
Dependable Computing for Spacecraft
Christian M. Fuchs∗†, Nadia M. Murillo†, Aske Plaat∗, Erik van der Kouwe∗, Daniel Harsono†, and Peng Wang∗

∗Leiden Institute for Advanced Computer Science †Leiden Observatory;
Leiden University, The Netherlands email: christian.fuchs@dependable.space

Abstract—In this paper, we provide insights on the practical feasibility,
effectiveness, and validation of the multi-stage fault-tolerance architec-
ture. We exploit thread-level coarse-grain lockstep to facilitate forward-
error-correction and assures computational correctness on an FPGA-
based MPSoC. It is ITAR-free and can be implemented using commercial
hardware with standard OS such as FreeRTOS, RTEMS, or Linux.

I. INTRODUCTION

Modern embedded and mobile-market hardware is a driving factor
in satellite miniaturization, enabling a smaller, lighter, and cheaper
class of spacecraft. Small satellites (<100kg) today can offer similar
performance as large spacecraft, but are less complex and can be
developed rapidly with low manpower and even student teams. They
are, thus, popular for a variety of commercial and scientific undertak-
ings, enabling space missions which were technically infeasible just
a decade ago. However, these spacecraft suffer from low reliability,
discouraging their use in long or critical missions.

The space environment poses many challenges: radiation can
physically damage semiconductors and induces a variety of faults,
from single bit-flips, to component-wide functional interrupts, and
spontaneous aging [1]. Faults must be handled fully autonomously,
as physical access even in LEO is impossible and the limited link-
bandwidth and high latency constrains failure analysis severely.

Therefore, various fault tolerance (FT) concepts have been devel-
oped for large spacecraft which facilitate radiation hardness through
hardware redundancy, voting, and specialized semiconductor manu-
facturing in large feature-size. This approach however is ineffective
for modern systems-on-chip (SoCs) manufactured, and there is also
no known singular FT techniques which can offer sufficient fault-
coverage and long-term robustness in deep space or earth orbit.

Instead, a combination of different FT techniques is necessary
which can upkeep fault-coverage and assure computational correct-
ness, memory integrity, availability and safety. For miniaturized
spacecraft an on-board computer must therefore assure guarantee
dependable operation when critical faults occur, instead of attempting
to assure fault-immunity through additional hardware FT. Hence, we
are developed a dependable on-board computing architecture which
utilizes software-FT, erasure coding, topological features and error
scrubbing to guarantee these properties even in a degraded system.

II. OUR DEPENDABLE COMPUTER ARCHITECTURE

We developed our architecture for use within an FPGA, and utilize
exclusively commercial-off-the-shelf (COTS) hardware to deliver
low-cost fault-tolerance for nanosatellites. We realized this architec-
ture as MPSoC design, depicted in Figure 2. The high-level logic of
this approach is depicted in Figure 1, and consists of three interlinked
fault mitigation stages implemented across the embedded stack:

Stage 1 implements forward error correction and utilizes
thread-level coarse-grain lockstep to generate a distributed majority
decision across a set of isolated, weakly couple processor cores.
Fault detection is facilitated through application-provided callback
functions, requiring no modifications to an application or knowledge
about intrinsics. Faults are resolved through state re-synchronization
and thread migration to tiles with spare processing capacity. Stage 1
is described in detail in [2], in which we also established an upper
bound for the performance cost of the lockstep.

Tile Supervisor

Bootup

State Update

Checkpoint

Synchonization

Thread
Execution

Read Majority
Decision

Tile Fault
Counter

Tile (Partial)
Reconfig.

Keep
Tile

Spare Tile
Activation

Faulty Tile
Recovery

Alternative
Variants

Reduce
Thread

Mapping

Full FPGA
Reconfig.

&

Replace
Tile

 <= limit

Success

> limit

Done
No Spare
Capacity

Fig. 1: Stage 1 (white) assures fault detection (bold) and fault
coverage, Stage 2 (blue) and 3 (yellow) counter resource exhaustion.

Stage 2 recovers tiles through FPGA reconfiguration, thereby
counteracting resource exhaustion. It assures the integrity of the
FPGA’s running configuration and deploys scrubbing as well as
Xilinx SEM to correct transients in FPGA fabric. Its objective is
to repair defective tiles affected by upsets in tile logic, and to cover
permanent faults using alternative configuration variants. Individual
stand-alone concepts utilizing comparable mechanics as Stage 2 have
been researched and validated e.g. by Nguyen et al. in [3]. FDIR
concepts using configuration scrubbing and partial reconfiguration
have also been demonstrated on-orbit [4].

Stage 3 is activated when too few healthy tiles are available due to
accumulation of permanent faults, and re-allocates processing time
to maintain reliability. To do so, it utilizes the thread-level mixed
criticality found in satellite computing, assuring sufficient compute
resources are available to high-criticality applications by sacrificing
performance of lower-criticality threads. This functionality as well as
our architecture’s adaptive capabilities are presented in [5].

The MPSoC consists of independent processor tiles equipped with
a processor’s immediate peripherals (e.g., interrupt controller), exter-
nal interfaces, and a supervisor access port. As on-chip memory alone
is insufficient for all but trivial applications, tiles utilize a shared set
of memory controllers, which are implemented redundantly to enable
load-balancing and safeguard from radiation-induced functional inter-
rupts. Other interfaces such as CAN, SPI, I2C are thus replicated for

SPI CTRL MCTLR

MCTLR
Main

Memory

Memory
Scrubber

FeRAM
(OS & Code)

Tile

X

Tile

T1 Partition

. . .

MMU

MMU

MCTLR
NAND Flash

(Payload Data)

QSPI ctlr

SPI CTRL
DDR ctlr
+ ECC

BRAM

BRAM

Tn Partition

S
up

er
vi

so
r

Fig. 2: The topology of our tiled MPSoC design. Each tile exists in
its own reconfiguration partition, simplifying routing and clocking.

Fault Detectable by Recovery Observed Effect per Fault Type

Impact Detectable victim tile other tiles through Transient Permanent Intermittent

Corrupted State yes yes yes state-update 49% 44% 53%

Thread Crash yes yes no state-update 8% 17% 10%

Lockstep Failure yes no yes reboot 1% 2% 1%

OS Crash yes no yes reboot 10% 18% 15%

Masked (no effect) (some*) (yes*) (no*) (reboot*) 32% 19% 21%

Tab. I: Fault injection experiment results for our RTOS implementation divided into transient, permanent, and intermittent faults. Masked
faults affecting OS data structures could be detected through OS-level EDAC, which not are in place in our current RTEMS proof-of-concept.

each tile, making them indistinguishable from a software perspective.
It is not viable to instantiate one external DDR memory controller
per tile due to their large footprint, package-pin and PCB space
limitations. This allows live-migration of application threads between
tiles, enables code reuse, and minimizes the footprint.

III. IMPLEMENTATION AND VALIDATION RESULTS

The precise effects of radiation on semiconductors induced by a
fault vary. They depend on the particular effected chip-region, logic,
and microfabrication technology used [1], and today and the only
practical way to evaluate them is radiation testing or approximation
using laser fault injection. However, this can occur only at a very
late stage in development, and would be unsuitable to verifying
the effectiveness of a software-based FT mechanic as the radiation
testing is itself not systematic. Dependable software systems therefore
are best evaluated using fault-injection, as this allows sufficient test
coverage while maintaining realism.

We implemented Stage 1 and 3 in RTEMS 4.11.2, which is a real-
time OS used in a broad variety of space applications, from satellite
control to instrumentation and ground-support equipment. As payload
application protected by our implementation, we utilized ESA’s Next
Generation DSP benchmark and the application we had utilized for
overhead estimation in [2].

Our architecture can be implemented using COTS hardware and
extensively validated, and widely available library IP, requiring no
proprietary logic or space-grade processor cores. The processor archi-
tecture considered in our project is the mobile-market ARM Cortex-
A53, though a functionally equivalent design was also developed
using Xilinx Microblaze/RISC cores. This is possible was imple-
mented on a variety of Xilinx Ultrascale FPGAs (4 core utilization
on XCKU5P of 28% LUTs, 33% BRAMs, 16% FFs, 5% DSPs with
1.92W total power consumption), see also [2].

In practice, choosing the right test-space for a practical OS-scale
implementation is non trivial, in contrast to what is described as ideal
in literature. Sufficient test coverage for such software can often be
unobtainable in practice, and even fault injection using state-of-the-
art tools requires a compromise between realism and test-coverage
to avoid runaway test-times and extreme equipment. Besides test
coverage, our architecture has to cope with not merely transient faults,
but also radiation-induced permanent faults, as these are common in
modern memories and processor components flying in space.

We chose to utilize ISA-level fault injection to inject transient
and permanent faults, and simulate regional functional interrupts,
as several powerful fault-injection tools have emerged in recent
years. While most of these tools are proprietary, or closed-source
and unavailable to the public [6], [7], the two frameworks FAIL
[8] and FIES [9] are available publicly as open source. We utilize
FIES, as it was developed specifically to validate ARM-based COTS
critical systems, while FAIL mainly targets the ia32/amd64 platforms.

In the process of developing our test toolchain, we also extended
FIES to support different tracing techniques and added functional
improvements1. Table I contains a summary of results of our fault-
injection experiment.

IV. CONCLUSIONS

In this paper, we provide insights on the practical feasibility and
effectiveness of the multi-stage fault-tolerance architecture we first
presented in [2]. We constructed a proof-of-concept implementation
and evaluated its fault detection and recovery capabilities using ISA-
level fault injection into registers, memory and a tile’s processors
pipeline. To our knowledge, this dependable computing architecture
is the first practical, non-proprietary, affordable solution offering FT
general-purpose computing aboard nanosatellites.

Our architecture utilizes fault tolerance measures across the embed-
ded stack, and combines topological with software-side functionality,
utilizing only of extensively validated standard parts. Thereby, we
enable enable the use of nanosatellites in critical space missions,
while the architecture allows the trading processing capacity for
reduced energy consumption or fault-coverage. The architecture was
implemented successfully, and tested on current generation Xilinx
FPGAs with 4, 6 and 8 tiles, and validated through fault-injection
into a practical real-time OS based implementation using state-of-
the-art open-source tools.

Based on our proof-of-concept, we assert that our architecture is
effective and does not exceed the tight energy, complexity and cost
constraints of even very small spacecraft such as CubeSats. The pos-
itive outcome of the fault-injection campaign enables us to develop a
hardware prototype OBC to test resilience of our architecture at the
system-level using laser fault injection and radiation testing.

V. ACKNOWLEDGEMENTS
This research was developed for an ESA/NPI project, and we thank our peers at TEC-

EDD for their support. We thank ARM Ltd. for making available the relevant IP. N.M.M.
and D.H. acknowledge funding through A-ERC grant 291141, NOVA, and KNAW.

REFERENCES

[1] J. Schwank et al., “Radiation Hardness Assurance Testing of Microelectronic Devices
and Integrated Circuits,” IEEE Transactions on Nuclear Science, 2013.

[2] C. M. Fuchs et al., “Bringing fault-tolerant gigahertz-computing to space,” in IEEE ATS,
2017.

[3] N. T. H. Nguyen, “Repairing FPGA configuration memory errors using dynamic partial
reconfiguration,” Ph.D. dissertation, The University of New South Wales, 2017.

[4] D. Petrick et al., “Adapting the reconfigurable spacecube processing system for multiple
mission applications,” in IEEE Aerospace Conference. IEEE, 2014.

[5] C. M. Fuchs et al., “Dynamic fault tolerance through resource pooling,” in NASA/ESA
AHS. IEEE, 2018.

[6] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability with software fault
injection: A survey,” ACM Computing Surveys, 2016.

[7] A. Johansson, “Robustness evaluation of operating systems,” Ph.D. dissertation, TU
Darmstadt, 2008.

[8] H. Schirmeier et al., “FAIL: An open and versatile fault-injection framework for the
assessment of software-implemented hardware FT,” in EDCC. IEEE, 2015.

[9] A. Höller et al., “FIES: a fault injection framework for the evaluation of self-tests for
COTS-based safety-critical systems,” in MTV. IEEE, 2014.

1Our patches are available at https://fieser.dependable.space

