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Abstract.1  Adaptive behaviour for computer generated forces 
enriches training simulations with appropriate challenge levels. For 
adequate insight into the range of possible behaviour, the 
adaptation has to take place in a rapid fashion. Ideally, each new 
behaviour model should remain readable by (and thereby under the 
control of) human experts. Although various attempts have been 
made at creating adaptive behaviour, current solutions require large 
numbers of simulations. Moreover, usability by end users has been 
of subordinate interest, as is compliance with doctrine and ethics. 
In this work, we present a machine learning method that enables 
fast behaviour adaptation, while keeping the behaviour models in a 
human-readable format. We demonstrate the effectiveness of the 
proposed method in beyond-visual-range air combat simulations. 

1 INTRODUCTION 

The use of training simulations for defence applications is growing 

[1]. Commercial off-the-shelf simulation packages, such as 

STAGE [2] and Virtual Battlespace (VBS) [3], allow experts to 

quickly develop and operate scenarios for simulations. To make the 

scenarios more realistic, they are often inhabited by computer 

generated forces (CGFs). 

Traditionally, CGF behaviour is scripted using if-then rules 

which map observations to actions. However, writing good scripts 

requires domain expertise, which is a costly resource. Poorly 

written scripts have low training value, as no skills learned by the 

trainee are transferable to the real world. Furthermore, trainees can 

learn to purposefully exploit bad CGF behaviour. This is usually 

counterproductive and should be discouraged [4, 5]. Dedicated 

CGF behaviour authoring tools, such as Smart Bandits [6], have 

been developed to mitigate this issue, often by introducing 

enhanced user interfaces and ready-to-use behaviour modules. 

However, it is still up to the experts to design the CGF behaviour 

and adapt this behaviour to reach specific training goals. 

Nowadays, advances in the field of machine learning offer the 

prospect of automatically generating behaviour models and 

adapting these models online (i.e., during operation in training 

simulations). Automatic generation of behaviour models has the 

potential to greatly decrease the workload of CGF developers, 

while online adaptation can increase the training value of CGFs by 
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continuously challenging the trainees. Over the years, various 

machine learning approaches have been tried, yet adaptive 

capabilities in CGF behaviour authoring tools are still rare [5, 7]. 

Adoption of these approaches is tamed by the large amount of time 

needed for quality control: proposed machine learning methods for 

CGF behaviour generation require substantial processing times, 

and produce behaviour models that are hard for human end users to 

understand. The latter is a critical feature, as end users need to be 

able to verify that generated behaviour complies with doctrine, and 

by extension, ethics. This consideration is also important in related 

fields, e.g., the development of behaviour for autonomous 

unmanned vehicles, or decision support systems for human pilots. 

In this work, we present a machine learning method that is 

specifically focused on rapid generation of understandable 

behaviour models. The method entails the adaptation of behaviour 

represented as finite-state machines (FSMs), through a 

reinforcement learning technique called dynamic scripting. 

FSMs have been successfully used to represent CGF behaviour 

in the Smart Bandits behaviour authoring tool, which is currently in 

use by the Royal Netherlands Air Force (RNLAF) to control CGFs 

in beyond-visual-range air combat training simulations. By cutting 

up the FSMs into their constituent states and transitions, the 

dynamic scripting algorithm is able to efficiently recombine the 

FSMs and provide adaptive behaviour. Furthermore, in contrast to 

many other machine learning algorithms, dynamic scripting does 

not alter defined pieces of behaviour during the learning process, 

which is a great step towards keeping generated behaviour in line 

with military doctrine, and keeping behaviour models 

understandable by experts. 

To the best of our knowledge, this is the first work developing 

adaptive capabilities for two cooperative CGFs in 2v2 beyond-

visual-range air combat. In this work, we actively take into account 

(1) computational speed, (2) usability by end users, and (3) built-in 

ethical and doctrinal consideration. 

The rest of this paper is structured as follows: Section 2 gives an 

overview of related work. Section 3 describes the integration of 

FSMs into dynamic scripting. Section 4 shows the experimental 

setup used to test the adaptive CGFs. The results of the 

experiments are presented in Section 5 and discussed in Section 6. 

Finally, section 7 concludes the paper. 

2 RELATED WORK 

Air combat is the fight between armed aircraft. It can be 

represented as a ‘game’ with a large, continuous state space, a 

variety of available actions, and limited resources (see [8] for a 

complete treatise). When generating air combat behaviour, creative 

solutions are required while being bound by tactical doctrine and 

rules of engagement (and training goals, for training simulations).  



Air combat is usually divided into within-visual-range (WVR) 

combat (also known as air combat manoeuvring or dogfighting) 

and beyond-visual-range (BVR) combat, in which combating 

aircraft engage each other with long-range sensors and weapons. 

WVR and BVR combat require different approaches: WVR is 

often modelled as a pursuit-evasion problem, consisting of 

complex manoeuvring and rapid decision-making, whereas BVR 

requires planning and higher-level strategical thinking. 

 Machine learning for air combat behaviour 2.1

A wide range of machine learning techniques has been tried to 

efficiently generate effective WVR and BVR air combat behaviour. 

A non-exhaustive overview of these approaches is given below. 

The research in this area is quite fragmented, not only between 

WVR and BVR combat, but also between simulation environments 

and experimental methods. While this means that no absolute 

comparisons can be made among reported results, the reported 

parameters may serve as an indication of the computational 

complexity of the methods. 

Neural networks have been applied in various ways with 

varying success. Early work with neural networks includes the use 

of a three-layer back-propagation network by Rodin and Amin [9] 

for predicting and countering WVR tactical manoeuvres. Rodin 

and Amin report “successfully training” their network after 60,000 

iterations.  More recently, Teng et al. [10] applied self-organizing 

neural networks with a Q-learning component for online learning 

of WVR behaviour. The resulting behaviour models were 

evaluated in small-scale human-in-the-loop experiments. The 

learning network was able to reach a 93% mean win ratio after 120 

episodes against a statically controlled CGF. Furthermore, the 

network peaked at a 40% win ratio against pilots in training, and 

below 10% against experienced pilots. Teng et al. report using 

available air combat doctrine for building the state- and action-

space for the Q-learning component [11], by encoding expert 

knowledge as if-then rules. 

Evolutionary algorithms have also been used in various forms. 

Mulgund et al. [12] applied a genetic algorithm to optimize tactical 

parameters for many-versus-many BVR engagements. Starting 

from a scenario with equal losses on both sides, their algorithm 

was able to develop tactics by which all enemy CGFs were 

defeated, without any casualties on the friendly side. However, 

only few parameters are reported. In a follow-up study, Zhang et 

al. [13] used 40 generations, with a population size of 80. Smith et 

al. applied a learning classifier system to develop novel one-

versus-one WVR tactics for an experimental fighter jet [14, 15]. A 

population of 200 rules is reported, tested throughout 300 

generations. Furthermore, air combat tactics have been described 

through grammars, which have been used as templates for genetic 

programming algorithms (see, e.g., [16] and [17], both BVR). 

Expressing tactics through grammars limits the search space, 

ensuring that only valid behaviour is generated. However, large 

numbers of simulations are seemingly needed to reach convergence 

using this method, with for example [16] reporting convergence 

near 50% fitness after 100,000 simulations.  

While a large number of simulations may be acceptable for 

exploratory studies such as [15], or offline learning before human-

in-the-loop trials, it poses a problem in the case of learning online 

during training simulations. A CGF, trying to adapt its behaviour to 

that of a human participant, only has limited time to do so between 

engagements. Furthermore, trainees can only participate in a 

limited number of simulations, which constrains the time available 

to adapt even further. 

 Transparency of behaviour 2.2

Apart from the time to adapt, the transparency of generated 

behaviour models is of great importance. Behaviour models 

generated for military applications should be usable (editable, 

readable, testable, etc.) by different end users, e.g., scenario 

developers and training instructors [7]. Techniques such as neural 

networks and evolutionary algorithms often produce behaviour 

models that are hard to decode, understand, and manually edit.  

In earlier work, we have made attempts at generating BVR air 

combat behaviour using dynamic scripting [18, 19]. Dynamic 

scripting is a reinforcement learning method that takes a rule base, 

and recombines the rules from this rule base into scripts [20]. This 

method does not ‘invent’ new behaviour, and instead relies on the 

rule base being filled with rules based on expert knowledge. As a 

result, the generated behaviour can only be as good or bad as the 

knowledge contained in the rule base. Applying a pure dynamic 

scripting solution in the air combat domain has yielded 

encouraging results, however the technique remains to be validated 

in a production environment. 

Rather than having experts write if-then rules, a more intuitive 

method of defining behaviour is the use of finite-state machines 

[21]. This is also the method used in Smart Bandits [6, 22, 23], the 

CGF behaviour authoring tool developed by the Netherlands 

Aerospace Centre, and currently in use by the Royal Netherlands 

Air Force. Each CGF controlled by Smart Bandits is in a certain 

state, and each state has associated actions. However, Smart 

Bandits provides no adaptive capabilities. As Smart Bandits 

provides both (1) a drag-and-drop interface for authoring CGF 

behaviour, usable by various end users, and (2) an established 

repository of well-tested CGF behaviour that is actively being used 

in training simulations, it is an ideal testing ground for introduction 

of adaptive behaviour. 

3 ADAPTIVE FINITE-STATE MACHINES 

In Smart Bandits, CGFs are controlled with FSMs. When FSMs 

are to control CGF behaviour, the states of the FSM are linked to 

pieces of related behaviour [21]. For example, a Patrol state may 

correspond to a CGF repeatedly moving between two points in the 

simulated world (see Figure 1a). A transition to another state then 

occurs when a certain change in the world state is perceived by the 

CGF. Continuing the example, if the CGF is in the Patrol state and 

detects a hostile CGF, it might transition to the Approach state in 

which the CGF will move towards the detected CGF. The example 

above can be expressed as a set of rules, as shown in Figure 1b. 

 The resulting rules can now be stored in a rule base, which 

serves as the input for the dynamic scripting technique. As 

mentioned in Section 2, dynamic scripting [20] is a rule-based 

reinforcement learning technique. When the dynamic scripting 

algorithm is initialized with a rule base, it assigns a weight value to 

each rule in the rule base. Before each episode (in our case, a 

simulated air combat encounter), a predefined number of rules are 

drawn from the rule base through roulette wheel selection, in which 

each rule is represented by its weight. Together, the rules that are 

drawn from the rule base form the script that governs the behaviour 



of a CGF during an encounter with an opponent. At the end of the 

encounter (i.e., when one side is defeated and the simulation ends), 

a fitness value is calculated for the script, and this value is fed back 

to the rule base. The rule base updates the weights of the rules 

according to the fitness, in such a manner that rules that 

contributed to a high fitness value are rewarded with a weight 

increase, resulting in an increased probability of being selected the 

next time that a script is generated. Similarly, a low fitness results 

in a decrease of the weights of rules that contributed to this fitness 

value. The entire process of creating adaptive FSMs through 

dynamic scripting is illustrated in Figure 2. Through the use of 

behaviour rules, this process also enables the implementation of 

ethical decision-making. So far we have not concentrated on that 

topic, but we have set aside space in our technique for future 

implementations. 

In the original description of dynamic scripting, rules are 

selected probabilistically, under the assumption that all rules are 

valid choices for inclusion in a script. However, for our goals these 

assumptions are invalid, as each state and each transition should be 

represented in a generated script. Not doing so could lead to scripts 

containing invalid FSMs. Two steps are required to resolve this 

issue. First, for a non-empty subset of states and transitions in the 

FSM, we create multiple interchangeable implementations, i.e., 

rules that trigger on the same conditions. These implementations 

express different but equally valid behaviours. In the case of states, 

each implementation provides behaviour that can be displayed in 

that state. In the case of transitions, each implementation provides 

a valid transition between states based on some conditions. Second, 

we alter the original dynamic scripting rule selection algorithm 

such that all states and transitions are represented in each script that 

is generated. This ensures that each generated script contains a 

completely valid FSM, and the proper set of rules concerning 

human values. This updated rule selection algorithm is shown in 

Algorithm 1. 

As an example, consider the Patrol state from Figure 1a. One of 

the implementations of this state can be the rule definition as found 

in Figure 1b. An alternative implementation could be defined that 

directs the CGF aircraft to patrol in a triangular pattern a, b, and c 

rather than between points a and b. This implementation would be 

expressed by writing a new rule. Implementations of state 

transitions can be defined in a similar way, by using alternative 

preconditions for the rules governing the state transitions. 

The dynamic scripting algorithm only recombines pieces of 

behaviour, and does not invent new pieces of behaviour. While this 

limits creativity, it also makes the system as a whole easier to 

control and understand. Furthermore, as the search space is 

relatively limited when compared to other machine learning 

techniques, dynamic scripting is expected to converge quickly to 

good (if not optimal) behaviour. 

4 METHOD 

To determine whether the method described in the previous 

section is capable of fast behaviour adaptation, we implemented 

the method in an air combat simulation using the STAGE [2] 

simulation environment. In this simulation, two cooperating CGFs, 

Algorithm 1. Script generation 

Input: A rule base containing one or more implementations for each state 

and transition in a FSM. 

Output: A script containing a rule for each state and transition in the FSM. 

 

script = [] 
for element in fsm.get_elements(): 

# fsm.get_elements() returns all states and 
# transitions in the FSM for which an 
# implementation needs to be included 
# in the script 

  sum_of_weights = 0 
  candidate_rules = [] 
  for rule in rule_base: 

  # the rules in rule_base that are an 
  # implementation of the current element are 
  # added to a list of candidates for selection 

    if rule.is_implementation_of(element): 
      candidate_rules.append(rule) 
      sum_of_weights += rule.weight 
    end if 
  end for 
  if sum_of_weights == 0: 

  # should the sum of the weights of the current 
  # candidates be zero, we select a candidate at 
  # random for inclusion in the script 

    selected_rule = random.choice(candidate_rules) 
    script.append(selected_rule) 
  else: 

  # we select a rule from candidate_rules through 
  # roulette wheel selection based on the weights 
  # of the candidate_rules 

    selected_rule = roulette_wheel(candidate_rules) 
    script.append(selected_rule) 
  end if 
end for 
return script 
 

(a) 

 

(b) 

if state == Patrol: 
if near(point_a): move_to(point_b) 
if near(point_b): move_to(point_a) 
 

if state == Approach: 
move_to(detected_hostile_CGF) 

 
if state == Patrol and hostile_CGF_detected(): 

  set_state(Approach) 
 

Figure 1. Representing a behavior controller as a finite-state machine, (a) 
graphically and (b) as rules. 

 

 
Figure 2. Adaptive finite-state machines through dynamic scripting. 
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both controlled using an adaptive FSM, were tasked with the 

combat of two CGFs using static (non-adaptive) behaviour. 

To be a suitable replacement for static CGFs, the adaptive CGFs 

should perform at least as well as the static CGFs. For this reason, 

we compare the performance of the adaptive CGFs to that of static 

CGFs using an FSM as currently found in Smart Bandits. 

Furthermore, to demonstrate the adaptive CGFs’ adaptive 

capabilities, the adaptive CGFs will be placed in scenarios where 

they have to adapt from either an arbitrary initialization or after 

they have tuned their parameters to a previous opponent. These 

scenarios are analogous to generating good behaviour before any 

training by a human participant takes place, and adapting to 

changes in a human participant’s behaviour during training.  

The rest of this section describes the CGFs and the simulations 

in more detail. 

 CGFs 4.1

Both the static and adaptive teams consisted of two fighter jets 

(lead and wingman) equipped with radar, a radar warning receiver, 

and four semi-active long range missiles. The tactics used by the 

teams are described in Subsection 4.1.1 and 4.1.2. 

4.1.1 Adaptive team 

The FSMs used by the adaptive CGFs were based on an 

operational 2-versus-2 tactic. This tactic consists of two phases. 

The first phase is the opening sequence of the tactic, in which the 

CGFs detect the opposing CGFs, select an approach formation and 

assign targets between themselves. In the second phase, the CGFs 

engage and fire at their targets, after which they re-evaluate their 

tactical situation and either evade incoming missiles or select new 

targets. 

For the adaptive CGFs, the tactic was subdivided into ten states 

in rule form. For this tactic, no meaningful new transitions could be 

identified, and as a result the original transitions were embedded in 

the rules created for the states. Next, new, additional 

implementations of selected states were designed and added as 

rules. Together with the original states and transitions, these rules 

formed the rule base for the adaptive CGFs. In total, 8 new states 

were added, resulting in a rule base with 18 rules. The adaptive 

lead and wingman were each assigned their own copy of the rule 

base, so that they could each optimize their own behaviour.  

4.1.2 Static team 

The scripts used by the static CGFs were based on one of two 

tactics. The first tactic (Tactic 1) was the same as the tactic used by 

the adaptive CGFs, resulting in a mirror match. By letting the 

adaptive CGFs fight against their own tactic, we will be able to 

show that they are able to improve on their own tactic using only a 

few extra variations of states. The second tactic (Tactic 2) was 

specifically designed to counter this tactic, to force the adaptive 

CGFs to come up with a creative solution. 

Using these two tactics for the static team allows us to show 

different features of using the adaptive FSMs. By including the 

second tactic, we are able to show the adaptive capabilities of the 

adaptive CGFs, after they have already adapted to another tactic. 

This is in essence a form of transfer learning [19]. The ability to 

rapidly adapt to new tactics is important, as human trainees only 

spend a limited amount of time in a simulator, and ideally the 

adaptation of the adaptive CGFs is evident within that timeframe. 

 Learning parameters 4.2

We performed two types of simulations. First, the adaptive CGFs 

engaged the static CGFs using either Tactic 1 or Tactic 2 in fifty 

consecutive episodes, allowing the adaptive team to adapt to both 

tactics separately. In these cases, a baseline was set by engaging 

the static team with CGFs using the original (non-adaptive) Smart 

Bandits tactic. Second, the adaptive team, having already adapted 

to either Tactic 1 or Tactic 2, engaged the static team using the 

other tactic in fifty consecutive episodes. This demonstrates the 

“online” adaptivity of the adaptive CGFs. Each scenario was 

repeated ten times to obtain average performance data. For the 

baselines, each scenario was only repeated five times, as no 

learning took place. 

Each trial ended when (1) a fighter jet on either side was hit 

with a missile2, or (2) both sides had used all of their missiles, or 

(3) ten minutes of simulated time had passed. If an adaptive CGF 

had hit a static CGF, the adaptive team was declared the winner of 

the episode. In all other cases, the static team was declared the 

winner, even in a situation where no adaptive CGF was hit.  

The dynamic scripting algorithm requires a fitness value as 

input, by which the proper weight adjustments are calculated. 

Earlier work determined the accumulated probabilities-of-kill of 

missiles fired to be effective fitness values for learning in the air 

combat domain [18]. However, we were unable to retrieve the 

necessary values to implement the probability-of-kill fitness from 

the STAGE API. Instead, a fitness of 1 was given to the winning 

team, and a fitness of 0 to the losing team. The weight adjustments 

were calculated as shown in Equation 1.  

 

adjustment = max ( -25, 50 * ( (2 * fitness ) – 1 ) ) (1) 

 

 According to this Equation 1, the maximum possible reward is 

higher than the maximum possible punishment. This results in an 

algorithm that moves quicker into (local) optima than stepping 

back out of them. 

5 RESULTS 

We recorded which team successfully ended each episode, and 

calculated the win ratio as the number of wins divided by total 

number of repetitions of each episode. On average, each series of 

fifty episodes took 3.5 hours of real-time simulation. 

Figure 3a shows the performance of the adaptive CGFs against 

the static CGFs using Tactic 1. The baseline CGFs fighting these 

static CGFs results in a mean win ratio of 0.46. The adaptive CGFs 

quickly converge to and hold a mean win ratio of 0.55, from 

episode 2 onwards. Optimal performance (0.80 mean win ratio) is 

first reached at episode 12, and again at episodes 37 and 41. 

Figure 3b shows the same as Figure 3a, except for the static 

CGFs using Tactic 2. The baseline CGFs fighting these static CGFs 

results in a mean win ratio of 0.13. The adaptive CGFs’ 

performance oscillates around 0.50 until episode 27. Between 

                                                                 
2
 Being outnumbered, the remaining team member is assumed to flee the 

arena. 



episodes 28 and 42, the performance spikes to a mean win ratio of 

0.8, after which it drops again to the 0.50 level. 

Figure 3c shows the performance of the adaptive CGFs when 

engaging the static CGFs, after the latter changed from Tactic 1 to 

Tactic 2 (green curve) and from Tactic 2 to Tactic 1 (orange 

curve). For the first 50 episodes, the same data is used that is also 

shown in Figures 3a and 3b. The remaining 50 episodes show the 

performance against the newly introduced tactics. The first peak 

reached in both cases are a mean win rate of 0.70 at episode 85 

(Tactic 1 to Tactic 2), and 0.80 at episode 78 (Tactic 2 to Tactic 1). 

6 DISCUSSION 

The purpose of this study was to determine whether the method 

described in Section 3 is capable of fast adaptation of air combat 

behaviour. We tested this adaptive capability against static 

opponents that acted using two different tactics. 

For the baselines, we relied on the performance of CGFs using 

the Smart Bandits tactic defined by experts. Figure Figure 3a 

shows a win ratio near 0.50, which is expected as both sides 

repeatedly use the same tactics. However, random factors in the 

simulation environment (e.g., the hit rate of missiles) can still 

influence encounters.  

Figures 3a and 3b show how well the adaptive CGFs are able to 

adapt to the two tactics employed by the static CGFs. Against 

Tactic 1, the adaptive CGFs are able to improve the baseline win 

ratio of 0.46, to a maximum of 0.80. This is a noteworthy result, as 

it shows that even with a limited amount of extra states, and given 

that the tactic taken from Smart Bandits was already optimized by 

experts, our algorithm was still able to further optimize the 

adaptive team’s behaviour. During the design of scenarios, such a 

function may prove useful to aid the designers of opposing CGFs 

even before any training of human pilots takes place. 

As mentioned in Subsection 4.1.2, the static CGFs’ Tactic 2 was 

designed to defeat Tactic 1, which was employed in a non-adaptive 

manner in the baselines. The result is apparent in Figure 3b, with 

the baseline performance only reaching a 0.13 mean win ratio. The 

adaptive CGFs present a more positive picture. Although at first 

the performance stays around the 0.50 level, a new optimum is 

reached around episode 28. This optimum is maintained for about 

15 episodes, after which the performance suddenly reverts to the 

old level. The high optimum indicates that the adaptive CGFs had 

good options (i.e., rules/states) to choose from, and the dynamic 

scripting algorithm was able to find the right combination quite 

efficiently. 

The drop between episodes 40 and 45 signifies a certain 

brittleness of the system, as the adaptive CGFs are not able to hold 

their optimal solution. This is most likely caused by the random 

factors in the simulation environment, as mentioned earlier. A 

possible solution might be to introduce a memory of well-

performing tactics, and to occasionally retry those tactics once the 

performance is dropping. Against static opponents, such 

memorized tactics could greatly mitigate the effect of random 

factors, and thereby increase the win ratio. Against other adaptive 

opponents (such as human trainees), retrying previously successful 

tactics may prove beneficial as well, especially if no other local 

optimum has been found for some time. 

Of course, the adaptive CGFs had more options (i.e., pieces of 

behaviour) available to them than the baseline CGFs, meaning that 

the fact that they were able to defeat the static CGFs more often is 

not an impressive result by itself. However, what does matter is 

that the system can reach new performance levels, and maintain 

these levels for a significant amount of time. Furthermore, our 

system is able to let CGFs adapt their behaviour relatively fast, 

certainly when compared to systems employing creative methods 

such as neural networks and evolutionary algorithms. 

An important use case for adaptive behaviour is online 

adaptation, i.e., adapting to the behaviour of human trainees during 

training. Figure 3c shows how well the adaptive CGFs can adapt to 

opponents using a new tactic, after having already adapted to 

earlier opponents with a different tactic. In both cases, a similar 

pattern is visible: the performance of the adaptive CGFs 

immediately dips when the new tactic is introduced, after which a 

moderate (0.40-0.60) performance level is held until a peak is 

reached around episode 80. With this kind of plasticity, the CGFs 

can quickly react to new tactics that human trainees may try out 

against them. Furthermore, with the low number of episodes 

needed to reach good behaviour (with e.g., a >=0.5 win ratio), it 

becomes feasible to run faster-than-real-time simulations between 

human-in-the-loop training sessions. This opens up the possibility 

of continuous adaptivity with a minimum amount of downtime, 

while keeping maximal control over the generated behaviour. 

 
Figure 3. Performance of the adaptive CGFs against the static CGFs. 

 

 



As a final point, the behaviour models generated using the 

described method can be directly translated back to their FSM 

form, for use in a graphical user interface such as provided by 

Smart Bandits. With such integration, access to machine learning 

and adaptive CGF behaviour becomes available within an interface 

that is already familiar to scenario developers. This, in turn, may 

open the door to increased adoption, and increased development in 

this area. 

7 CONCLUSION 

We have developed a machine learning method that is able to 

rapidly adapt the behaviour of CGFs to that of their opponents. The 

adaptive power of this method was shown in simulated air combat 

experiments. Compared to earlier work, the proposed method is 

computationally inexpensive and requires few iterations to generate 

good behaviour. Furthermore, the resulting behaviour models are 

in a format that is easily readable by human experts. This enables 

experts to effectively verify that the generated CGF behaviour 

complies with training goals and doctrine, including ethical 

decision-making. With adaptive CGFs as presented in this paper, 

military training simulations can be made more challenging and 

effective, leading to armed forces that are better prepared to defend 

shared values. 

Future work includes evaluating the behaviour of the adaptive 

CGFs in human-in-the-loop trials, and scaling up to engagements 

involving larger numbers of CGFs.  
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