obtaining ground states is similar in both
configurations, and both versions outperformed the QPU without tuning for all
problem sizes. In Figure 2 we show the ratio of the mean success probability of
instances where the ground state was obtained between the tuned and untuned
offsets. This measures the improvement in probability of obtaining the ground
state for a particular MIS instance. The improvement obtained by using the

8 S. Yarkoni et al.

two configurations is qualitatively similar, and peaks at 12.4 times improvement
at problem size 45 for the null initial offsets, and a factor of 8.2 improvement
at problem size 45 for the uniform initial offsets. The improvement gained by
tuning the annealing offsets steadily increases with problem size, until reaching
its peak, after which the gains mostly disappear (although we are still able to
solve a higher number of problems after tuning). This behavior indicates that at
small problem sizes there is little to be gained from tuning, but at larger problem
sizes the annealing offsets can have a significant impact on performance. The
decay observed in success probability in problem sizes larger than 45 implies
that insufficient resources were allocated to the tuning procedure, and more than
10,000 samples are needed to tune the offsets. Deriving such an optimal allocation
of resources is beyond the scope of this paper. Additional analysis of the final
offsets are shown in Appendix B. In real-world applications, it is impractical
to exhaustively tune hyperparameters when using heuristics. Typically, either
rules-of-thumb or iterative tuning should be used in order to work in practical
timescales. In tuning annealing offsets for the QPU, the existing previous works
are two papers from D-Wave Systems that employ two algorithms to change
the annealing offsets [11, 12]. In each paper, different magnitudes of samples

20 25 30 35 40 45 50 55 60
Problem size

10−1

100

101

Im
pr

ov
em

en
tr

at
io

Tuning method
CMA (initial = 0)
CMA (initial = uniform)

Fig. 2. Ratio of mean success probabilities before and after tuning, with different
tuner configurations. Means are calculated only using cases where ground states were
obtained (as per Figure 1), and errors were extracted via bootstrapping using 100
data points. Points above the line 100 indicate improvement by using the respective
tuning configuration. Peak improvement is observed for problem size 45 with both
configurations, with a mean improvement of 12.4 for the null initial offset configuration
and a factor of 8.2 for the uniform configuration.

and success probability improvements are observed. In order to perform a fair
comparison between the various methods, we introduce a performance factor
calculated by dividing the number of samples used in the tuning procedure by
the improvement factor obtained (the ratio of success probabilities before/after

Tuning Quantum Annealing Offsets with Evolution Strategies 9

tuning). This performance factor can be interpreted as a measure of resource
efficiency, and lower performance factor is better. The best improvement ratio
obtained using the CMA-ES procedure introduced in this paper was 12.4, for
the configuration of null initial offsets and problem size 45. This yields a factor
of 806, which is more than 3 times lower than in the previous best in existing
literature. We therefore find our method to be 3 times more efficient than the
existing method at best. We also note that both versions of our tuning procedure
were more resource efficient (better performance factor) than other methods. A
full comparison is shown in Tab. 2.

Method Samples Improvement Performance

D-Wave (grid) 2.5 · 106 1000 2500

D-Wave (perturb.) 3.15 · 105 1.37 2.3 · 104

CMA-ES (uniform) 104 8.2 1219

CMA-ES (null) 104 12.4 806

Table 2. Table comparing the number of samples used, the success probability im-
provement ratio, and overall performance factor between the existing annealing offset
tuning methods.

7 Conclusions

In this paper we introduced a novel method for heuristically tuning hyperparame-
ters in existing quantum annealing processors. Using a (1+1)-CMA-ES algorithm
to tune annealing offsets, we demonstrate an improvement of up to 12.4 times
in probability of obtaining optima, and are able to find better solutions than
without tuning. We are able to do this in a model-agnostic way that does not
require domain-specific knowledge other than the bounds of the parameters.
Additionally, we are able to make efficient use of our QPU samples, and are more
than 3 times more efficient than the existing tuning techniques shown in [11,12].
Improvements via tuning were obtained by exploring only a single parameter,
the annealing offset parameter. Our results show that it is possible to use clas-
sical algorithms to iteratively tune hyperparameters and boost performance of
commercially available QPUs, shown here on a test set of MIS problems. This
result opens the door to new use cases for classical optimizers, and introduces
a new paradigm for hybrid quantum/classical computing. In future work, we
will investigate additional tuning algorithms, incorporate more parameters in the
tuning process, and use additional problem sets to test the results.

References

1. J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch, “Benchmarking
a quantum annealing processor with the time-to-target metric.” arXiv:1508.05087,
2015.

10 S. Yarkoni et al.

2. Z. Bian, F. Chudak, R. B. Israel, B. Lackey, W. G. Macready, and A. Roy, “Mapping
constrained optimization problems to quantum annealing with application to fault
diagnosis,” Frontiers in ICT, vol. 3, p. 14, 2016.

3. F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S. Yarkoni, and B. Parney,
“Traffic flow optimization using a quantum annealer,” Frontiers in ICT, vol. 4, p. 29,
2017.

4. J. Raymond, S. Yarkoni, and E. Andriyash, “Global warming: Temperature estima-
tion in annealers,” Frontiers in ICT, vol. 3, p. 23, 2016.

5. D. Venturelli, D. J. J. Marchand, and G. Rojo, “Quantum annealing implementation
of job-shop scheduling.” arXiv:1506.08479, 2015.

6. A. D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley,
M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P. I. Bunyk, C. Enderud,
A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich,
Y. Sato, A. Y. Smirnov, L. J. Swenson, M. H. Volkmann, J. Whittaker, J. Yao,
E. Ladizinsky, M. W. Johnson, J. Hilton, and M. H. Amin, “Observation of topo-
logical phenomena in a programmable lattice of 1,800 qubits,” Nature, vol. 560,
no. 7719, pp. 456–460, 2018.

7. S. Yarkoni, A. Plaat, and T. Bäck, “First results solving arbitrarily structured
maximum independent set problems using quantum annealing,” in 2018 IEEE
Congress on Evolutionary Computation (CEC), (Rio de Janeiro, Brazil), pp. 1184–
1190, 2018.

8. M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson,
R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud,
J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich,
M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson,
and G. Rose, “Quantum annealing with manufactured spins,” Nature, vol. 473,
pp. 194–198, May 2011.

9. F. Barahona, “On the computational complexity of ising spin glass models,” Journal
of Physics A: Mathematical and General, vol. 15, no. 10, p. 3241, 1982.

10. A. Lucas, “Ising formulations of many NP problems,” Frontiers in Physics, vol. 2,
p. 5, 2014.

11. T. Lanting, A. D. King, B. Evert, and E. Hoskinson, “Experimental demonstration
of perturbative anticrossing mitigation using non-uniform driver hamiltonians.”
arXiv:1708.03049, 2017.

12. E. Andriyash, Z. Bian, F. Chudak, M. Drew-Brook, A. D. King, W. G. Macready,
and A. Roy, “Boosting integer factoring performance via quantum annealing offsets.”
https://www.dwavesys.com/resources/publications.

13. T.-J. Hsu, F. Jin, C. Seidel, F. Neukart, H. D. Raedt, and K. Michielsen, “Quantum
annealing with anneal path control: application to 2-sat problems with known
energy landscapes.” arXiv:1810.00194, 2018.

14. Y. Susa, Y. Yamashiro, M. Yamamoto, and H. Nishimori, “Exponential speedup of
quantum annealing by inhomogeneous driving of the transverse field,” Journal of
the Physical Society of Japan, vol. 87, no. 2, p. 023002, 2018.

15. T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse ising model,”
Phys. Rev. E, vol. 58, pp. 5355–5363, Nov 1998.

16. N. Hansen, “The CMA Evolution Strategy: A Comparing Review,” in Towards
a New Evolutionary Computation: Advances in the Estimation of Distribution
Algorithms (J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, eds.), pp. 75–
102, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

Tuning Quantum Annealing Offsets with Evolution Strategies 11

17. C. Igel, T. Suttorp, and N. Hansen, “A Computational Efficient Covariance Matrix
Update and a (1+1)-CMA for Evolution Strategies,” in Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’06, (New
York, NY, USA), pp. 453–460, ACM, 2006.

18. A. Auger and N. Hansen, “Benchmarking the (1+1)-CMA-ES on the BBOB-2009
Noisy Testbed,” in Proceedings of the 11th Annual Conference Companion on
Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO
’09, (New York, NY, USA), pp. 2467–2472, ACM, 2009.

A Evaluating the fitness function of (1 + 1)-CMA-ES
using the QPU

Here we show an example of a single tuning run of (1 + 1)-CMA-ES for a 40
node graph, with the configuration of initial offsets set to all zeroes. As explained
in Alg. 1, we use the mean energy of 100 samples returned by the QPU as the
evaluation for the fitness function of the CMA-ES. The sample size of 100 was
determined empirically as being the minimum number of samples to determine
the mean energy, and is consistent with previous results [4]. In Figure 3 (left) we
show the progression of the CMA-ES routine and the associated fitness function.
The tuning shows a clear improvement in mean energy, as shown both in the
fitness function and the cumulative minimum of the fitness function. Every time
the objective function improves, the respective annealing offsets that were used
in that sample set are recorded. The evolution of the annealing offsets for this 40
variable instance is shown in Figure 3 (right). The final offsets after tuning were
then used to test their performance.

0 20 40 60 80 100
CMA-ES iteration number

−11

−10

−9

−8

−7

−6

M
ea

n
en

er
gy

Fitness function
Optimal fitness

0 20 40 60 80 100
CMA-ES iteration number

−0.10

−0.05

0.00

0.05

0.10

0.15

An
ne
al

off
se
tv

alu
e

∆
s

Optimal offset values

Fig. 3. Left: The fitness function evolution (mean energy of 100 samples) is shown as
a function of the iteration number in CMA-ES. The red line represents the value of
the fitness function at each iteration of CMA-ES, and the blue line is the cumulative
minimum, representing the best solutions so far. Right: The evolution of the annealing
offsets are shown as a function of the iteration number of CMA-ES (updated every time
improvement is found by the CMA-ES).

12 S. Yarkoni et al.

B Analysis of tuned annealing offsets

Here we present the aggregated results of all the annealing offsets post tuning.
Figures 4 (left and right) show the final offset values for all problem instances
using the CMA-ES routine with initial offsets set to zero and uniform, respectively.
We found that the final offset values were not correlated with chain length or
success probability. However, we did see a systematic shift in the final offset
values with respect to the degree of the node in the graph, and as a function of
problem size. In both figures, we see divergent behavior in offsets for very small
and very high degree nodes, with consistent stability in the mid-range. The main
different between the two figures is the final value of the offsets in this middle
region. In Figure 4 (left), the average offset value rises from 0 at small problems,
to roughly .02 for problems with 40 variables, then back down to 0 for the largest
problems. There is also a slight increase in average offset value from degree 3 to
degree 14, found consistently for all problem sizes. In contrast, Figure 4 (right)
shows that the final offset values were roughly .02 at all problem sizes, apart from
the divergent behavior in the extrema of the degree axis. The difference between
the two configurations could explain why initial offsets set to zero performed
slightly better than the uniform initial offsets. Given the fixed resources of 10,000
samples for calibration per MIS instance, escaping from a local optimum (such
as the null initial configuration) becomes increasingly difficult at larger problem
sizes, thus degrading the uniform configuration’s performance. Other than the
results shown here, we were not able to extract any meaningful information with
respect to other interesting parameters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Node degree

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

Off
se
tv

alu
e

Problem size
20
25
30
35
40
45
50
55
60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Node degree

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

Off
se
tv

alu
e

Problem size
20
25
30
35
40
45
50
55
60

Fig. 4. Left: Final offset value as determined by (1+1)-CMA-ES with initial offsets set
to zero, as a function of the degree of the logical node in the graph. Colors represent
different problem sizes. Right: Same as in left, but for initial offsets set uniformly in
their allowed range.

