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Abstract—Software-side FT measures can be validated using
a variety of different techniques, from fault-injection (FI) into
physical hardware, to netlist-simulation, and statistical modeling.
However, not all techniques are suitable to validate a FT concept
for a specific application. This has become a roadblock when
adopting software-FT measures for space application, as these
require thorough, systematic testing based on a realistic fault
model, practical fault-injection, and a proper software imple-
mentation at a comparable scope. In consequence, dependable
computing research offers a variety of innovative and scalable
software-based FT concepts, which however have largely been
ignored by the space industry in favor of traditional hardware-
FT. In this contribution, we thus demonstrate how systematic
validation of software-based FT can be conducted for applications
in deep space and similar irradiated environments. We do so
by example of our own coarse-grain lockstep approach which
implements thread-level forward-error-correction, and was im-
plemented within an industry-standard real-time OS.

Index Terms—fault-tolerance, fault-injection, space, satellite,
coarse-grain lockstep

I. INTRODUCTION

Modern embedded technology is a driving factor in satellite
miniaturization, enabling a smaller, lighter, and cheaper class
of spacecraft, fueling a massive boom in satellite launches
and a rapidly evolving new space industry. These micro- and
nanosatellites (100kg-1kg mass) have become increasingly
popular for a variety of commercial and scientific missions.
However, they suffer from low reliability, discouraging their
use in long or critical missions, and for high-priority science.

For larger spacecraft, various hardware-based fault toler-
ance (FT) concepts are available, which are not common
aboard miniaturized spacecraft due to tight energy, mass,
and volume constraints, in addition to disproportional costs.
Conventional embedded and mobile-market systems-on-chip
(SoCs) are deployed in their stead, which usually lack even
basic FT functionality. A significant share of post-deployment
failure of nanosatellites can be attributed directly to the
failure these components and peripheral electronics [1]. There-
fore, we developed a non-intrusive, flexible, hybrid hard-
ware/software architecture [2] to assure FT with commercial-
off-the-shelf (COTS) mobile-market technology based on an
FPGA-implemented MPSoC design.

Central to our FT architecture is a novel software-side
FT approach, which combines coarse-grain thread-level lock-
step and forward-error-correction. It is platform agnostic and
requiring no space-proprietary IP, custom processor cores,
or radiation-hardened chip technology to offer strong fault-
coverage. It not only offers fault-coverage, but also is used to
trigger other protective features within our MPSoC, requiring
thorough validation before a custom-PCB based prototype can

be developed. Validation of such FT measures requires system-
atic testing of the actual concept implementation, a realistic
fault model, and a suitable testbench. This is non-trivial, and
therefore software-side FT concepts are often validated using
statistical means only, but not actually implemented to allow
practical validation using fault-injection. This resulted in a gap
between theory and application, with industry dismissing FT
research concepts due to a lack of maturity and an assumed
tendency to ignore practical implementation obstacles.

In this paper, we show by example of our own implementa-
tion, how realistic and systematic validation of software-based
FT can be conducted for space-applications and similar irra-
diated environments. To do so, we first describe the architec-
ture’s intended operating environment, design constraints, and
describe the physical fault model encountered in Section II. In
Section III, we then discuss how these challenges are handled
today in related work, and outline which solutions currently
are practically available to the space industry and scientific
spacecraft designers. We then provide a brief overview of
our multi-stage FT architecture and introduce our coarse-grain
lockstep approach in Section IV. For an RTOS implementation
of this approach, we then develop a concise fault-model in
Section V, and then analyze which testing techniques are
available to verify our approach, as well as the advantages and
limitations of each option. Having chosen the most suitable
approach for our use-case, in Section VII we develop an auto-
mated testbench which we use to systematically conduct fault-
injection campaigns in an environment closely resembling our
target MPSoC with a set of predefined fault-templates, as
described in Section VIII. We then present results of our fault
injection experiment in Section IX, compare them to related
work conducted by Dobel at al. in [3] for an academic coarse-
grain lockstep implementation. Before presenting conclusions,
the pitfalls we discovered while preparing and executing our
fault-injection experiments are discussed in Section X. We
also highlight interesting aspects in the behavior of our FT
approach.

II. THE SPACE ENVIRONMENT & RADIATION

The form factor constraints aboard miniaturized satellites
[4] and the drastically different fault-model [5] prevent the
re-use of many FT and testing approaches developed for
ground applications. Even in atmospheric aerospace applica-
tions, these usually consider availability, non-stop operation,
and safety, but rarely guarantee computational correctness in
a fully autonomous system.

Physical access to a satellite during a mission is in practice
impossible, and servicing missions were conducted only on



rare occasions for satellites of outstanding importance in low-
Earth orbit (LEO) in manned space missions. Signal travel
times, brief communication windows, and scarce bandwidth
make live interaction impractical. Thus, faults detected by our
approach are resolved fully autonomously during a satellite
mission, which may exceed 10 years.

High-energy particles are the main cause of faults [6] during
a satellite mission. They travel along the Earth’s magnetic
field-lines in the Van Allen belts, are ejected by the Sun during
Solar Particle Events, or arrive as Cosmic Rays from beyond
our solar system. These particles can corrupt logical operations
or induce bit-flips within memory and semiconductor logic
(single event effects - SEE), and may cause displacement
damage (DD) at the molecular level to a chip’s substrate and
circuitry. The energy threshold above which SEEs induce tran-
sient faults decreases in chips manufactured in fine technology
node, and the ratio of events inducing multi-bit upsets or
permanent faults increases. Radiation events can also cause
single event functional interrupts (SEFIs), affecting sets of
circuits, individual interfaces, or even entire chips.

In general, the effects of bit-upsets and SEFIs can be tran-
sient or permanent, while DD is always permanent [5]. The ac-
cumulative nature of permanent faults implies accelerated and
often spontaneous aging, which must be handled efficiently
throughout a mission. The cumulative effect of charge trapping
in the oxide of electronic devices (total ionizing dose – TID)
further impacts the lifetime of an on-board computer (OBC).
However, chips manufactured in certain new technology nodes,
such as recent generation FPGAs [7] show drastically better
than expected TID performance [8] and resistance to latch-up
in contrast to projections based on technology scaling [9].

In LEO, the residual atmosphere and Earth’s magnetic field
provide some protection from radiation, but this absorption
effect diminishes quickly with distance. Many miniaturized
spacecraft operate in this region, and forego FT in favor
of developing a functional satellite within the boundaries
of their limited resources and manpower. Most nanosatel-
lites today do utilize COTS microcontroller- and application
processors-SoCs, FPGAs and combinations thereof [10], [11],
occasionally introducing basic, custom-designed redundancy
with ground-triggered fail-over. The choice to utilize such
components instead of proven FT technology usually is the
result of risk acceptance due to a lack of viable alternatives.
Designers in general are aware that these components may
fail at any given point in time, and may result in a loss of
mission. Risk-acceptance at this scale is a viable approach for
low-priority science and missions with brief duration. This
is not an option for critical and long-term missions with a
scientific or commercial objective.

Most nanosatellite hardware development efforts are more
comparable to hardware-prototyping than to the sophisticated
and thorough ASIC development process. FPGAs have, hence,
become increasingly popular as they are well suited for this
design approach, despite being more vulnerable to radiation
than ASICs, due to their better FDIR potential [12].

III. RELATED WORK

FT is traditionally implemented through circuit-, RTL-,
core-, and OBC-level majority voting [13]–[15] using space-
proprietary IP, which is difficult and costly to maintain and
test. Circuit-, RTL-, and core-level voting are effective for
small SoCs such as microcontrollers, but this does not scale
for the more potent processor cores used in modern mobile-
market MPSoCs [16], [17]. Software takes no active part in
fault-mitigation in these concepts, as faults are suppressed at
the circuit level and usually only represented using hardware-
side fault counters, preventing the effective assessment of a
processor’s health.

SoC architectures for spacecraft usually undergo radiation
testing or laser fault injection, as the state of the art in
the field today is focused on hardware-level FT measures
or specialized manufacturing (RHBD and RHBM – radiation
hardened by design/manufacturing). Relevant radiation tests
have been conducted for the FPGAs utilized in our project
among others by Lee et al. in [18] and Berg et al. in [8],
or are currently ongoing (Lange et al. [19]). Tests for further
components such as memory and supervisor-µCs are available
in test databases such as ESCIES, NASA’s NEPP1 and the
IEEE REDW Records. For our architecture, radiation tests for
the utilized components yielding device-specific data allowing
us to estimate fault frequencies, types, and effects on the
FPGA on which our MPSoC is implemented. We require this
information to choose appropriate checkpoint frequencies [2]
for our coarse-grain lockstep approach, but by itself, radiation
testing does not allow an assessment of the architecture itself.

Prior research on software-based FT, often utilizes very
simplistic fault models, considering faults to be isolated, side
effect free and local to an individual application thread [20] or
purely transient [3], [21]. Many practical application obstacles
could be avoided in many cases through implementation [22],
but fault-injection [23] of an actual concept implementation is
time consuming, and often requires also a hardware implemen-
tation. Especially fault-injection for entire OS instances is non-
trivial [24], and through preparation and careful tool-selection
is necessary to obtain representative results from a fault-
injection experiment [25]. Therefore, a sizable share of FT
concepts exists at a theoretical level [26]–[28], and instead of
fault-injection or hardware-testing, statistical modeling using
different fault distributions are utilized instead. This is a viable
approach for validating FT concepts directed towards, e.g.,
yield maximization [29] and aging [30], but not for validating
software-side FT operating in a challenging environment in
which faults are stochastic events.

In this contribution, we therefore conduct systematic val-
idation of our coarse-grain lockstep approach using practi-
cal fault-injection to verify the effectiveness and effective
of our coarse-grain lockstep FDIR mechanics under stress.
Specifically, we must assure voter stability, a sufficiently high
level of fault detection, and verify fault-isolation and recovery,
determine the level of voter stability, hence the likelyhood

1see https://escies.org and https://nepp.nasa.gov



of a fault to result in a crash or another failure requiring
replacement using spare resources. This information is essen-
tially to choose an appropriate checkpoint frequency for the
lockstep [2], which mainly defines the fault-coverage level
of our MPSoC. Together with FPGA-level fault-information
obtained from radiation tests outlined earlier in this section,
and information on the mission specific target environment,
we can then calculate the appropriate fault-frequency for a
specific mission and spacecraft.

IV. OUR HYBRID FT ARCHITECTURE

The coarse-grain lockstep and forward-error correction me-
chanics which are the subject of the fault-injection experiment
is one of multiple FT measures utilized in our architecture [2].
The high-level logic of this approach is depicted in Figure
1, and consists of three interlinked fault mitigation stages
implemented across the embedded stack:

Stage 1 implements forward error correction and utilizes
coarse-grain lockstep of weakly coupled cores to generate
a distributed majority decision across tiles. Fault detection
is facilitated through application callback functions, requiring
no modifications to an application or knowledge about intrin-
sics. Faults are resolved through state re-synchronization and
thread-migration to tiles with spare processing capacity. Stage
1 is described in detail in [2], in which was also established
an upper bound for the performance cost of the lockstep.

Stage 2 recovers tiles through FPGA reconfiguration,
thereby counteracting resource exhaustion. It assures the in-
tegrity of the FPGA’s running configuration and deploys
scrubbing as well as Xilinx SEM to correct transients in
FPGA fabric. Its objective is to repair defective tiles suffering
from upsets in tile logic, and cover permanent faults using
alternative configuration variants. The mechanics of Stage 2
have been well researched and validated in [31], [32], and
FPGA reconfiguration has been demonstrated on-orbit [33].

Stage 3 is activated when too few healthy tiles are available
due to accumulation of permanent faults, and re-allocates
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Fig. 1: Stage 1 (white) assures fault detection (bold) and
fault coverage, Stage 2 (blue) and 3 (yellow) counter resource
exhaustion and adapt to reduced system resources.
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Fig. 2: The topology of our tiled MPSoC design. Each tile
exists in its own reconfiguration partition and therefore also
clock domain, simplifying routing.

processing time to maintain reliability. To do so, it utilizes
the thread-level mixed criticality found in satellite computing,
assuring sufficient compute resources are available to high-
criticality applications by sacrificing performance of lower-
criticality threads. This functionality as well as the adaptive
capabilities enabled are presented in [34].

We deploy this three stage FT architecture on top of a
tiled MPSoC design, consisting of multiple isolated SoC-
compartments accessing shared main memory and OS code.
Each compartment (see also Figure 3) contains a processor
core, peripheral-IP (e.g., interrupt controller, timer, etc.) and
interface cores, as well as a supervisor access port. While
interfaces thus are in general replicated for each tile, this is
not viable for external memory controllers (main and program
memory) due to their large footprint, package-pin and PCB
space limitations. As on-chip memory alone is insufficient for
sophisticated data handling applications, tiles utilize a shared
set of DDR and SPI controllers via an AXI interconnect in
crossbar mode. These controllers are implemented redundantly
to enable fail-over, safeguard from SEFIs, and enable inter-
leaved access to reduce congestion.

The objective of our technology development project is to
offer FT using commodity processor cores, without requir-
ing space-proprietary processor cores and custom-designed
hardware-FT functionality. Hence, the processor architecture
considered in our project is the ARM Cortex-A53 application
processor, as it is widely used in embedded devices, well
supported by standard development toolchains, and has ex-
cellent scalability. As our FT approach is platform agnostic,
a functionally equivalent MPSoC was also developed using
the Xilinx Microblaze cores. This MPSoC design was im-
plemented on a variety of Xilinx Ultrascale FPGAs. On a
XCKU5P FPGA this 4-tile design results in modest resource
utilization (28% LUTs, 33% BRAMs, 16% FFs, 5% DSPs)
and 1.92W total power consumption. Further details on this
MPSoC implementation are available in [35] and [?].

V. PRACTICAL EFFECTS ON OUR ARCHITECTURE

As described in Section II, our MPSoC operates in a hostile,
irradiated environment. The precise effects on semiconductors
induced by a fault vary based on the actually effected logic
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Fig. 3: Logic-side architecture of a tile with clocking and reset
facilities. Access to local IP bypasses the cache, while access
to global memory passes is cached for performance reasons.

and technology used [5]. Today, determining these effects on a
semiconductor is of major concern for traditional hardware-FT
based systems, and the only practical way to evaluate them.
However radiation testing can occur only at a very late stage
in development, and the results may vary even for the same
chip-designs manufactured in different fabrication lines [5].
In combined with knowledge of the specific chip design, this
effectively yields heritage and increases a system’s technology
readiness level, instead of verifying the effectiveness of a
specific FT mechanic. This is due to the fact that radiation
testing is costly, the available test-chamber times are limited,
and the test itself is time consuming, as the whole system
is exposed to a radiation cocktail designed to mimic the
actual operating environment and dosage over time, as far as
technically possible.

Besides the expensive nature of radiation testing, the proper
validation of software also requires systematic testing of the
software-side components. Thus, we must consider the actual
effect and impact of faults from a programmatic perspective,
which neither statistical estimation nor radiation testing can
deliver. Coarse-grained lockstep in our approach is imple-
mented within the scheduler and as a set of application
callbacks, and therefore faults will have the following practical
effects on a tile:

• Data corruption associated with access to main memory,
caches, registers and scratchpad memory due to non-
correctable ECC words, faults in read/write logic, and
misdirected access in control logic.

• Incorrect or non-execution of instructions in the processor
pipeline during the Instruction Fetch, decode, execute and
write-back stages.

• Incorrect behavior of tile peripherals resulting in failure or
misfiring of interrupts and timers, or additional interrupts
due to ECC error syndromes, and therefore control-flow
deviations.

• Failure of individual interfaces due to faults in controller
logic or the FPGA’s I/O components.

Naturally there will also be faults induced into the FPGA
and MPSoC design beyond the listed, or affect the OBC at
a larger scale (e.g., full FPGA failure). However, these are
either already covered as part of Stage 2 (FPGA-fabric level
issues), or detectable and solvable by the supervisor (which

also acts as a watchdog), or are beyond the scope of what
a single-chip FT approach may deliver. As such, these faults
are either fatal to a tile, therefore directly detectable by other
tiles, or cannot be handled within the MPSoC itself. Instead,
this requires FPGA reconfiguration or system level measures
to be taken.

There are several different fault injection techniques which
allow us to test the behaviour of an OS-level target application.
As our approach is a hardware/software hybrid design, fault
injection using netlist simulation [36] would be possible with
acceptable additional implementation effort. It grants maxi-
mum control over the type and effect of faults and allow near
ideal realism, and several partially [37] and fully automated
test frameworks [38] as well as commercial applications [36]
have been developed for this purpose. Unfortunately, this type
of testing is disproportionately time consuming preventing a
meaningful level of test coverage from being achieved, unless
only a specific component was subjected to the test instead of
the MPSoC as a whole.

Faults could also be injected into the software in userland
using a debugger, for example. As this is only possible for
simple userland applications [3], the effects of faults on an
actual OS cannot be simulated [39]. Validation of embedded
software for low-power SoCs using ia32/amd64 hosts may
also bias the outcome of fault-injection experiments. While
benchmarking kernel functionality in userland allows a mean-
ingful worst-case performance estimation, this is not the case
for fault-injection [25]. Debugger based fault injection into
a virtual machine can alleviate these constraints by allowing
an OS to be tested, but suffers performance and introspection
limitations imposed by the debugger-interface [24]. In conse-
quence, the kind and type of faults which can be simulated
using an external debugger are significantly constrained [25].
Nonetheless, this method has become comparably popular,
as it requires only limited implementation effort and can be
facilitated using standard open-source tools, and still yields
practical fault-injection results instead of just synthetic statis-
tical calculations.

Fault-injection using system emulation can combine many
of the advantages of both techniques, without being con-
strained by a debugger interface regarding the potentially
injectable fault types. In prior research, MPSoCs sometimes
are simulated using SystemC to close the gap between sys-
tem netlist simulation and pure software emulation, if only
hardware with very simple software is simulated [40]. How-
ever, implementing fault-injection via SystemC for an entire
MPSoC running a full operating system would not only be
excessively time consuming, but also require considerable
development effort just to achieve a functional simulation,
even if realism was ignored. Virtualization assisted emulation,
instead, allows faults to be injected into pre-existing emulated
hardware and SoCs, while being computationally compara-
bly cheap and requiring no major changes to the victim
application. Several test-frameworks following this approach
have emerged in recent years, of which the two open source
frameworks FAIL [41] and FIES [42] are comparably mature



and publicly available. Hence, we use this fault-injection
technique to systematically validate our FT approach using
an automated test pipeline.

VI. TARGET OS AND USED PAYLOAD APPLICATIONS

Our fault injection experiments were conducted against
an implementation of our approach in RTEMS 4.11.2, us-
ing the ARMv7a-Zynq board-support-package, which closely
resembles the tiles of our MPSoC. RTEMS is a real-time
OS used in a broad variety of space applications, from
platform control to instrumentation. We cross-compiled the
kernel image from Fedora 28 x86_64 with standard compile
flags (-marm -mfpu=neon -mfloat-abi=hard -O2)
in RTEMS GCC 4.9.3. We chose not to utilize the Linux kernel
for our fault-injection experiments to maximize the level of
control over our experiment and reduce time-overhead due to
OS bootup, while e.g. Monson et al. [43] provide an analysis
of the Linux kernel itself using fault-injection into an FPGA-
based SoC.

As payload application, we utilized ESA’s Next Generation
DSP benchmark2 run as POSIX threads within RTEMS, which
is an ESA standard benchmark application used to measure
and compare DSP system performance. To re-confirm our
results, we performed the same experiments with the same
application used to conduct the performance estimation in [2],
which resembles the NASA/James Webb Space Telescope’s
Mid-Infrared Instrument’s readout software [44].

VII. THE FAULT-INJECTION PIPELINE

The choice of which emulation-based fault-injection tool to
use is non-trivial as the available tools do not offer equivalent
features. They differ regarding the target environment, test
setup and intended test subject scope, means of technology
used to facilitate fault-injection and functionality. FAIL utilizes
a powerful C++ based test controller for thoroughly analyzing
small binaries. The controller binary requires deep knowledge
of victim binary intrinsincs and the meaning of the program
structure which cannot be automatically obtained, but then it
can conduct a fully automated test. Development is mainly
focused on the Intel platform, while ARM is available via
GEM5 for a single virtual target SoC or through (potentially
destructive) fault-injection via JTAG into silicon3 [45]. FIES4,
on the other hand, was developed specifically to validate
ARM-based COTS-based critical systems and builds upon
the faster and more mature QEMU virtual machine monitor,
thereby supporting a broad variety of SoCs and virtual hard-
ware. While this tool alone does not allow fully automated
testing and allows slightly less control over virtual hardware,
it enables scripted and systematic fault-injection into opaque
binaries. It can efficiently handle testing a full OS, and
can be integrated well into a fully automated test pipeline.
The test campaign described in the remainder of this paper

2Source code publicly available at https://essr.esa.int
3Due to constant reboots required for fault injection at the OS-level and

the potential of kernel-level faults physically damaging the target hardware.
4Source code publicly available at https://github.com/ahoeller/fies.git

is therefore being carried out using the open-source fault
injection framework FIES [42].

FIES implements fault injection through full system emula-
tion in QEMU, and licensed under GPLv2. In the process of
developing our automated test pipeline, we extended FIES’s
functionality to better support different tracing techniques and
added functional improvements, and released the necessary
patches5 to the public. Specifically, we improved the rule-
driven fault-injection engine, rebased FIES from QEMU 1.17
to 2.12 (qemu-head in December 2017), and added support
for the THUMB2 instruction set, as most OS kernels use both
ARM and THUMB2 assembly intermixed. QEMU in principle
would allow faults to be injected in virtual hardware, though
this is not implemented in FIES today.

Our test pipeline consists of the following steps imple-
mented as a set of python scripts:

1) Obtain the victim application’s process state, results and
correct Stage 1 checksums for each protected payload
application. We run the emulation without fault-injection
and tracing, outputing the application and OS state for
comparison during later steps.

2) Execute a golden run and generate traces of the process
counter and executed opcodes, register access and mem-
ory access with the same parameters as in the previous
step. This allows us to e.g., include additional debug
output or otherwise alter the victim-binary’s code in the
previous step. Thereby easily obtaining a correct victim
OS state without distorting the actual golden-run trace.

3) Filter the traces to constrain fault injection to coarse-grain
lockstep relevant code and data (e.g., omitting platform
bring-up and shutdown code). We remove duplicates, and
annotate each trace-entry with the number of occurrence
in the trace, and generate the actual test-campaign trace
file.

4) For each address and occurrence, we generate a FIES
fault definition library and launch an instance of FIES.

5) For each run, then determine the result of the fault
injection (e.g., OS crash, incorrect checksum, etc.) based
on a comparison to the known-correct results obtained
in the first step and log the result to a database. In our
test campaign, we also collect tile state information and
human readable output logged to each tiles’ serial port, as
well as FIES’s output to STDERR and the emulator’s exit
code to enable manual analysis in the future if necessary.

Steps 1-3 are one-time operations, whereas steps 4 and 5 can
be executed in parallel by splitting the processed traces.

VIII. INJECTED FAULTS AND TARGET COMPONENTS

Before our fault injection pipeline was in place, fault-
injection was conducted by targeting specific locations in the
applications’ binary structure. We chose interesting data and
logic which could cause an incorrect application state, alter
the applications’ control flow, or would result in a different

5We made our changes in the form of the reworked FIESer fault-injection
tool available at https://fieser.dependable.space as rebased as QEMU-git fork.



run-time behavior in a tile. These experiments were initially
conducted to verify the functionality of our approach as well
as the experiment setup and injection tool.

As of implementation of our fault-injection pipeline, tran-
sient and permanent faults are injected systematically with
transients being injected as bit-flips into registers and the
processor pipeline using the program counter as trigger. For
instructions which are visited more than once, we can trigger
faults after the n-th occurrence enabled by extending the FIES
framework’s fault definition mechanics. In the same manner,
faults were injected into memory access operations based on
the read or written physical address, thereby simulating non-
correctable upsets in ECC protected words in caches and
main memory, as well as general faults in address logic or
buffers. To better simulate ECC upsets and simulate faults in
the address logic, we can also directly replace accessed data,
instead of just injecting bit-flips. Permanent faults are injected
into main-memory only, but not into general purpose registers,
special registers, and the CPU pipeline, as their effect in these
components is fatal.

SEFIs in different functional units of a tile’s processor core,
controllers, and interface logic may also have effects which are
neither permanent nor truly transient. FIES allows injecting
periodic and intermittent faults (the effects of which persist
for a short period of time and are resolved afterwards). This
function was used to simulate SEFIs. As fault-duration for
intermittent faults, we chose 100ns, the period-equivalent to
10 clock cycles at 100MHz6 with roughly 20 instructions
executed by a Cortex-A pipeline. We believe this represents
reasonably well the interruption effect and the reset-induced
outage of specific circuit groups due to SEFIs. However,
we are not aware of radiation-test data further analyzing the
actual timing and interruption behavior SEFIs in different
components and parts of the FPGA fabric beyond documenting
their existence.

After executing bring-up code and OS initialization, our
victim binary executes payload software for 3 lockstep cycles,
and then terminates the RTOS experiment. We chose a time
interval of 2 seconds as checkpoint frequency, which is rea-
sonable for operation in LEO when passing through increased
radiation zones such as the South Atlantic Anomaly, based on
radiation-testing data for Ultrascale [8], [18] in preliminary
information obtained from Ultrascale+ FPGAs [19]. In our
current victim binary implementation, execution during the
golden run takes approximately 7 seconds of guest-virtual
time, which on our test system is equivalent to approximately
30 seconds of host-time. In case the experiment does not
terminate in time, e.g., due to control flow corruption or
infinite loops, the experiment is terminated after 45 seconds
by killing the FIES/QEMU process.

Faults are injected from the beginning of the first and until
before the second checkpoint. This allows faults to propagate
within the OS, corrupt the application state, and program flow,
without requiring excessive experiment time. Subsequently,

6The clock speed emulated by QEMU for the Zync board support package.

we can analyze if our coarse-grain lockstep approach could
detect the effects of the injected fault on the system (if
any), and if they were resolved through a state update from
another compartment. Upon reaching the third checkpoint, the
application state should have recovered and thereby generated
checksums, and the CPU state should match the golden run’s
results. This allows us to verify the full FDIR cycle from
fault injection to recovery. To reduce the number of test cases,
we decided to limit fault injection and exclude the platform’s
bring-up code and the OS’s shutdown sequences. The actual
bootup and shutdown sequences of a tile are not relevant to
validating our implementation, and therefore fault injection in
these parts would yield little insight into its performance.

IX. RESULTS & COMPARISON TO RELATED WORK

Table I shows first results of our fault injection experiments.
We grouped the observed effects into different categories
indicating their outcome for simplicity. In payload-application
code, a majority of the injected transient faults resulted in a
corruption to the payload applications’ state. With less than
20% of all faults, the application of the entire OS crashed or
terminated prematurely (tile-resets were treated as early termi-
nation by our scripts). Faults affecting the lockstep mechanics
themselves (e.g., resulting in false comparison or incorrectly
generated checksums from correct data) were observed as well,
but were rare due to the minimal code and data footprint of
the lockstep implementation.

During permanent fault injection, a comparable share of bit-
flips resulted in a corrupted thread state and thus checksum-
comparison mismatch. However, this number by itself is
misleading, as the amount of masked upsets without noticeable
effects plummeted to just 19%, while the share of thread- or
OS-crashes increased. Therefore, we can deduct that a number
of faults which due to transient faults would have resulted in
just thread state corruption, now instead result in crashes. The
total amount of detected faults in turn was increased again by
faults which were previously masked. Intermittent faults have
a similar effects to permanent ones, though with slightly fewer
crashes and more faults affecting only the payload application.

To place these results in context, we sought to compare our
results to literature. Unfortunately, few coarse-grain lockstep
concepts have been implemented practically, and we are aware
of only one publicly released validation report by Dobel et al.
[3] considering practical fault-injection, instead of statistical
estimation. Therefore, we provide these preliminary fault
injection results in comparison to Dobel et al. in order to
provide a second point of reference for verification, but also
to help guide future research on software-side FT measures.

When directly comparing our results to Dobel et al.’s
transient fault injection report, the share of faults causing
application thread and OS crashes measured with our approach
is increased. In part, this can be explained by Dobel et al.’s
proposed lockstep mechanics, which is facilitated through
application intrusive function call hooking. Thereby, they can
offer more fine-grained protection than our approach, but
introducing considerable code overhead and constraining its



Fault Detectable by Recovery Observed Effect per Fault Type

Impact Detectable victim tile other tiles through Transient Permanent Intermittent

Corrupted Thread State yes yes yes state-update 49% 44% 53%

Thread Crash yes yes no state-update 8% 17% 10%

Lockstep Failure yes no yes reboot 1% 2% 1%

OS Crash yes no yes reboot 10% 18% 15%

No Effect (Masked) (some*) (yes*) (no*) (reboot*) 32% 19% 21%

Tab. I: Preliminary fault injection experiment results. Notice that our setup does not enable us to detect test silent data corruption
or faults resulting in incorrect I/O. Masked faults affecting OS data structures could be detected OS-level EDAC, while memory
protection would allow our implementation to detect a majority of these faults. Neither of these measures are in place in our
current RTEMS proof-of-concept implementation, but should be used utilized for a radiation testing candidate or on-orbit use.

application to one specific OS stack. Dobel et al. also consider
their fault injection measurements overly optimistic, as they
utilized only payload “applications of little complexity (lead-
ing to few potential candidates for fault injection) [3]”. Their
validation and FT concept is constrained to handling transient
faults, while SEFIs or permanent effects are not covered as
these faults were injected into a user-land application of their
approach through a debugger. Dobel et al. also assume the
OS to be guaranteed fault-free, we inject faults into a full OS
including POSIX libraries with payload application threads.
In light of this bias, and the fundamentally different fault-
detection mechanics, the reduced detection rates can be con-
sidered reasonable. This is consistent across all categories of
fault-effects we encountered: we measure a higher amount of
masked faults, a decreased amount of detected state deviations,
and an increased amount of crashes with our approach.

X. DISCUSSION & LESSONS LEARNED

It is important to note that a major share of faults resulting
in no observable effect may indeed be masked and require
no measures to be taken, as they have no impact on the
application state [46]. This is a limitation of our current fault
injection pipeline, as faults are also injected into registers and
memory which may be subsequently overwritten, or faults that
cause self-masking control flow deviations. Such situations
occur e.g., due to faults in branch or comparison instructions
triggering the same iteration of a loop more than once. These
have no practical impact on the application state while, and
also do not cause timing deviations significant enough to
produce a difference in work conducted to the next checkpoint.

Our coarse-grain lockstep implementation can detect faults
resulting in a crash or in corruption of the thread state, but
currently is oblivious to silent data corruption in kernel data
structures and code. Velasco et al. propose in [47] to apply
erasure coding for critical OS data structures, while code
signing is today widely used for tamper-proving of embedded
devices. Such functionality would allow us to also detect silent
data corruption in rarely accessed OS structures and device
drivers code and data. In absence of such functionality, a
tile’s checkpoint handler could only directly derive a checksum
for certain critical kernel data structures, though the scope to
which this is possible is limited.

Low voter stability could cause constant fluctuations in
thread-assignments, requiring near constant state synchroniza-
tion and therefore put a high strain on the system as a
whole. Based on our experiments, we find comparably few
faults inducing crash and lockstep-failures encouraging, even
when these specifically relevant code sections were targeted.
This is important, as our architecture depends on reaching a
majority decision using 3+ thread-replicas in lock step, and a
roughly 10% ratio of tile-OS crashes is sufficient to provide
the necessary degree of voter stability, making synchronization
rare, and thread reassignments an exception.

When experimenting with different compiler flags, we found
that the same injected faults could result in different observed
effects. Initially, we assumed this to be related to compiler
optimizations, which we could verify through introspection
of the relevant target binary parts. We discovered that loop
unrolling (GCC’s -funroll-loops flag) had a particularly
positive effect when injecting permanent and intermittent
faults, likely due to the fact that this feature in practice
introduces a certain level of code redundancy instead of
performing the loops conditional jump and re-running the
same instructions. While being ignored today in literature
and industry, designers of software-side FT measures should
also consider the broad variety of behavior-altering flags and
toolchain settings supported by modern compiler suites, as
these can have a direct impact on the utilized FT mechanics
as well as validation.

FIES originally offered no support for the THUMB in-
struction. However, most OS kernels, many device drivers,
and even standard library functions mix THUMB and ARM
instructions, requiring special compiler-interwork to support
jumps and function calls between these two instruction sets.
Jumps from ARM instructions to THUMB instructions without
interwork yields an undefined instruction exception, as the
opcode-numbers of ARM and THUMB instructions do not
overlap, effectively preventing incorrect jumps in strongly
ARM/THUMB interwoven code segments. Therefore, we
added support for THUMB2 mode to FIES, to assure con-
sistent tracing and fault-injection results. Due to the observed
guest-vm behavior during fault-injection before solving this
limitation, we argue instruction set mixing could be exploited



to improve fault detection. Critical code segments could inten-
tionally be assembled with strong instruction-set interweaving
to assure that an incorrect jump immediately results in an
exception instead of silent data corruption or control-flow
deviations. For C-code, this can be achieved per function
using target attributes and prefixes, or more fine-grained using
preprocessor definitions and pragma.

When designing our coarse grain lockstep measure, we were
aware of two different ways of inducing checkpoints: timer
driven and interrupt induced checkpoints. If timers are used
on each tile to trigger a periodic checkpoint at a later time,
checkpointing on each tile is thereby effectively decoupled and
independent. Instead interrupt induced checkpoints are directly
triggered by the external supervisor, creating a potential single
point of failure. At design time we therefore considered timer
driven checkpointing to be a better choice than interrupt in-
duced checkpointing, but our fault injection campaign showed
us that interrupt induced checkpointing can have significant
advantages. When preparing the victim binary, a certain level
of determinism is required to assure that the known-correct
application state obtained from the golden run still correlates
with the fault-injection runs. This showed us that the timer-
handling related logic is rather fragile, whereas an interrupt-
based implementation can be very simple and offer better
resilience.

XI. CONCLUSIONS

In this paper, we presented validation results of our
software-side fault-tolerance approach presented in [2], and the
automated fault-injection toolchain developed for this purpose.
This concept is the key element of a multi-stage FT archi-
tecture combining different measures across the embedded
stack into an FPGA-based MPSoC design. Our architecture
is designed to enable an MPSoC consisting only of COTS
hardware and widely available, pre-existing library IP, to
achieve the high level of reliability required to enable the
use of nanosatellites in critical space missions. The resulting
architecture enables an on-board computer to adapt to varying
performance requirements at run-time as described further in
[34], allowing processing capacity, energy consumption or
fault coverage to be maximized. To our knowledge, this is the
first scalable general-purpose on-board computer architecture
that offers strong fault coverage for miniaturized spacecraft,
which is not dependent on proprietary processor cores and
requires no custom ASICs.

Prior research in the field often foregoes the practical
implementation of software-based FT entirely, resorting to
validation using statistical means only, instead of actually
implementing and practically testing concepts. This has re-
sulted in a large gap between academic theory and practical
application, with implementation constraints being ignored or
validation being performed based on unrealistic assumptions or
with inadequate means. In this paper, we showed that proper
validation of software-side FT also requires implementation
and practical testing using fault-injection in an environment
closely resembling the target processor architecture, and the

intended operating environment. Validation of software-side
FT also has to be conducted differently than for traditional
hardware-voting based systems, and requires not just empirical
testing but also systematic validation. Hence, we developed
a practical fault-profile based on the threat-scenario found
in the intended target-environment, and analyze how these
faults can be best simulated based on scope of the target
architecture. We discussed different fault-injection techniques
and determine the one most suited for validating a full OS,
using our application as example. Based on this knowledge,
we developed an automated fault-injection pipeline, which
enables systematical testing using system emulation to validate
the complete FDIR cycle. To place our results into context,
we compare them to literature and discuss further knowledge
obtained beyond raw numbers while conducting our fault-
injection campaign.

The overall results obtained during validation are positive
and the software-side FT implementation tested meet our
expectations: the approach can deliver the fault-detection and
recovery functionality necessary to allow our architecture as
a whole to deliver strong fault coverage. In the process of
developing our fault-injection pipeline and preparing the test
setup as well as the victim binary, we did gain much deeper
knowledge on our FT-concept’s behavior at runtime under
stress. Through practical validation using actual fault injection
thus not only allows us to obtain information necessary for
choosing parameters in the later system design process, but can
also help to improve the concept itself and its implementation.

As the other parts of our architecture have been vali-
dated separately in literature, this validation represents also
the final step in validating our current development-board
based proof-of-concept. This enables us to now proceed to
develop a prototype OBC implementation, which is necessary
to characterize the resilience of our architecture as a whole
using hardware-based testing through laser fault-injection and
radiation-testing.
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