
Rapid Adaptation of Air Combat Behaviour

Armon Toubman
1
, Jan Joris Roessingh

1
, Pieter Spronck

2
, Aske Plaat

3
, and Jaap van den Herik

4

Abstract.1 Adaptive behaviour for computer generated forces
enriches training simulations with appropriate challenge levels. For
adequate insight into the range of possible behaviour, the
adaptation has to take place in a rapid fashion. Ideally, each new
behaviour model should remain readable by (and thereby under the
control of) human experts. Although various attempts have been
made at creating adaptive behaviour, current solutions require large
numbers of simulations. Moreover, usability by end users has been
of subordinate interest, as is compliance with doctrine and ethics.
In this work, we present a machine learning method that enables
fast behaviour adaptation, while keeping the behaviour models in a
human-readable format. We demonstrate the effectiveness of the
proposed method in beyond-visual-range air combat simulations.

1 INTRODUCTION

The use of training simulations for defence applications is growing

[1]. Commercial off-the-shelf simulation packages, such as

STAGE [2] and Virtual Battlespace (VBS) [3], allow experts to

quickly develop and operate scenarios for simulations. To make the

scenarios more realistic, they are often inhabited by computer

generated forces (CGFs).

Traditionally, CGF behaviour is scripted using if-then rules

which map observations to actions. However, writing good scripts

requires domain expertise, which is a costly resource. Poorly

written scripts have low training value, as no skills learned by the

trainee are transferable to the real world. Furthermore, trainees can

learn to purposefully exploit bad CGF behaviour. This is usually

counterproductive and should be discouraged [4, 5]. Dedicated

CGF behaviour authoring tools, such as Smart Bandits [6], have

been developed to mitigate this issue, often by introducing

enhanced user interfaces and ready-to-use behaviour modules.

However, it is still up to the experts to design the CGF behaviour

and adapt this behaviour to reach specific training goals.

Nowadays, advances in the field of machine learning offer the

prospect of automatically generating behaviour models and

adapting these models online (i.e., during operation in training

simulations). Automatic generation of behaviour models has the

potential to greatly decrease the workload of CGF developers,

while online adaptation can increase the training value of CGFs by

1 Department of Training, Simulation & Operator Performance,

Netherlands Aerospace Centre, Netherlands,
email: [Armon.Toubman,Jan.Joris.Roessingh]@nlr.nl

2 Tilburg Center for Cognition and Communication, Tilburg University,
email: p.spronck@gmail.com

3 Leiden Institute of Advanced Computer Science, Leiden University,
email: aske.plaat@gmail.com

4 Leiden Centre of Data Science, Leiden University, email:
jaapvandenherik@gmail.com

continuously challenging the trainees. Over the years, various

machine learning approaches have been tried, yet adaptive

capabilities in CGF behaviour authoring tools are still rare [5, 7].

Adoption of these approaches is tamed by the large amount of time

needed for quality control: proposed machine learning methods for

CGF behaviour generation require substantial processing times,

and produce behaviour models that are hard for human end users to

understand. The latter is a critical feature, as end users need to be

able to verify that generated behaviour complies with doctrine, and

by extension, ethics. This consideration is also important in related

fields, e.g., the development of behaviour for autonomous

unmanned vehicles, or decision support systems for human pilots.

In this work, we present a machine learning method that is

specifically focused on rapid generation of understandable

behaviour models. The method entails the adaptation of behaviour

represented as finite-state machines (FSMs), through a

reinforcement learning technique called dynamic scripting.

FSMs have been successfully used to represent CGF behaviour

in the Smart Bandits behaviour authoring tool, which is currently in

use by the Royal Netherlands Air Force (RNLAF) to control CGFs

in beyond-visual-range air combat training simulations. By cutting

up the FSMs into their constituent states and transitions, the

dynamic scripting algorithm is able to efficiently recombine the

FSMs and provide adaptive behaviour. Furthermore, in contrast to

many other machine learning algorithms, dynamic scripting does

not alter defined pieces of behaviour during the learning process,

which is a great step towards keeping generated behaviour in line

with military doctrine, and keeping behaviour models

understandable by experts.

To the best of our knowledge, this is the first work developing

adaptive capabilities for two cooperative CGFs in 2v2 beyond-

visual-range air combat. In this work, we actively take into account

(1) computational speed, (2) usability by end users, and (3) built-in

ethical and doctrinal consideration.

The rest of this paper is structured as follows: Section 2 gives an

overview of related work. Section 3 describes the integration of

FSMs into dynamic scripting. Section 4 shows the experimental

setup used to test the adaptive CGFs. The results of the

experiments are presented in Section 5 and discussed in Section 6.

Finally, section 7 concludes the paper.

2 RELATED WORK

Air combat is the fight between armed aircraft. It can be

represented as a ‘game’ with a large, continuous state space, a

variety of available actions, and limited resources (see [8] for a

complete treatise). When generating air combat behaviour, creative

solutions are required while being bound by tactical doctrine and

rules of engagement (and training goals, for training simulations).

Air combat is usually divided into within-visual-range (WVR)

combat (also known as air combat manoeuvring or dogfighting)

and beyond-visual-range (BVR) combat, in which combating

aircraft engage each other with long-range sensors and weapons.

WVR and BVR combat require different approaches: WVR is

often modelled as a pursuit-evasion problem, consisting of

complex manoeuvring and rapid decision-making, whereas BVR

requires planning and higher-level strategical thinking.

 Machine learning for air combat behaviour 2.1

A wide range of machine learning techniques has been tried to

efficiently generate effective WVR and BVR air combat behaviour.

A non-exhaustive overview of these approaches is given below.

The research in this area is quite fragmented, not only between

WVR and BVR combat, but also between simulation environments

and experimental methods. While this means that no absolute

comparisons can be made among reported results, the reported

parameters may serve as an indication of the computational

complexity of the methods.

Neural networks have been applied in various ways with

varying success. Early work with neural networks includes the use

of a three-layer back-propagation network by Rodin and Amin [9]

for predicting and countering WVR tactical manoeuvres. Rodin

and Amin report “successfully training” their network after 60,000

iterations. More recently, Teng et al. [10] applied self-organizing

neural networks with a Q-learning component for online learning

of WVR behaviour. The resulting behaviour models were

evaluated in small-scale human-in-the-loop experiments. The

learning network was able to reach a 93% mean win ratio after 120

episodes against a statically controlled CGF. Furthermore, the

network peaked at a 40% win ratio against pilots in training, and

below 10% against experienced pilots. Teng et al. report using

available air combat doctrine for building the state- and action-

space for the Q-learning component [11], by encoding expert

knowledge as if-then rules.

Evolutionary algorithms have also been used in various forms.

Mulgund et al. [12] applied a genetic algorithm to optimize tactical

parameters for many-versus-many BVR engagements. Starting

from a scenario with equal losses on both sides, their algorithm

was able to develop tactics by which all enemy CGFs were

defeated, without any casualties on the friendly side. However,

only few parameters are reported. In a follow-up study, Zhang et

al. [13] used 40 generations, with a population size of 80. Smith et

al. applied a learning classifier system to develop novel one-

versus-one WVR tactics for an experimental fighter jet [14, 15]. A

population of 200 rules is reported, tested throughout 300

generations. Furthermore, air combat tactics have been described

through grammars, which have been used as templates for genetic

programming algorithms (see, e.g., [16] and [17], both BVR).

Expressing tactics through grammars limits the search space,

ensuring that only valid behaviour is generated. However, large

numbers of simulations are seemingly needed to reach convergence

using this method, with for example [16] reporting convergence

near 50% fitness after 100,000 simulations.

While a large number of simulations may be acceptable for

exploratory studies such as [15], or offline learning before human-

in-the-loop trials, it poses a problem in the case of learning online

during training simulations. A CGF, trying to adapt its behaviour to

that of a human participant, only has limited time to do so between

engagements. Furthermore, trainees can only participate in a

limited number of simulations, which constrains the time available

to adapt even further.

 Transparency of behaviour 2.2

Apart from the time to adapt, the transparency of generated

behaviour models is of great importance. Behaviour models

generated for military applications should be usable (editable,

readable, testable, etc.) by different end users, e.g., scenario

developers and training instructors [7]. Techniques such as neural

networks and evolutionary algorithms often produce behaviour

models that are hard to decode, understand, and manually edit.

In earlier work, we have made attempts at generating BVR air

combat behaviour using dynamic scripting [18, 19]. Dynamic

scripting is a reinforcement learning method that takes a rule base,

and recombines the rules from this rule base into scripts [20]. This

method does not ‘invent’ new behaviour, and instead relies on the

rule base being filled with rules based on expert knowledge. As a

result, the generated behaviour can only be as good or bad as the

knowledge contained in the rule base. Applying a pure dynamic

scripting solution in the air combat domain has yielded

encouraging results, however the technique remains to be validated

in a production environment.

Rather than having experts write if-then rules, a more intuitive

method of defining behaviour is the use of finite-state machines

[21]. This is also the method used in Smart Bandits [6, 22, 23], the

CGF behaviour authoring tool developed by the Netherlands

Aerospace Centre, and currently in use by the Royal Netherlands

Air Force. Each CGF controlled by Smart Bandits is in a certain

state, and each state has associated actions. However, Smart

Bandits provides no adaptive capabilities. As Smart Bandits

provides both (1) a drag-and-drop interface for authoring CGF

behaviour, usable by various end users, and (2) an established

repository of well-tested CGF behaviour that is actively being used

in training simulations, it is an ideal testing ground for introduction

of adaptive behaviour.

3 ADAPTIVE FINITE-STATE MACHINES

In Smart Bandits, CGFs are controlled with FSMs. When FSMs

are to control CGF behaviour, the states of the FSM are linked to

pieces of related behaviour [21]. For example, a Patrol state may

correspond to a CGF repeatedly moving between two points in the

simulated world (see Figure 1a). A transition to another state then

occurs when a certain change in the world state is perceived by the

CGF. Continuing the example, if the CGF is in the Patrol state and

detects a hostile CGF, it might transition to the Approach state in

which the CGF will move towards the detected CGF. The example

above can be expressed as a set of rules, as shown in Figure 1b.

 The resulting rules can now be stored in a rule base, which

serves as the input for the dynamic scripting technique. As

mentioned in Section 2, dynamic scripting [20] is a rule-based

reinforcement learning technique. When the dynamic scripting

algorithm is initialized with a rule base, it assigns a weight value to

each rule in the rule base. Before each episode (in our case, a

simulated air combat encounter), a predefined number of rules are

drawn from the rule base through roulette wheel selection, in which

each rule is represented by its weight. Together, the rules that are

drawn from the rule base form the script that governs the behaviour

of a CGF during an encounter with an opponent. At the end of the

encounter (i.e., when one side is defeated and the simulation ends),

a fitness value is calculated for the script, and this value is fed back

to the rule base. The rule base updates the weights of the rules

according to the fitness, in such a manner that rules that

contributed to a high fitness value are rewarded with a weight

increase, resulting in an increased probability of being selected the

next time that a script is generated. Similarly, a low fitness results

in a decrease of the weights of rules that contributed to this fitness

value. The entire process of creating adaptive FSMs through

dynamic scripting is illustrated in Figure 2. Through the use of

behaviour rules, this process also enables the implementation of

ethical decision-making. So far we have not concentrated on that

topic, but we have set aside space in our technique for future

implementations.

In the original description of dynamic scripting, rules are

selected probabilistically, under the assumption that all rules are

valid choices for inclusion in a script. However, for our goals these

assumptions are invalid, as each state and each transition should be

represented in a generated script. Not doing so could lead to scripts

containing invalid FSMs. Two steps are required to resolve this

issue. First, for a non-empty subset of states and transitions in the

FSM, we create multiple interchangeable implementations, i.e.,

rules that trigger on the same conditions. These implementations

express different but equally valid behaviours. In the case of states,

each implementation provides behaviour that can be displayed in

that state. In the case of transitions, each implementation provides

a valid transition between states based on some conditions. Second,

we alter the original dynamic scripting rule selection algorithm

such that all states and transitions are represented in each script that

is generated. This ensures that each generated script contains a

completely valid FSM, and the proper set of rules concerning

human values. This updated rule selection algorithm is shown in

Algorithm 1.

As an example, consider the Patrol state from Figure 1a. One of

the implementations of this state can be the rule definition as found

in Figure 1b. An alternative implementation could be defined that

directs the CGF aircraft to patrol in a triangular pattern a, b, and c

rather than between points a and b. This implementation would be

expressed by writing a new rule. Implementations of state

transitions can be defined in a similar way, by using alternative

preconditions for the rules governing the state transitions.

The dynamic scripting algorithm only recombines pieces of

behaviour, and does not invent new pieces of behaviour. While this

limits creativity, it also makes the system as a whole easier to

control and understand. Furthermore, as the search space is

relatively limited when compared to other machine learning

techniques, dynamic scripting is expected to converge quickly to

good (if not optimal) behaviour.

4 METHOD

To determine whether the method described in the previous

section is capable of fast behaviour adaptation, we implemented

the method in an air combat simulation using the STAGE [2]

simulation environment. In this simulation, two cooperating CGFs,

Algorithm 1. Script generation

Input: A rule base containing one or more implementations for each state

and transition in a FSM.

Output: A script containing a rule for each state and transition in the FSM.

script = []
for element in fsm.get_elements():

fsm.get_elements() returns all states and
transitions in the FSM for which an
implementation needs to be included
in the script

 sum_of_weights = 0
 candidate_rules = []
 for rule in rule_base:

 # the rules in rule_base that are an
 # implementation of the current element are
 # added to a list of candidates for selection

 if rule.is_implementation_of(element):
 candidate_rules.append(rule)
 sum_of_weights += rule.weight
 end if
 end for
 if sum_of_weights == 0:

 # should the sum of the weights of the current
 # candidates be zero, we select a candidate at
 # random for inclusion in the script

 selected_rule = random.choice(candidate_rules)
 script.append(selected_rule)
 else:

 # we select a rule from candidate_rules through
 # roulette wheel selection based on the weights
 # of the candidate_rules

 selected_rule = roulette_wheel(candidate_rules)
 script.append(selected_rule)
 end if
end for
return script

(a)

(b)

if state == Patrol:
if near(point_a): move_to(point_b)
if near(point_b): move_to(point_a)

if state == Approach:
move_to(detected_hostile_CGF)

if state == Patrol and hostile_CGF_detected():

 set_state(Approach)

Figure 1. Representing a behavior controller as a finite-state machine, (a)
graphically and (b) as rules.

Figure 2. Adaptive finite-state machines through dynamic scripting.

Patrol Approach
hostile CGF detected

Rule base

Script

External
control

Transitions Rule Rule
Rule

Rule

State 1
State 1

State 1

State 1
State 1

State 2

Translate

Fill

Generate

Control

Feedback

both controlled using an adaptive FSM, were tasked with the

combat of two CGFs using static (non-adaptive) behaviour.

To be a suitable replacement for static CGFs, the adaptive CGFs

should perform at least as well as the static CGFs. For this reason,

we compare the performance of the adaptive CGFs to that of static

CGFs using an FSM as currently found in Smart Bandits.

Furthermore, to demonstrate the adaptive CGFs’ adaptive

capabilities, the adaptive CGFs will be placed in scenarios where

they have to adapt from either an arbitrary initialization or after

they have tuned their parameters to a previous opponent. These

scenarios are analogous to generating good behaviour before any

training by a human participant takes place, and adapting to

changes in a human participant’s behaviour during training.

The rest of this section describes the CGFs and the simulations

in more detail.

 CGFs 4.1

Both the static and adaptive teams consisted of two fighter jets

(lead and wingman) equipped with radar, a radar warning receiver,

and four semi-active long range missiles. The tactics used by the

teams are described in Subsection 4.1.1 and 4.1.2.

4.1.1 Adaptive team

The FSMs used by the adaptive CGFs were based on an

operational 2-versus-2 tactic. This tactic consists of two phases.

The first phase is the opening sequence of the tactic, in which the

CGFs detect the opposing CGFs, select an approach formation and

assign targets between themselves. In the second phase, the CGFs

engage and fire at their targets, after which they re-evaluate their

tactical situation and either evade incoming missiles or select new

targets.

For the adaptive CGFs, the tactic was subdivided into ten states

in rule form. For this tactic, no meaningful new transitions could be

identified, and as a result the original transitions were embedded in

the rules created for the states. Next, new, additional

implementations of selected states were designed and added as

rules. Together with the original states and transitions, these rules

formed the rule base for the adaptive CGFs. In total, 8 new states

were added, resulting in a rule base with 18 rules. The adaptive

lead and wingman were each assigned their own copy of the rule

base, so that they could each optimize their own behaviour.

4.1.2 Static team

The scripts used by the static CGFs were based on one of two

tactics. The first tactic (Tactic 1) was the same as the tactic used by

the adaptive CGFs, resulting in a mirror match. By letting the

adaptive CGFs fight against their own tactic, we will be able to

show that they are able to improve on their own tactic using only a

few extra variations of states. The second tactic (Tactic 2) was

specifically designed to counter this tactic, to force the adaptive

CGFs to come up with a creative solution.

Using these two tactics for the static team allows us to show

different features of using the adaptive FSMs. By including the

second tactic, we are able to show the adaptive capabilities of the

adaptive CGFs, after they have already adapted to another tactic.

This is in essence a form of transfer learning [19]. The ability to

rapidly adapt to new tactics is important, as human trainees only

spend a limited amount of time in a simulator, and ideally the

adaptation of the adaptive CGFs is evident within that timeframe.

 Learning parameters 4.2

We performed two types of simulations. First, the adaptive CGFs

engaged the static CGFs using either Tactic 1 or Tactic 2 in fifty

consecutive episodes, allowing the adaptive team to adapt to both

tactics separately. In these cases, a baseline was set by engaging

the static team with CGFs using the original (non-adaptive) Smart

Bandits tactic. Second, the adaptive team, having already adapted

to either Tactic 1 or Tactic 2, engaged the static team using the

other tactic in fifty consecutive episodes. This demonstrates the

“online” adaptivity of the adaptive CGFs. Each scenario was

repeated ten times to obtain average performance data. For the

baselines, each scenario was only repeated five times, as no

learning took place.

Each trial ended when (1) a fighter jet on either side was hit

with a missile2, or (2) both sides had used all of their missiles, or

(3) ten minutes of simulated time had passed. If an adaptive CGF

had hit a static CGF, the adaptive team was declared the winner of

the episode. In all other cases, the static team was declared the

winner, even in a situation where no adaptive CGF was hit.

The dynamic scripting algorithm requires a fitness value as

input, by which the proper weight adjustments are calculated.

Earlier work determined the accumulated probabilities-of-kill of

missiles fired to be effective fitness values for learning in the air

combat domain [18]. However, we were unable to retrieve the

necessary values to implement the probability-of-kill fitness from

the STAGE API. Instead, a fitness of 1 was given to the winning

team, and a fitness of 0 to the losing team. The weight adjustments

were calculated as shown in Equation 1.

adjustment = max (-25, 50 * ((2 * fitness) – 1)) (1)

 According to this Equation 1, the maximum possible reward is

higher than the maximum possible punishment. This results in an

algorithm that moves quicker into (local) optima than stepping

back out of them.

5 RESULTS

We recorded which team successfully ended each episode, and

calculated the win ratio as the number of wins divided by total

number of repetitions of each episode. On average, each series of

fifty episodes took 3.5 hours of real-time simulation.

Figure 3a shows the performance of the adaptive CGFs against

the static CGFs using Tactic 1. The baseline CGFs fighting these

static CGFs results in a mean win ratio of 0.46. The adaptive CGFs

quickly converge to and hold a mean win ratio of 0.55, from

episode 2 onwards. Optimal performance (0.80 mean win ratio) is

first reached at episode 12, and again at episodes 37 and 41.

Figure 3b shows the same as Figure 3a, except for the static

CGFs using Tactic 2. The baseline CGFs fighting these static CGFs

results in a mean win ratio of 0.13. The adaptive CGFs’

performance oscillates around 0.50 until episode 27. Between

2
 Being outnumbered, the remaining team member is assumed to flee the

arena.

episodes 28 and 42, the performance spikes to a mean win ratio of

0.8, after which it drops again to the 0.50 level.

Figure 3c shows the performance of the adaptive CGFs when

engaging the static CGFs, after the latter changed from Tactic 1 to

Tactic 2 (green curve) and from Tactic 2 to Tactic 1 (orange

curve). For the first 50 episodes, the same data is used that is also

shown in Figures 3a and 3b. The remaining 50 episodes show the

performance against the newly introduced tactics. The first peak

reached in both cases are a mean win rate of 0.70 at episode 85

(Tactic 1 to Tactic 2), and 0.80 at episode 78 (Tactic 2 to Tactic 1).

6 DISCUSSION

The purpose of this study was to determine whether the method

described in Section 3 is capable of fast adaptation of air combat

behaviour. We tested this adaptive capability against static

opponents that acted using two different tactics.

For the baselines, we relied on the performance of CGFs using

the Smart Bandits tactic defined by experts. Figure Figure 3a

shows a win ratio near 0.50, which is expected as both sides

repeatedly use the same tactics. However, random factors in the

simulation environment (e.g., the hit rate of missiles) can still

influence encounters.

Figures 3a and 3b show how well the adaptive CGFs are able to

adapt to the two tactics employed by the static CGFs. Against

Tactic 1, the adaptive CGFs are able to improve the baseline win

ratio of 0.46, to a maximum of 0.80. This is a noteworthy result, as

it shows that even with a limited amount of extra states, and given

that the tactic taken from Smart Bandits was already optimized by

experts, our algorithm was still able to further optimize the

adaptive team’s behaviour. During the design of scenarios, such a

function may prove useful to aid the designers of opposing CGFs

even before any training of human pilots takes place.

As mentioned in Subsection 4.1.2, the static CGFs’ Tactic 2 was

designed to defeat Tactic 1, which was employed in a non-adaptive

manner in the baselines. The result is apparent in Figure 3b, with

the baseline performance only reaching a 0.13 mean win ratio. The

adaptive CGFs present a more positive picture. Although at first

the performance stays around the 0.50 level, a new optimum is

reached around episode 28. This optimum is maintained for about

15 episodes, after which the performance suddenly reverts to the

old level. The high optimum indicates that the adaptive CGFs had

good options (i.e., rules/states) to choose from, and the dynamic

scripting algorithm was able to find the right combination quite

efficiently.

The drop between episodes 40 and 45 signifies a certain

brittleness of the system, as the adaptive CGFs are not able to hold

their optimal solution. This is most likely caused by the random

factors in the simulation environment, as mentioned earlier. A

possible solution might be to introduce a memory of well-

performing tactics, and to occasionally retry those tactics once the

performance is dropping. Against static opponents, such

memorized tactics could greatly mitigate the effect of random

factors, and thereby increase the win ratio. Against other adaptive

opponents (such as human trainees), retrying previously successful

tactics may prove beneficial as well, especially if no other local

optimum has been found for some time.

Of course, the adaptive CGFs had more options (i.e., pieces of

behaviour) available to them than the baseline CGFs, meaning that

the fact that they were able to defeat the static CGFs more often is

not an impressive result by itself. However, what does matter is

that the system can reach new performance levels, and maintain

these levels for a significant amount of time. Furthermore, our

system is able to let CGFs adapt their behaviour relatively fast,

certainly when compared to systems employing creative methods

such as neural networks and evolutionary algorithms.

An important use case for adaptive behaviour is online

adaptation, i.e., adapting to the behaviour of human trainees during

training. Figure 3c shows how well the adaptive CGFs can adapt to

opponents using a new tactic, after having already adapted to

earlier opponents with a different tactic. In both cases, a similar

pattern is visible: the performance of the adaptive CGFs

immediately dips when the new tactic is introduced, after which a

moderate (0.40-0.60) performance level is held until a peak is

reached around episode 80. With this kind of plasticity, the CGFs

can quickly react to new tactics that human trainees may try out

against them. Furthermore, with the low number of episodes

needed to reach good behaviour (with e.g., a >=0.5 win ratio), it

becomes feasible to run faster-than-real-time simulations between

human-in-the-loop training sessions. This opens up the possibility

of continuous adaptivity with a minimum amount of downtime,

while keeping maximal control over the generated behaviour.

Figure 3. Performance of the adaptive CGFs against the static CGFs.

As a final point, the behaviour models generated using the

described method can be directly translated back to their FSM

form, for use in a graphical user interface such as provided by

Smart Bandits. With such integration, access to machine learning

and adaptive CGF behaviour becomes available within an interface

that is already familiar to scenario developers. This, in turn, may

open the door to increased adoption, and increased development in

this area.

7 CONCLUSION

We have developed a machine learning method that is able to

rapidly adapt the behaviour of CGFs to that of their opponents. The

adaptive power of this method was shown in simulated air combat

experiments. Compared to earlier work, the proposed method is

computationally inexpensive and requires few iterations to generate

good behaviour. Furthermore, the resulting behaviour models are

in a format that is easily readable by human experts. This enables

experts to effectively verify that the generated CGF behaviour

complies with training goals and doctrine, including ethical

decision-making. With adaptive CGFs as presented in this paper,

military training simulations can be made more challenging and

effective, leading to armed forces that are better prepared to defend

shared values.

Future work includes evaluating the behaviour of the adaptive

CGFs in human-in-the-loop trials, and scaling up to engagements

involving larger numbers of CGFs.

ACKNOWLEDGMENTS

The authors thank Remco Meiland, Joost van Ooijen, Kees Krikke,

Arnoud van Leeuwen, Nico Zink, and Aleid Duiker for their

technical support and RNLAF LtCol Roel Rijken for his

continuous input.

REFERENCES

[1] J. D. Fletcher, "Education and training technology in the military,"

Science (New York, N.Y.), vol. 323, pp. 72-75, January 2009.

[2] Presagis. (2015). STAGE. Available:

http://www.presagis.com/files/product_brochures/2015-04-DS-SIM-

STAGE14_web.pdf

[3] B. I. Simulations. (2014). Virtual Battlespace 3. Available:

https://bisimulations.com/sites/default/files/BISim_VBS3_V2B_VBS

IG_only_preview_2014%20%282%29.pdf

[4] R. Lopes and R. Bidarra, "Adaptivity challenges in games and

simulations: a survey," Computational Intelligence and AI in Games,

IEEE Transactions on, vol. 3, pp. 85-99, 2011.

[5] N. Abdellaoui, A. Taylor, and G. Parkinson, "Comparative Analysis

of Computer Generated Forces' Artificial Intelligence," in RTO-MP-

MSG-069 - Current uses of M&S Covering Support to Operations,

Human Behaviour Representation, Irregular Warfare, Defence

against Terrorism and Coalition Tactical Force Integration,

Brussels, Belgium, 2009.

[6] NLR. (2016). Smart Bandits AIR. Available:

http://www.nlr.org/capabilities/smart-bandits-air/

[7] A. Toubman, G. Poppinga, J. J. Roessingh, M. Hou, L. Luotsinen, R.

A. Løvlid, et al., "Modeling CGF Behavior with Machine Learning

Techniques: Requirements and Future Directions," in Proceedings of

the 2015 Interservice/Industry Training, Simulation, and Education

Conference, Orlando, Florida, 2015, pp. 2637-2647.

[8] R. L. Shaw, Fighter Combat: Naval Institute Press, 1985.

[9] E. Y. Rodin and S. M. Amin, "Maneuver prediction in air combat via

artificial neural networks," Computers & mathematics with

applications, vol. 24, pp. 95-112, 1992.

[10] T.-H. Teng, A.-H. Tan, and L.-N. Teow, "Adaptive computer-

generated forces for simulator-based training," Expert Systems with

Applications, vol. 40, pp. 7341-7353, 2013.

[11] T.-H. Teng, A.-H. Tan, Y.-S. Tan, and A. Yeo, "Self-organizing

neural networks for learning air combat maneuvers," in Neural

Networks (IJCNN), The 2012 International Joint Conference on,

2012, pp. 1-8.

[12] S. Mulgund, K. Harper, K. Krishnakumar, and G. Zacharias, "Air

combat tactics optimization using stochastic genetic algorithms," in

Proceedings of the 1998 IEEE International Conference on Systems,

Man and Cybernetics, 1998, pp. 3136-3141.

[13] K. Zhang, W. Li, and Z. Wang, "Large-Scale Air-Combat Formation

Optimization Using Simulated-Annealing GA (Genetic Algorithm),"

in Proceedings of the 24th Congress of International Council of the

Aeronautical Sciences, Yokohama, Japan, 2004.

[14] R. E. Smith, B. A. Dike, B. Ravichandran, A. El-Fallah, and R. K.

Mehra, "The fighter aircraft LCS: A case of different LCS goals and

techniques," in Learning Classifier Systems, ed: Springer, 2000, pp.

283-300.

[15] R. E. Smith, B. A. Dike, R. K. Mehra, B. Ravichandran, and A. El-

Fallah, "Classifier systems in combat: two-sided learning of

maneuvers for advanced fighter aircraft," Computer Methods in

Applied Mechanics and Engineering, vol. 186, pp. 421 - 437, 2000.

[16] J. Yao, Q. Huang, and W. Wang, "Adaptive Human Behavior

Modeling for Air Combat Simulation," in 2015 IEEE/ACM 19th

International Symposium on Distributed Simulation and Real Time

Applications (DS-RT), 2015, pp. 100-103.

[17] R. Kop, A. Toubman, M. Hoogendoorn, and J. Roessingh,

"Evolutionary Dynamic Scripting: Adaptation of Expert Rule Bases

for Serious Games," in Current Approaches in Applied Artificial

Intelligence. vol. 9101, M. Ali, Y. S. Kwon, C.-H. Lee, J. Kim, and

Y. Kim, Eds., ed: Springer International Publishing, 2015, pp. 53-62.

[18] A. Toubman, J. J. Roessingh, P. Spronck, A. Plaat, and J. Van den

Herik, "Rewarding Air Combat Behavior in Training Simulations," in

Proceedings of the 2015 IEEE International Conference on Systems,

Man and Cybernetics, Hong Kong, 2015, pp. 1379-1402.

[19] A. Toubman, J. J. Roessingh, P. Spronck, A. Plaat, and J. Van den

Herik, "Transfer Learning of Air Combat Behavior," in Proceedings

of the 2015 IEEE International Conference on Machine Learning and

Applications, Miami, Florida, 2015.

[20] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma,

"Adaptive game AI with dynamic scripting," Machine Learning, vol.

63, pp. 217-248, 2006.

[21] D. Fu and R. Houlette, "The Ultimate Guide to FSMs in Games," in

AI Game Programming Wisdom. vol. 2, S. Rabin, Ed., ed: Charles

River Media, 2004, pp. 283-302.

[22] J. J. Roessingh, R.-J. Merk, P. Huibers, R. Meiland, and R. Rijken,

"Smart Bandits in air-to-air combat training: Combining different

behavioural models in a common architecture," in 21st Annual

Conference on Behavior Representation in Modeling and Simulation,

Amelia Island, Florida, USA, 2012.

[23] A. Khatami, P. Huibers, and J. J. Roessingh, "Architecture for goal-

driven behavior of virtual opponents in fighter pilot combat training,"

in Proceedings of the 22nd Annual Conference on Behavior

Representation in Modeling and Simulation, Ottawa, Canada, 2013.

