
July 10, 2021 19:27 WSPC/ws-ijitdm output

International Journal of Information Technology & Decision Making

© World Scientific Publishing Company

ANALYSIS OF HYPER-PARAMETERS FOR ALPHAZERO-LIKE

DEEP REINFORCEMENT LEARNING

FIRST AUTHOR

University Department, University Name, Address

City, State ZIP/Zone, Country

Received Day Month Year

Revised Day Month Year

The landmark achievements of AlphaGo Zero have created great research interest into

self-play in reinforcement learning. In self-play, Monte Carlo Tree Search is used to train

a deep neural network, which is then used itself in tree searches. The training is gov-
erned by many hyper-parameters. There has been surprisingly little research on design

choices for hyper-parameter values and loss functions, presumably because of the pro-

hibitive computational cost to explore the parameter space. In this paper, we investigate
12 hyper-parameters in an AlphaZero-like self-play algorithm and evaluate how these

parameters contribute to training. We study them on small games, to achieve mean-

ingful exploration with moderate computational effort. The experimental results show
that training is highly sensitive to hyper-parameter choices. Through multi-objective

analysis, we identify 4 important hyper-parameters to further assess. To start, we find

surprising results where too much training can sometimes lead to lower performance.
Our main result is that the number of self-play iterations subsumes MCTS-search sim-

ulations, game episodes, and training epochs. The intuition is that these three increase
together as self-play iterations increase and that increasing them individually is sub-

optimal. As a consequence of our experiments, we provide recommendations on setting

hyper-parameter values in self-play. The outer loop of self-play iterations should be em-
phasized, in favor of the inner loop. This means hyper-parameters for the inner loop,

should be set to lower values. A secondary result of our experiments concerns the choice

of optimization goals, for which we also provide recommendations.

Keywords: AlphaZero; parameter sweep; parameter evaluation; loss function.

1. Introduction

The AlphaGo series of papers 1,2,3 have sparked much interest of researchers and

the general public alike into deep reinforcement learning. Despite the success of

AlphaGo and related methods in Go and other application areas 4,5, there are

unexplored and unsolved puzzles in the design and parameterization of the algo-

rithms. Different hyper-parameter settings can lead to very different results. How-

ever, hyper-parameter design-space sweeps are computationally very expensive, and

in the original publications, we can only find limited information of how to set

the values of some important parameters and why. Also, there are few works on

how to set the hyper-parameters for these algorithms, and more insight into the

1

July 10, 2021 19:27 WSPC/ws-ijitdm output

2 Authors’ Names

hyper-parameter interactions is necessary. In our work, we study the most general

framework algorithm in the aforementioned AlphaGo series by using a lightweight

re-implementation of AlphaZero: AlphaZeroGeneral 6.

In order to optimize hyper-parameters, it is important to understand their func-

tion and interactions in an algorithm. A single iteration in the AlphaZeroGeneral

framework consists of three stages: self-play, neural network training and arena

comparison. In these stages, we explore 12 hyper-parameters (see section 4.1) in

AlphaZeroGeneral. Furthermore, we observe 2 objectives (see section 4.2): train-

ing loss and time cost in each single run. A sweep of the hyper-parameter space is

computationally demanding. In order to provide a meaningful analysis we use small

board sizes of typical combinatorial games. This sweep provides an overview of the

hyper-parameter contributions and provides a basis for further analysis. Based on

these results, we choose 4 interesting parameters to further evaluate in depth.

As performance measure, we use the Elo rating that can be computed during

training time of the self-play system, as a running relative Elo, and computed sep-

arately, in a dedicated tournament between different trained players.

Our contributions can be summarized as follows:

• We find (1) that in general higher values of all hyper-parameters lead to higher

playing strength, but (2) that within a limited budget, a higher number of outer

iterations is more promising than higher numbers of inner iterations: these are

subsumed by outer iterations.

• We evaluate 4 alternative loss functions for 3 games and 2 board sizes, and find

that the best setting depends on the game and is usually not the sum of policy

and value loss. However, the sum may be a good default compromise if no further

information about the game is present.

The paper is structured as follows. We first give an overview of the most rel-

evant literature, before describing the considered test games in Sect. 3. Then we

describe the AlphaZero-like self-play algorithm in Sect. 4. After setting up experi-

ments, we present the results in Sect. 6. Finally, we conclude our paper and discuss

the promising future work.

2. Related work

Hyper-parameter tuning by optimization is very important for many practical al-

gorithms. In reinforcement learning, for instance, the ε-greedy strategy of classical

Q-learning is used to balance exploration and exploitation. Different ε values lead to

different learning performance 7. Another well known example of hyper-parameter

tuning is the parameter Cp in Monte Carlo Tree Search (MCTS) 8. There are many

works on tuning Cp for different kinds of tasks. These provide insight on setting

its value for MCTS in order to balance exploration and exploitation 9. In deep

reinforcement learning, the effect of the many neural network parameters are a

black-box that precludes understanding, although the strong decision accuracy of

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 3

deep learning is undeniable 10, as the results in Go (and many other applications)

have shown 11. After AlphaGo 1, the role of self-play became more and more im-

portant. Earlier works on self-play in reinforcement learning are studied 12,13,14,15

and an overview is provided 16.

On hyper-parameters and loss-functions for AlphaZero-like systems there are a

few studies: Chen et al. 17 tuned some parameters (in particular MCTS-related pa-

rameters in self-play game playing) in AlphaGo with Bayesian optimization, which

leads to abandoning the fast rollout in AlphaGo Zero and AlphaZero. Mandai et

al. 18 studied policy and value network optimization as a multi-task learning prob-

lem 19. Matsuzaki compares MCTS with evaluation functions of different quality,

and finds different results in Othello 20 than AlphaGo’s PUCT. Moreover, Mat-

suzaki et al. 21 showed that the value function has more importance than the policy

function in the PUCT algorithm for Othello. In our study, we extend this work and

look more deeply into the relationship between value and policy functions in games.

Our experiments are also performed using AlphaZeroGeneral 6 which learns from

from tabula rasa on several smaller games, namely 5×5 and 6×6 Othello 22, 5×5

and 6×6 Connect Four 23 and 5×5 and 6×6 Gobang 24. The smaller size of these

games allows us to do more experiments, and they also provide us largely uncharted

territory where we hope to find effects that cannot be seen in Go or Chess.a

3. Test Games

In our hyper-parameter sweep experiments, we use Othello with a 6×6 board size,

see Fig. 1(a). In the alternative loss function experiments, we use the games Othello,

Connect Four and Gobang, each with 5×5 and 6×6 board sizes.

1
2
3
4
5
6

1 2 3 4 5 6

(a) 6×6 Othello

1 2 3 4 5
1
2
3
4
5

(b) 5×5 Othello

1 2 3 4 5
1
2
3
4
5

(c) 5×5 Connect Four

1 2 3 4 5
1
2
3
4
5

(d) 5×5 Gobang

Fig. 1. Starting positions for Othello, examples for Connect Four and Gobang

Othello is a two-player game. Players take turns placing their own color pieces.

Any opponent’s color pieces that are in a straight line and bounded by the piece just

placed and another piece of the current player’s are flipped to the current player’s

aThis part of the work is published at the IEEE SSCI 2019 conference 25, and is included here for
completeness.

July 10, 2021 19:27 WSPC/ws-ijitdm output

4 Authors’ Names

color. While the last legal position is filled, the player who has most pieces wins

the game. Fig. 1(a/b) show the start configurations for Othello. Connect Four is a

two-player connection game. Players take turns dropping their own pieces from the

top into a vertically suspended grid. The pieces fall straight down and occupy the

lowest position within the column. The player who first forms a horizontal, vertical,

or diagonal line of four pieces wins the game. Fig. 1(c) is a game termination

example for 5×5 Connect Four where the red player wins the game. Gobang is

another connection games that traditionally is played with Go pieces (black and

white stones) on a Go board. Players alternate turns, placing a stone of their color

on an empty position. The winner is the first player to form an unbroken chain

of 4 stones horizontally, vertically, or diagonally. Fig. 1(d) is a game termination

example for 5×5 Gobang where the black player wins the game. These games are

usually employed as test cases in game playing 26,27,28,29,30,31.

4. AlphaZero-like Self-play

4.1. The base algorithm

Following the works by Silver et al. 2,3 the fundamental structure of AlphaZero-like

Self-play is an iteration over three different stages (see Algorithm 4.1).

Algorithm 4.1 AlphaZero-like Self-play Algorithm
1: function AlphaZeroGeneral

2: Initialize fθ with random weights; Initialize retrain buffer D with capacity N

3: for iteration=1, . . . , I do
4: for episode=1,. . . , E do . stage 1

5: for t=1, . . . , T ′, . . . , T do

6: Get an enhanced best move prediction πt by performing MCTS based on fθ(st)
7: Before step T ′, select random action at based on probability πt, else select action

at = arg maxa(πt)

8: Store example (st, πt, zt) in D
9: Set st=excuteAction(st, at)

10: Label reward zt (t ∈ [1, T]) as zT in examples

11: Randomly sample minibatch of examples (sj , πj , zj) from D . stage 2
12: fθ ′ ← Train fθ by performing optimizer to minimize Eq. 1 based on sampled examples

13: Set fθ = fθ ′ if fθ ′ is better than fθ . stage 3

14: return fθ;

The first stage is a self-play tournament. The computer player performs several

games against itself in order to generate data for further training. In each step of a

game (episode), the player runs MCTS to obtain, for each move, an enhanced policy

π based on the probability p provided by the neural network fθ. We now introduce

the hyper-parameters, and their abbreviation that we use in this paper. In MCTS,

hyper-parameter Cp is used to balance exploration and exploitation of game tree

search, and we abbreviate it to c. Hyper-parameter m is the number of times to run

down from the root for building the game tree, where the parameterized network

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 5

Self-play
{T’,E,m,c}

Training
{rs, ep,bs,lr,d}

Arena
{u,n,m,c}

Neural Network

Game examples

New NN

state

Update?

policy/value

Old NN

Old NN

Fig. 2. A diagram of the schema of AlphaZero-like Self-play Algorithm over 3 stages with corre-

sponding hyper-parameters. Hyper-parameter I controls the loop over these 3 stages.

fθ provides the value (v) of the states for MCTS. For actual (self-)play, from T’

steps on, the player always chooses the best move according to π. Before that, the

player always chooses a random move based on the probability distribution of π.

After finishing the games, the new examples are normalized as a form of (st, πt, zt)

and stored in D.

The second stage consists of neural network training, using data from the

self-play tournament. Training lasts for several epochs. In each epoch (ep), training

examples are divided into several small batches 32 according to the specific batch

size (bs). The neural network is trained to minimize 33 the value of the loss function

which (see Eq. 1) sums up the mean-squared error between predicted outcome and

real outcome and the cross-entropy losses between p and π with a learning rate (lr)

and dropout (d). Dropout is used as probability to randomly ignore some nodes of

the hidden layer in order to avoid overfitting 34.

The last stage is arena comparison, in which the newly trained neural network

model (fθ′) is run against the previous neural network model (fθ). The better model

is adopted for the next iteration. In order to achieve this, fθ′ and fθ play against

each other for n games. If fθ′ wins more than a fraction of u games, it is replacing

the previous best fθ. Otherwise, fθ′ is rejected and fθ is kept as current best model.

Compared with AlphaGo Zero, AlphaZero does not entail the arena comparison

stage anymore. However, we keep this stage for making sure that we can safely

recognize improvements.

Furthermore, we intuitively present a diagram to describe the Algorithm 4.1 with

necessary components for 3 stages and corresponding hyper-parameters in Fig. 2:

4.2. Loss function

The training loss function consists of lp and lv. The neural network fθ is pa-

rameterized by θ. fθ takes the game board state s as input, and provides the value

vθ ∈ [−1, 1] of s and a policy probability distribution vector p over all legal actions

as outputs. pθ is the policy provided by fθ to guide MCTS for playing games. After

performing MCTS, we obtain an improvement estimate for policy π. Training aims

July 10, 2021 19:27 WSPC/ws-ijitdm output

6 Authors’ Names

at making p more similar to π. This can be achieved by minimizing the cross en-

tropy of both distributions. Therefore, lp is defined as −π> logp. The other aim is

to minimize the difference between the output value (vθ(st)) of the state s according

to fθ and the real outcome (zt ∈ {−1, 1}) of the game. Therefore, lv is defined as

the mean squared error (v− z)2. Summarizing, the total loss function of AlphaZero

is defined in Eq. 1.

l+ = −π> logp + (v − z)2 (1)

Note that in AlphaZero’s loss function, there is an extra regularization term to

guarantee the training stability of the neural network. In order to pay more attention

to two evaluation function components, instead, we apply standard measures to

avoid overfitting such as the dropout mechanism.

4.3. Bayesian Elo system

The Elo rating function has been developed as a method for calculating the

relative skill levels of players in games. Usually, in zero-sum games, there are two

players, A and B. If their Elo ratings are RA and RB , respectively, then the expecta-

tion that player A wins the next game is EA = 1
1+10(RB−RA)/400 . If the real outcome

of the next game is SA, then the updated Elo of player A can be calculated from

its original Elo by RA = RA +K(SA−EA), where K is the factor of the maximum

possible adjustment per game. In practice, K should be bigger for weaker players

but smaller for stronger players. Following AlphaZero 3, in our design, we adopt

the Bayesian Elo system 35 to show the improvement curve of the learning player

during self-play. We also employ this method to assess the playing strength of the

final models.

4.4. Time cost function

Because of the high computational cost of self-play reinforcement learning, the

running time of self-play is of great importance. We have created a time cost

function to predict the running time, based on the algorithmic structure in Al-

gorithm 4.1. According to Algorithm 4.1, the whole training process consists of

several iterations with three steps as introduced in Section 4.1. Please refer to

the algorithm and to Eq. 2. In ith iteration (1 ≤ i ≤ I), if we assume that in

jth episode (1 ≤ j ≤ E), for kth game step (the size of k mainly depends on

the game complexity), the time cost of lth MCTS (1 ≤ l ≤ m) simulation is

t
(i)
jkl, and assume that for pth epoch (1 ≤ p ≤ ep), the time cost of pulling qth

batch (1 ≤ q ≤ trainingExampleList.size/bs)b through the neural network is t
(i)
pq ,

and assume that in wth arena comparison (1 ≤ w ≤ n), for xth game step, the

time cost of yth MCTS simulation (1 ≤ y ≤ m) is t
(i)
xyw. The time cost of the whole

bthe size of trainingExampleList is also relative to the game complexity

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 7

training process is summarized in Eq. 2.

∑
i

(

self−play︷ ︸︸ ︷∑
j

∑
k

∑
l

t
(i)
jkl +

training︷ ︸︸ ︷∑
p

∑
q

t(i)pq +

arena comparison︷ ︸︸ ︷∑
x

∑
y

∑
w

t(i)xyw) (2)

Please refer to Table 1 for an overview of the hyper-parameters. From Algo-

rithm 4.1 and Eq. 2, we can see that the hyper-parameters, such as I, E, m, ep, bs,

rs, n etc., influence training time. In addition, t
(i)
jkl and t

(i)
xyw are simulation costs

that rely on hardware capacity and game complexity. t
(i)
uv also relies on the structure

of the neural network. In our experiments, all neural network models share the same

structure, which consists of 4 convolutional layers and 2 fully connected layers.

5. Experimental Setup

Our experiments are run on a machine with 128GB RAM, 3TB local storage,

20-core Intel Xeon E5-2650v3 CPUs (2.30GHz, 40 threads), 2 NVIDIA Titanium

GPUs (each with 12GB memory) and 6 NVIDIA GTX 980 Ti GPUs (each with

6GB memory). In order to keep using the same GPUs, we deploy each run of ex-

periments on the NVIDIA GTX 980 Ti GPU. Each run of experiments takes 2 to

3 days.

5.1. Hyper-Parameter sweep

We sweep the 12 hyper-parameters by configuring 3 different values (minimum

value, default value and maximum value) to find the most promising parameter

values. In each single run of training, we play 6×6 Othello 22 based on Algorithm 4.1

and change the value of one hyper-parameter, keeping the other hyper-parameters

at default values (see Table 1).

Table 1. Default Hyper-Parameter Setting

- Description Minimum Default Maximum

I number of iteration 50 100 150
E number of episode 10 50 100
T’ step threshold 10 15 20
m MCTS simulation times 25 100 200

c weight in UCT 0.5 1.0 2.0
rs number of retrain iteration 1 20 40

ep number of epoch 5 10 15
bs batch size 32 64 96

lr learning rate 0.001 0.005 0.01
d dropout probability 0.2 0.3 0.4
n number of comparison games 20 40 100

u update threshold 0.5 0.6 0.7

July 10, 2021 19:27 WSPC/ws-ijitdm output

8 Authors’ Names

5.2. Hyper-Parameters correlation evaluation

Based on the above experiments, we further explore the correlation of interesting

hyper-parameters (i.e. I, E, m and ep) in terms of their best final player’s playing

strength and overall training time. We set values for these 4 hyper-parameters as

Table 2, and other parameters values are set to the default values in Table 1. In

addition, for (and only for) this part of experiments, the stage 3 of Algorithm 4.1 is

cut off. Instead, for every iteration, the trained model fθ′ is accepted as the current

best model fθ automatically, which is also adopted by AlphaZero and saves a lot of

time.

Table 2. Correlation Evaluation Hyper-Parameter Setting

- Description Minimum Middle Maximum

I number of iteration 25 50 75

E number of episode 10 20 30
m MCTS simulation times 25 50 75

ep number of epoch 5 10 15

Note that due to computation resource limitations, for hyper-parameter sweep

experiments on 6×6 Othello, we only perform single run experiments. This may

cause noise, but still provides valuable insights on the importance of hyper-

parameters under the AlphaZero-like self-play framework.

5.3. Alternative loss function evaluation

As we want to assess the effect of different loss functions, we employ a weighted

sum loss function based on (3):

lλ = λ(−π> logp) + (1− λ)(v − z)2 (3)

where λ is a weight parameter. This provides some flexibility to gradually change

the nature of the function. In our experiments, we first set λ=0 and λ=1 in order to

assess lp or lv independently. Then we use Eq. 1 as training loss function. Further-

more, we note from the theory of multi-attribute utility functions in multi-criteria

optimization 36 that a sum tends to prefer extreme solutions, whereas a product

prefers a more balanced solution. We employ a product combination loss function

as follows:

l× = −π> logp× (v − z)2 (4)

For all loss function experiments, each setting is run 8 times to get statistically

significant results (we show error bars) using the hyper-parameters of Table 1 with

their default values. However, in order to allow longer training, we enhance the

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 9

iteration number to 200 in the smaller games (5×5 Othello, 5×5 Connect Four and

5×5 Gobang).

The loss function in question is used to guide each training process, with the

expectation that smaller loss means a stronger model. However, in practice, we

have found that this is not always the case and another measure is needed to check.

Following DeepMind’s work, we use Bayesian Elo ratings 35 to describe the playing

strength of the model in every iteration. In addition, for each game, we use all best

players trained from the four different targets (lp, lv, l+, l×) and 8 repetitionsc

plus a random player to play 20 round-robin rounds. We calculate the Elo ratings of

the 33 players as the real playing strength of a player, rather than the one measured

while training.

6. Experimental Results

In order to better understand the training process, first, we depict training loss

evolution for default settings in Fig. 3.

I

0
20

40
60

80

ep

0
1

2
3

4
5

6
7

8
9

l +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fig. 3. Single run training loss over iterations I and epochs ep

We plot the training loss of each epoch in every iteration and see that (1) in

each iteration, loss decreases along with increasing epochs, and that (2) loss also

decreases with increasing iterations up to a relatively stable level.

6.1. Hyper-Parameter sweep results

I: In order to find a good value for I (iterations), we train 3 different models to

play 6×6 Othello by setting I at minimum, default and maximum value respectively.

We keep the other hyper-parameters at their default values. Fig. 4(a) shows that

cIn alternative loss function evaluation experiments, multiple runs for each setting are employed
to avoid bias

July 10, 2021 19:27 WSPC/ws-ijitdm output

10 Authors’ Names

training loss decreases to a relatively stable level. However, after iteration 120, the

training loss unexpectedly increases to the same level as for iteration 100 and further

decreases. This surprising behavior could be caused by a too high learning rate, an

improper update threshold, or overfitting. This is an unexpected result since in

theory more iterations lead to better performance.

E: Since more episodes mean more training examples, it can be expected that

more training examples lead to more accurate results. However, collecting more

training examples also needs more resources. This shows again that hyper-parameter

optimization is necessary to find a reasonable value of for E. In Fig. 4(b), for E=100,

the training loss curve is almost the same as the 2 other curves for a long time before

eventually going down.

T’: The step threshold controls when to choose a random action or the one

suggested by MCTS. This parameter controls exploration in self-play, to prevent

deterministic policies from generating training examples. Small T’ results in more

deterministic policies, large T’ in policies more different from the model. In Fig. 4(c),

we see that T’=10 is a good value.

m: In theory, more MCTS simulations m should provide better policies. How-

ever, higher m requires more time to get such a policy. Fig. 4(d) shows that a value

for 200 MCTS simulations achieves the best performance in the 70th iteration, then

has a drop, to reach a similar level as 100 simulations in iteration 100.

c: This hyper-parameter Cp is used to balance the exploration and exploitation

during tree search. It is often set at 1.0. However, in Fig. 4(e), our experimental

results show that more exploitation (c=0.5) can provide smaller training loss.

rs: In order to reduce overfitting, it is important to retrain models using previous

training examples. Finding a good retrain length of historical training examples is

necessary to reduce training time. In Fig. 4(f), we see that using training examples

from the most recent single previous iteration achieves the smallest training loss.

This is an unexpecrted result, suggesting that overfitting is prevented by other

means and that the time saving works out best overall.

ep: The training loss of different ep is shown in Fig. 4(g). For ep=15 the training

loss is the lowest. This result shows that along with the increase of epoch, the

training loss decreases, which is as expected.

bs: a smaller batch size bs increases the number of batches, leading to higher

time cost. However, smaller bs means less training examples in each batch, which

may cause more fluctuation (larger variance) of training loss. Fig. 4(h) shows that

bs=96 achieves the smallest training loss in iteration 85.

lr: In order to avoid skipping over optima, a small learning rate is generally

suggested. However, a smaller learning rate learns (accepts) new knowledge slowly.

In Fig. 4(i), lr=0.001 achieves the lowest training loss around iteration 80.

d: Dropout is a popular method to prevent overfitting. Srivastava et al. claim

that dropping out 20% of the input units and 50% of the hidden units is often found

to be good 34. In Fig. 4(j), however, we can not see a significant difference.

n: The number of games in the arena comparison is a key factor of time cost. A

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 11

0 20 40 60 80 100 120 140
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

I=50
I=100(default)
I=150

(a) l+ vs I

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

E=10
E=50(default)
E=100

(b) l+ vs E

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

T ′=10
T ′=15(default)
T ′=20

(c) l+ vs T ′

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

m=25
m=100(default)
m=200

(d) l+ vs m

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

c=0.5
c=1.0(default)
c=2.0

(e) l+ vs c

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

rs=1
rs=20(default)
rs=40

(f) l+ vs rs

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

ep=5
ep=10(default)
ep=15

(g) l+ vs ep

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

bs=32
bs=64(default)
bs=96

(h) l+ vs bs

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

lr=0.001
lr=0.005(default)
lr=0.01

(i) l+ vs lr

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

d=0.2
d=0.3(default)
d=0.4

(j) l+ vs d

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

n=20
n=40(default)
n=100

(k) l+ vs n

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

u=0.5
u=0.6(default)
u=0.7

(l) l+ vs u

Fig. 4. Training loss for different parameter settings over iterations.

small value may miss accepting good new models and too large a value is a waste of

time. Our experimental results in Fig. 4(k) show that there is no significant differ-

ence. A combination with u can be used to determine the acceptance or rejection

of a newly learnt model. In order to reduce time cost, a small n combined with a

July 10, 2021 19:27 WSPC/ws-ijitdm output

12 Authors’ Names

large u may be a good choice.

u: This hyper-parameter is the update threshold. Normally, in two-player games,

player A is better than player B if it wins more than 50% games. A higher threshold

avoids fluctuations. However, if we set it too high, it becomes too difficult to accept

better models. Fig. 4(l) shows that u=0.7 is too high, 0.5 and 0.6 are acceptable.

Table 3. Time Cost (hr) of Different Parameter Setting

Parameter Minimum Default Maximum Type

I 23.8 44.0 60.3 time-sensitive

E 17.4 44.0 87.7 time-sensitive

T’ 41.6 44.0 40.4 time-friendly
m 26.0 44.0 64.8 time-sensitive

c 50.7 44.0 49.1 time-friendly

rs 26.5 44.0 50.7 time-sensitive
ep 43.4 44.0 55.7 time-sensitive

bs 47.7 44.0 37.7 time-sensitive
lr 47.8 44.0 40.3 time-friendly

d 51.9 44.0 51.4 time-friendly

n 33.5 44.0 57.4 time-sensitive
u 39.7 44.0 40.4 time-friendly

To investigate the impact on running time, we present the effect of different

values for each hyper-parameter in Table 3. We see that for I, E, m, rs, n, smaller

values lead to quicker training, which is as expected. For bs, larger values result in

quicker training. The other hyper-parameters are indifferent, changing their values

will not lead to significant changes in training time. Therefore, tuning these hyper-

parameters shall reduce training time or achieve better quality in the same time.

Table 4. Importance Summary in Different Objectives

Parameter Default Value Loss Time Cost

I 100 100 50

E 50 10 10
T’ 15 10 similar
m 100 200 25

c 1.0 0.5 similar

rs 20 1 1
ep 10 15 5

bs 64 96 96
lr 0.005 0.001 similar
d 0.3 0.3 similar

n 40 insignificant 20

u 0.6 insignificant similar

Based on the aforementioned results and analysis, we summarize the impor-

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 13

tance by evaluating contributions of each parameter to training loss and time cost,

respectively, in Table 4 (best values in bold font). For training loss, different val-

ues of n and u do not result in a significant difference. Modifying time-indifferent

hyper-parameters does not much change training time, whereas larger value of time-

sensitive hyper-parameters lead to higher time cost.

6.2. Hyper-Parameter correlation evaluation results

In this part, we investigate the correlation between promising hyper-parameters in

terms of time cost and playing strength. There are 34 = 81 final best players trained

based on 3 different values of 4 hyper-parameters (I, E, m and ep) plus a random

player (i.e. 82 in total). Any 2 of these 82 players play with each other. Therefore,

there are 82×81/2=3321 pairs, and for each of these, 10 games are played.

5

10

15

ep

I=25,E=10 I=25,E=20 I=25,E=30

5

10

15

ep

I=50,E=10 I=50,E=20 I=50,E=30

25 50 75
m

5

10

15

ep

I=75,E=10

25 50 75
m

I=75,E=20

25 50 75
m

I=75,E=30

300

200

100

0

100

200

Fig. 5. Elo ratings of the final best players of the full tournament (3 parameters, 1 target value)

In each sub-figures of Fig. 5, all models are trained from the same value of I

and E, according to the different values in x-axis and y-axis, we find that, generally,

larger m and larger ep lead to higher Elo ratings. However, in the last sub-figure,

we can clearly notice that the Elo rating of ep=10 is higher than that of ep=15

for m=75, which shows that sometimes more training can not improve the playing

strength but decreases the training performance. We suspect that this is caused

by overfitting. Looking at the sub-figures, the results also show that more (outer)

training iterations can significantly improve the playing strength, also more training

examples in each iteration (bigger E) helps. These outer iterations are clearly more

important than optimizing the inner hyper-parameters of m and ep. Note that

higher values for the outer hyper-parameters imply more MCTS simulations and

July 10, 2021 19:27 WSPC/ws-ijitdm output

14 Authors’ Names

more training epochs, but not vice versa. This is an important insight regarding

tuning hyper-parameters for self-play.

According to (Eq. 2) and Table. 4, we know that smaller values of time sensitive

hyper-parameters result in quicker training. However, some time sensitive hyper-

parameters influence the training of better models. Therefore, we analyze training

time versus Elo rating of the hyper-parameters, to achieve the best training perfor-

mance for a fixed time budget.

0 5000 10000 15000 20000 25000
Self-play time/s

0

10000

20000

30000

40000

50000

60000

70000

Tr
ai

ni
ng

 ti
m

e/
s

240

160

80

0

80

160

240

Fig. 6. Elo ratings of the final best players with different time cost of Self-play and neural network
training (same base data as in Fig. 5)

In order to find a way to assess the relationship between time cost and Elo

ratings, we categorize the time cost into two parts, one part is the self-play (stage

1 in Algorithm 4.1, iterations and episodes) time cost, the other is the training

part (stage 2 in Algorithm 4.1, training epochs). In general, spending more time

in training and in self-play gives higher Elo. In self-play time cost, there is also an

other interesting variable, searching time cost, which is influenced by the value of

m.

In Fig. 6 we also find high Elo points closer to the origin, confirming that high

Elo combinations of low self-play time and low training time exist, as was indicated

above, by choosing low epoch ep and simulation m values, since the outer iterations

already imply adequate training and simulation.

In order to further analyze the influence of self-play and training on time, we

present in Fig. 7(a) the full-tournament Elo ratings of the lower right panel in Fig. 5.

The blue line indicates the Pareto front of these combinations. We find that low

epoch values achieves the highest Elo in a high iteration training session: more outer

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 15

self-play iterations implies more training epochs, and the data generated is more

diverse such that training reaches more efficient stable state (no overfitting).

0.0 0.5 1.0 1.5 2.0
Self-play time/s 1e4

160

180

200

220

240

260

280

El
o

ra
tin

g

(25,5)

(25,10)

(25,15)

(50,5)

(50,10)
(50,15)

(75,5)
(75,10)

(75,15)

(a) Self-play time vs Elo

0 1 2 3 4 5 6 7 8 9
Total time/s 1e4

160

180

200

220

240

260

280

El
o

ra
tin

g

(25,5)

(25,10)

(25,15)

(50,5)

(50,10)
(50,15)

(75,5)
(75,10)

(75,15)

(b) Total time vs Elo

Fig. 7. Elo ratings of final best players to self-play, training and total time cost while I=75 and
E=30.The values of tuple (m, ep) are given in the figures for every data point. In long total

training, for m, larger values cost more time and generally improve the playing strength. For ep,

more training within one iteration does not show improvement for Elo ratings. The lines indicate
the Pareto fronts of Elo rating vs. time.

6.3. Alternative loss function results

In the following, we present the results of different loss functions. We have measured

individual value loss, individual policy loss, the sum of the two, and the product of

the two, for the three games. We report training loss, the training Elo rating and

the tournament Elo rating of the final best players. Error bars indicate standard

deviation of 8 runs.

6.3.1. Training loss

We first show the training losses in every iteration with one minimization task

per diagram, hence we need four of these per game. In these graphs we see what

minimizing for a specific target actually means for the other loss types.

For 5×5 Othello, from Fig. 8(a), we find that when minimizing lp only, the loss

decreases significantly to about 0.6 at the end of each training, whereas lv stagnates

at 1.0 after 10 iterations. Minimizing only lv (Fig. 8(b)) brings it down from 0.5 to

0.2, but lp remains stable at a high level. In Fig. 8(c), we see that when the l+ is

minimized, both losses are reduced significantly. The lp decreases from about 1.2

to 0.5, lv surprisingly decreases to 0. Fig. 8(d), it is similar to Fig. 8(c), while the

l× is minimized, the lp and lv are also reduced. The lp decreases to 0.5, the lv also

surprisingly decreases to about 0. Figures for 6×6 Othello are not shown since they

are very similar to 5×5 (for the same reason we do not show loss pictures for 6×6

Connect Four and 6×6 Gobang).

July 10, 2021 19:27 WSPC/ws-ijitdm output

16 Authors’ Names

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(a) Minimize lp

0 20 40 60 80 100 120 140 160 180
Training iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Va
lu

e

lp
lv

l+

l×

(b) Minimize lv

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(c) Minimize l+

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(d) Minimize l×

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(e) Minimize lp

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(f) Minimize lv

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(g) Minimize l+

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(h) Minimize l×

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(i) Minimize lp

0 20 40 60 80 100 120 140 160 180
Training iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Va
lu

e

lp
lv

l+

l×

(j) Minimize lv

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(k) Minimize l+

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(l) Minimize l×

Fig. 8. Training losses for minimizing different targets in 5×5 Othello (Fig. 8(a) to Fig. 8(d)), 5×5

Connect Four (Fig. 8(e) to Fig. 8(h)) and 5×5 Gobang (Fig. 8(i) to Fig. 8(l)) averaged over 8
runs. All measured losses are shown, but only one of these is minimized for (The caption of each

subfigure indicates the minimized target). Note the different scaling for subfigure (b) and (j). In

most cases, the target that is minimized for is also the lowest.

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 17

For 5×5 Connect Four (see Fig. 8(e)), we find that when only minimizing lp, it

significantly reduces from 1.4 to about 0.6, whereas lv is minimized much quicker

from 1.0 to about 0.2, where it is almost stationary. Minimizing lv (Fig. 8(f)) leads

to some reduction from more than 0.5 to about 0.15, but lp is not moving much after

an initial slight decrease to about 1.6. For minimizing the l+ (Fig. 8(g)) and the l×
(Fig. 8(h)), the behavior of lp and lv is very similar, they both decrease steadily,

until lv surprisingly reaches 0. Of course the l+ and the l× arrive at different values,

but in terms of both lp and lv they are not different.

For 5×5 Gobang game, we find that, in Fig. 8, when only minimizing lp, lp
value decreases from around 2.5 to about 1.25 while the lv value reduces from 1.0

to 0.5 (see Fig. 8(i)). When minimizing lv, lv value quickly reduces to a very level

which is lower than 0.1 (see Fig. 8(j)). Minimizing l+ and l× both lead to stationary

low lv values from the beginning of training which is different from Othello and

Connect Four.

6.3.2. Training Elo rating

Following the AlphaGo papers, we also investigate the training Elo rating of every

iteration during training. Instead of showing results from single runs, we provide

means and variances for 8 runs for each target, categorized by different games in

Fig. 9.

From Fig. 9(a) (small 5×5 Othello) we see that for all minimization tasks, Elo

values steadily improve, while they raise fastest for lp. In Fig. 9(b), we find that

for 6×6 Othello version, Elo values also always improve, but much faster for the l+
and l× target, compared to the single loss targets, also for 7×7 Othello (Fig. 9(c)).

But for 8×8 Othello, the improving trend becomes gentle (Fig. 9(d)).

Fig. 9(e) and Fig. 9(f) show the Elo rate progression for training players with

the four different targets on the small and larger Connect Four setting. This looks a

bit different from the Othello results, as we find stagnation (for 6×6 Connect Four)

as well as even degeneration (for 5×5 Connect Four), which can be also found in

Fig. 9(g) and Fig. 9(h) for Gobang. The latter actually means that for decreasing

loss in the training phase, we achieve decreasing Elo rates, such that the players get

weaker and not stronger. In the larger Connect Four (and Gobang) setting, we still

have a clear improvement, especially if we minimize for lv. Minimizing for lp leads

to stagnation quickly, or at least a very slow improvement.

Overall, we display the Elo progression obtained from the different minimization

targets for one game together. However, one must be aware that their numbers are

not directly comparable due to the high self-play bias (as they stem from players

who have never seen each other). Nevertheless, the trends are important, and it is

especially interesting to see if Elo values correlate with the progression of losses.

Based on the experimental results, we can conclude that the training Elo rating is

certainly good for assessing if training actually works, whereas the losses alone do

not always show that. We may even experience contradicting outcomes as stagnating

July 10, 2021 19:27 WSPC/ws-ijitdm output

18 Authors’ Names

0 20 40 60 80 100 120 140 160 180 200
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(a) 5×5 Othello

0 20 40 60 80 100
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(b) 6×6 Othello

0 20 40 60 80 100
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(c) 7×7 Othello

0 20 40 60 80 100
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(d) 8×8 Othello

0 20 40 60 80 100 120 140 160 180 200
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(e) 5×5 Connect Four

0 20 40 60 80 100
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(f) 6×6 Connect Four

0 20 40 60 80 100 120 140 160 180 200
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(g) 5×5 Gobang

0 20 40 60 80 100
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(h) 6×6 Gobang

Fig. 9. The whole history Elo rating at each iteration during training for different games, aggregated

from 8 runs. The training Elo for l+ and l× in panel b and c for example shows inconsistent results

losses and rising Elo ratings (for the big Othello setting and lv) or completely

counterintuitive results as for the small Connect Four setting where Elo ratings and

losses are partly anti-correlated. We have experimental evidence for the fact that

training losses and Elo ratings are by no means exchangeable as they can provide

very different impressions of what is actually happening.

6.3.3. The final best player tournament Elo rating

In order to measure which target can achieve better playing strength, we let all final

models trained from 8 runs and 4 targets plus a random player pit against each other

for 20 times in a full round robin tournament. This enables a direct comparison of

the final outcomes of the different training processes with different targets. It is

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 19

lp lv l+ l×
Minimized target

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

(a) 5×5 Othello

lp lv l+ l×
Minimized target

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

(b) 6×6 Othello

lp lv l+ l×
Minimized target

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

(c) 7×7 Othello

lp lv l+ l×
Minimized target

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

(d) 8×8 Othello

lp lv l+ l×
Minimized target

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

(e) 5×5 Connect Four

lp lv l+ l×
Minimized target

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

(f) 6×6 Connect Four

lp lv l+ l×
Minimized target

−700

−600

−500

−400

−300

−200

−100

0

100

200

300

400

500

600

700

E
lo

ra
tin

g

(g) 5×5 Gobang

lp lv l+ l×
Minimized target

−700
−600
−500
−400
−300
−200
−100

0
100
200
300
400
500
600
700

E
lo

ra
tin

g

(h) 6×6 Gobang

Fig. 10. Round-robin tournament of all final models from minimizing different targets. For each

game 8 final models from 4 different targets plus a random player (i.e. 33 in total). In panel (a) the
difference is small. In panel b, c, and d, the Elo rating of lv minimized players clearly dominates.

However, in panel (f), the Elo rating of lp minimized players clearly achieve the best performance.

thus more informative than the training Elo due to the self-play bias, but provides

no information during the self-play training process. In principle, it is possible to

do this also during the training at certain iterations, but this is computationally

very expensive.

The results are presented in Fig. 10. and show that minimizing lv achieves the

highest Elo rating with small variance for 6×6 Othello, 7×7 Othello, 5×5 Connect

Four and 6×6 Connect Four. For 5×5 Othello, with 200 training iterations, the

difference between the results is small. We therefore presume that minimizing lv is

the best choice for the games we focus on. This is surprising because we expected

the l+ to perform best as documented in the literature. However, this may apply

July 10, 2021 19:27 WSPC/ws-ijitdm output

20 Authors’ Names

to smaller games only. Since we see that (1) for 7×7 Othello, lv is still the best,

but comparing with 8×8 Othello, the relative Elo rating of lv reduced. And (2) for

8×8 Othello (in Fig 10(d)), lv continues to reduce and l× becomes the best. More

clearly, based on the Fig. 10(a) to Fig. 10(d), an independent comparison among

different board sizes for Othello is shown in Fig 11. Note that 5×5 Othello already

seems to be a border case where overfitting levels out all differences.

5×5 6×6 7×7 8×8
Board Size

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

lp
lv

l+

l×

Fig. 11. Average Elo ratings of the final best players with different board size for Othello (same

base data as in Fig. 10(a) to Fig. 10(d)). The data points are connected as lines to show trends.

In conclusion, we find that minimizing lv only is an alternative to the l+ target

for certain small cases. And for larger cases, l× could be the other alternative.

We also report exceptions, especially in relation to the Elo rating as calculated

during training. The relation between Elo and loss during training is sometimes

inconsistent (5×5 Connect Four training shows Elo decreasing while the losses are

actually minimized) due to training bias. And for Gobang game, only minimizing

lp is the best alternative. A combination achieves lowest loss, but lv achieves the

highest training Elo. If we minimize product loss l×, this can result in higher Elo

rating for certain games. More research into training bias is needed.

7. Conclusion

AlphaGo has taken reinforcement learning by storm. The performance of the novel

approach to self-play is stunning, yet the computational demands are high, prohibit-

ing the wider applicability of this method. Little is known about the impact of the

values of the many hyper-parameters on the speed and quality of learning. In this

work, we analyze important hyper-parameters and combinations of loss-functions.

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 21

We gain more insight and find recommendations for faster and better self-play. We

have used small games to allow us to perform a thorough sweep using a large num-

ber of hyper-parameters, within a reasonable computational budget. We sweep 12

parameters in AlphaZeroGeneral 6 and analyze loss and time cost for 6×6 Othello,

and select the 4 most promising parameters for further optimization.

We evaluate the interaction between these four time-related hyper-parameters

more thoroughly. Thereby we find that: i) generally, higher values lead to higher

playing strength; ii) within a limited budget, a higher number of the outer self-

play iterations is more promising than higher numbers of the inner training epochs,

search simulations, and game episodes. At first, this is a surprising result since

conventional wisdom tells us that deep learning networks should be trained well,

and MCTS needs many play-out simulations to find good training targets.

In AlphaZero-like self-play, the outer-iterations subsume the inner training and

search. Performing more outer iterations automatically implies that more inner

training and search are performed. The training and search improvements carry

over from one self-play iteration to the next, and long self-play sessions with many

iterations can get by with surprisingly few inner training epochs and MCTS simu-

lations. The sample efficiency of self-play is higher than the simple composition of

the constituent elements would predict. Also, the implied high number of training

epochs may cause overfitting, to be reduced by small values for epochs.

Much research in self-play uses the default loss function (sum of value and policy

loss). More research is needed into the relative importance of value function and

policy function. We evaluate four alternative loss functions for three games and two

board sizes, and find that the best setting depends on the game and is usually not

the sum of policy and value loss, but simply the value loss. However, the sum may

be a good compromise.

Finally, the experiments show that care must be taken in computing Elo ratings.

Computing Elo based on game-play results during training typically gives biased

results that differ greatly from tournaments between multiple opponents. Moreover,

we pointed out that the Elo calculation based on the final best models tournament

should be used.

For future work, more insight into training bias is needed. Also, automatic op-

timization frameworks can be explored 38,39. Also, reproducibility studies should

be performed to see how our results carry over to larger games (like Go), com-

putational load permitting. Given that Chen et al. 17 tuned some MCTS-related

parameters (like exploration and exploitation balancing which we also adopt as pa-

rameter c) in AlphaGo with Bayesian optimization, resulting in Elo improvements,

which evidenced our findings in self-play. However, Chen et al. 17 did not directly

study the parameters in neural network training, we believe our work provide in-

sightful analysis for future work on larger games.

July 10, 2021 19:27 WSPC/ws-ijitdm output

22 Authors’ Names

References

1. Silver D, Huang A, Maddison C J, et al: Mastering the game of Go with deep neural
networks and tree search. Nature 529(7587), 484–489 (2016)

2. Silver D, Schrittwieser J, Simonyan K, et al: Mastering the game of go without human
knowledge. Nature 550(7676), 354–359 (2017)

3. Silver D, Hubert T, Schrittwieser J, et al. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science, 2018, 362(6419): 1140-
1144.

4. Tao J, Wu L, Hu X: Principle Analysis on AlphaGo and Perspective in Military Appli-
cation of Artificial Intelligence. Journal of Command and Control 2(2), 114–120 (2016)

5. Zhang Z: When doctors meet with AlphaGo: potential application of machine learning
to clinical medicine. Annals of translational medicine 4(6), (2016)

6. N. Surag, https://github.com/suragnair/alpha-zero-general, 2018.
7. Wang H, Emmerich M, Plaat A. Monte Carlo Q-learning for General Game Playing.

arXiv preprint arXiv:1802.05944 (2018)
8. Browne C B, Powley E, Whitehouse D, et al: A survey of monte carlo tree search

methods. IEEE Transactions on Computational Intelligence and AI in games 4(1),
1–43 (2012)

9. B Ruijl, J Vermaseren, A Plaat, J Herik: Combining Simulated Annealing and Monte
Carlo Tree Search for Expression Simplification. In: Béatrice Duval, H. Jaap van den
Herik, Stéphane Loiseau, Joaquim Filipe. Proceedings of the 6th International Confer-
ence on Agents and Artificial Intelligence 2014, vol. 1, pp. 724–731. SciTePress, Setúbal,
Portugal (2014)

10. Schmidhuber J: Deep learning in neural networks: An overview. Neural networks 61
85–117 (2015)

11. Clark C, Storkey A. Training deep convolutional neural networks to play go. Interna-
tional Conference on Machine Learning. pp. 1766–1774 (2015)

12. Tesauro, Gerald. Temporal difference learning and TD-Gammon. Communications of
the ACM 38(3) 58–68 (1995).

13. Heinz E A: New self-play results in computer chess. International Conference on Com-
puters and Games. Springer, Berlin, Heidelberg. pp. 262–276 (2000)

14. Wiering M A: Self-Play and Using an Expert to Learn to Play Backgammon with
Temporal Difference Learning. Journal of Intelligent Learning Systems and Applica-
tions 2(2), 57–68 (2010)

15. Van Der Ree M, Wiering M: Reinforcement learning in the game of Othello: Learning
against a fixed opponent and learning from self-play. In Adaptive Dynamic Program-
ming And Reinforcement Learning. pp. 108–115 (2013)

16. Aske Plaat, Learning to Play: Reinforcement Learning and Games, Leiden, 2020,
forthcoming.

17. Chen, Yutian, Aja Huang, Ziyu Wang, Ioannis Antonoglou, Julian Schrittwieser,
David Silver, and Nando de Freitas. ”Bayesian optimization in alphago.” arXiv preprint
arXiv:1812.06855 (2018).

18. Mandai Y, Kaneko T. Alternative Multitask Training for Evaluation Functions in
Game of Go. 2018 Conference on Technologies and Applications of Artificial Intelligence
(TAAI). IEEE, 2018: 132-135.

19. Caruana R. Multitask learning. Machine learning, 1997, 28(1): 41-75.
20. Matsuzaki K, Kitamura N. Do evaluation functions really improve Monte-Carlo tree

search?. ICGA Journal, 2018 (Preprint): 1-11
21. Matsuzaki K. Empirical Analysis of PUCT Algorithm with Evaluation Functions of

Different Quality. 2018 Conference on Technologies and Applications of Artificial In-

July 10, 2021 19:27 WSPC/ws-ijitdm output

Analysis of Hyper-Parameters for AlphaZero-like Deep Reinforcement Learning 23

telligence (TAAI). IEEE, 2018: 142-147.
22. Iwata S, Kasai T. The Othello game on an n×n board is PSPACE-complete. Theo-

retical Computer Science. 123(2), 329–340 (1994)
23. Allis V. A knowledge-based approach of Connect-Four-the game is solved: White wins.

1988.
24. Reisch, S. Gobang ist PSPACE-vollständig. Acta Informatica 13, 59–66 (1980).
25. Wang H, Emmerich M, Preuss M and Plaat A. Alternative Loss Functions in

AlphaZero-like Self-play. 2019 IEEE Symposium Series on Computational Intelligence
(SSCI), Xiamen, China, 155–162 (2019).

26. Buro M. The Othello match of the year: Takeshi Murakami vs. Logistello. ICGA
Journal, 1997, 20(3): 189-193.

27. Chong S Y, Tan M K, White J D. Observing the evolution of neural networks learning
to play the game of Othello. IEEE Transactions on Evolutionary Computation, 2005,
9(3): 240-251.

28. Thill M, Bagheri S, Koch P, et al. Temporal difference learning with eligibility traces
for the game connect four. 2014 IEEE Conference on Computational Intelligence and
Games. IEEE, 2014: 1-8.

29. Zhang M L, Wu J, Li F Z. Design of evaluation-function for computer Gobang game
system. Journal of Computer Applications, 2012, 7: 051.

30. Banerjee B, Stone P. General Game Learning Using Knowledge Transfer. IJCAI. 2007:
672-677.

31. Wang H., Emmerich M., Plaat A. (2019) Assessing the Potential of Classical Q-
learning in General Game Playing. In: Atzmueller M., Duivesteijn W. (eds) Artificial
Intelligence. BNAIC 2018. Communications in Computer and Information Science, vol
1021. Springer, Cham.

32. Ioffe S, Szegedy C: Batch normalization: accelerating deep network training by re-
ducing internal covariate shift. Proceedings of the 32nd International Conference on
International Conference on Machine Learning-Volume 37. pp. 448–456 (2015)

33. Kingma D P, Ba J: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

34. Srivastava N, Hinton G, Krizhevsky A, et al: Dropout: a simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research. 15(1), 1929–
1958 (2014)

35. Coulom R. Whole-history rating: A Bayesian rating system for players of time-varying
strength. International Conference on Computers and Games. Springer, Berlin, Heidel-
berg, 113–124, 2008

36. Emmerich M T M, Deutz A H. A tutorial on multiobjective optimization: fundamen-
tals and evolutionary methods. Natural computing, 2018, 17(3): 585-609.

37. Wang H, Emmerich M, Preuss M, Plaat A. Analysis of Hyper-Parameters for Small
Games: Iterations or Epochs in Self-Play?. arXiv preprint arXiv:2003.05988 (2020)

38. Birattari M, Stützle T, Paquete L, et al. A racing algorithm for configuring meta-
heuristics. Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation. Morgan Kaufmann Publishers Inc. 11-18 (2002)

39. Hutter F, Hoos H H, Leyton-Brown K: Sequential model-based optimization for gen-
eral algorithm configuration. International Conference on Learning and Intelligent Op-
timization. Springer, Berlin, Heidelberg, pp. 507–523 (2011)

