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Abstract. In this we paper we study the effect of target set size on
transfer learning in deep learning convolutional neural networks. This is
an important problem as labelling is a costly task, or for new or specific
classes the number of labelled instances available may simply be too
small. We present results for a series of experiments where we either train
on a target of classes from scratch, retrain all layers, or subsequently lock
more layers in the network, for the Tiny-ImageNet and MiniPlaces2 data
sets. Our findings indicate that for smaller target data sets freezing the
weights for the initial layers of the network gives better results on the
target set classes. We present a simple and easy to implement training
heuristic based on these findings.
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1 Introduction

Current deep learning research achieves state-of-the-art performance in image
classification tasks [6,13,15,18]. Modern models make use of deep convolutional
neural networks (CNN) such as AlexNet [8]. However, training these models on
large data sets such as ImageNet [1] can take up a significant amount of time,
and the number of labelled examples per class available may be limited, so learn-
ing from scratch has its downsides. One approach to overcome this problem is
to use transfer learning. The objective of transfer learning is to use knowledge
of a source task and transfer that to a new target task [10]. It provides consider-
able benefits over learning from scratch (i.e. from a random initialisation of the
weights). One obvious advantage is that a model can learn more efficiently since
it starts with a pre-initialised weight matrix.

In their study, Yosinski et al. [17] trained AlexNet on the ImageNet data
set and found that the first three layers in a CNN contain generic and reusable
features. Beyond the third layer, the features gradually become more specific
with respect to the source data set. However, the authors did not take into
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account the size of the target data set, on which the model with the transferred
features will be trained.

The size of the target data set plays an important role, since it affects how
much impact transfer learning will have on the performance. Thus, it is logical
to ask how well extracted features generalise to smaller data sets. It would be
helpful to know at what data set size transfer learning would be still beneficial.
More specifically, at what layer is the model still able to generalize to a small data
set size? Therefore, it is of both academic and practical interest to investigate at
what target data set size transfer learning can still provide any additional value.
Furthermore, Yosinski et al. only used the ImageNet data set [17]. It would be
interesting to find out whether the transfer learning properties are different when
using a data set from a different domain.

In this work we will expand the study by [17], and measure the effect of
target data set size on the transferability of parameters in convolutional neural
networks. Our main contribution is to quantify the extent to which features are
able to generalise to the target data set when we systematically reduce its size.
We will investigate this for each individual layer by evaluating the accuracy as
a function of the data set size. We will have three variants of this. First, we
will obtain a base score, without applying any form of transfer learning. In the
second condition we will completely fine-tune all the layers of the network. In
the third one, we will freeze the transferred features per individual layer. We will
investigate this for different sizes of the target set. Moreover, we will test this on
two different subsets of data sets, each with a different domain, ImageNet and
Places2.

The remainder of this paper is organised as follows. Section 2 provides an
overview of related work in deep learning and transfer learning. Section 3 de-
scribes our experimental setup and result, which addresses the data pre-processing
steps we took, details about our feature transfer process and information regard-
ing the training of the networks. In section 4 we elaborate on our results and
report our main findings, and conclude the paper in section 5.

2 Related work

Several studies have investigated the generalizability of features and have proven
the success of transfer learning [4,9]. A popular strategy for transfer learning is
fine-tuning, by training a linear classifier on top of the final layer of a CNN. Zeiler
et al. [18] examined this by pre-training a CNN on ImageNet, and then training
a linear classifier on three target data sets, PASCAL VOC 2012, Caltech-101 [3]
and Caltech-256 [5]. They varied the target data set size, as well as the layer
from which the classifier is trained on. They found that the model generalizes
extremely well to Caltech-101 and Caltech-256, however less so to PASCAL.
Nonetheless, the study proved the benefits of applying transfer learning. Simi-
larly, good results were yielded in [11] using this approach of transfer learning.
The authors pre-trained on ImageNet in combination with a SVM classifier, and
use Pascal VOC and MIT-67 Indoor Scenes as target tasks.
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In [2] the researchers investigated how well features transfer to different do-
main target problems, and they investigated at what layer in the network this is
most optimal. They first trained AlexNet on the ImageNet data set, and tested
these features on a basic object recognition task using the Caltech-101 [3] data
set. Second, they tested the network on domain adaptation, where there is a
small amount of data is available, using the Office database [12]. Thirdly, they
tested how well their model performs on a more fine grained data set, using the
Caltech-UCSD birds data set [16]. Since the images in this data set are very
similar to each other, this is a rather difficult image classification task. Finally,
the authors tested their model on the SUN-397 Large-Scale Scene Recognition
database. This task is quite different from the source task, where the task was
to classify objects. The objective of the SUN-397 data set is to classify scenic
categories. In every experiment the authors improved the benchmark scores, indi-
cating that the features learned from ImageNet provide substantial generalisable
properties.

Our research is a direct extension of the work by Yosinski et al. [17]. They
investigated how transferable features are between layers in the AlexNet archi-
tecture. To this end they trained two networks, N1 and N2, each on a random
split of the ImageNet data set containing half of the data, split A and split B. Af-
ter both networks were trained on their respective splits, the features of the first
layer from network N1, the base, were transferred to the first layer of network
N2, the target. The remaining layers in network N2 were randomly initialised.
Finally, network N2 gets trained on the B partition of the ImageNet data set.
Thus, what happens is that network N2 does not train from scratch, but rather,
it uses the pre-initialised features from network N1. The researchers do this for
layer one to seven in the network, transferring both from A to B as well as from B
to A. They found that the features in the first three layers are fairly general and
could be transferred and boost performance. However, features in deeper layers
of the network are more specific to the source task and therefore, transferring
them worsens the performance.

We hypothesize that a transfer learning approach by fixing the first layers is
more valuable if the target set is smaller, and that for larger data sets updating
all layers will give better results, and validate this on data sets from two different
image classification domains.

3 Experiments and results

In this section we present an overview of our experimental set up and results.
We will start with a general overview of the approach, and then provide further
detail in further sub sections.

3.1 Overall approach

We will transfer features from a CNN trained on a source task, to a target task,
i.e. data sets with disjunct outcome classes. We will consider the scenario where
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Fig. 1: AlexNet architecture (illustration taken from [8]).

the target data set is the same size, as well as smaller in size as the source
data set. The latter condition is the conventional setting in transfer learning
[10]. Hypothetically the value of transfer learning should increase with smaller
transfer data sets. Moreover, for each scenario we will investigate the first case
where we will fine-tune all the layers with the transferred features. In the second
case we will transfer the features but freeze the network weights in the first
layers.

The CNN architecture we will use is AlexNet, developed by Krizhevsky et
al. [8] (see figure 1), which was the winning model in the ImageNet Large Scale
Visual Recognition Challenge 2012. The model consists of five convolutional
layers and three fully connected layers. The first two convolutional layers are
followed by a max pooling layer and a normalization layer respectively. The
fifth convolutional layer is followed only by a max pooling layer. The first two
fully connected layers contain 4,096 neurons. The final fully connected layer
contains 1000 neurons for the target class scores. It is interesting to note that
the authors used Rectified Linear Units (ReLUs) as activation functions instead
of the regular sigmoid. Moreover, they applied a regularization technique called
dropout to reduce overfitting [14].

3.2 Data pre-processing

In our experiments, we use a subset of the ImageNet data set [1], Tiny-ImageNet.
This data set contains 100,000 images with 200 classes, where each class con-
tains 500 images, each of size 64 X 64 pixels. The data set contains images of a
wide range of objects such as cats, parking meters, cliffs and rugby balls. The
validation set contains 10,000 separate images.

Moreover, we extend the work by Yosinski et al. [17] by also repeating the
experiments on a second data set, MiniPlaces2. This is a scaled down version
of the larger MIT Places database [19]. The data set is made up of images with
settings such as a food court, golf course, an office, and ice skating rink. It
contains 100,000 images with 100 classes. Each class consists of 1000 pictures
of size 128 X 128 pixels, however we resize them to 64 X 64 pixels to keep the
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(a) Lighthouse (b) Sulphur
butterfly

(c) Umbrella

(d) Museum (e) Baseball
field

(f) Valley

Fig. 2: Top: A sample of training images from the Tiny-ImageNet data set. Bot-
tom: A sample of training images from the MiniPlaces2 data set.

image size consistent with Tiny-ImageNet. Again, the validation set contains
10,000 images. In figure 2 we present several image classes of both data sets to
underline the difference between the two domains.

To measure the effect of data set size on the generalizability of features, we
transfer the features from a source task to a target task, where the latter has
a variable size. We will test this on a subset of the ImageNet and Places2 data
set. We use a subset of the data sets rather than training on the full data sets
of ImageNet and Places2 (respectively containing 1.2 million and 8.1 million
images for training) due to computational limitations. We denote our target
data set as N target. Moreover, we define the data set splits with a variable
size as M targeti where M targeti ⊆ N target. To obtain M targeti from N target we
execute the following procedure:

1) We randomly split the entire data set into a source and a target parti-
tion, Nsource and N target respectively, where each partition contains 50,000
images. In both the source and target partition the images are equally dis-
tributed over k = 100 classes with 500 images per class for Tiny-ImageNet.
In MiniPlaces2 the split is k = 50 classes per partition, with 1,000 images
per class.

2) We artificially reduce N target by drawing random samples of size M targeti

from each class k, where i equals 5001, 400, 300, 200, 100 and 50 in case of
Tiny-ImageNet. For MiniPlaces2 i equals 10001, 900, 800, 700, 600 and 500.

1 Note that in the case where i = 500 and i = 1,000 we do not reduce N target for
Tiny-ImageNet and MiniPlaces2 respectively.
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Moreover, for both Tiny-ImageNet and MiniPlaces2, we split the respective
validation sets in half to create V target and V source, each containing 5,000 test
images. The classes of V target correspond to the classes in N target. Therefore,
V target will be the validation set for M targeti in our experiments. The other
validation half, V source, contains classes corresponding to Nsource. In sum, we
train our model on M targeti , and evaluate it on a separate validation set V target,
to obtain our accuracy a.

3.3 Transferring features

To create a model from which we can transfer the features, we first train our
network on Nsource. The parameters of the source model are stored in a Caf-
femodel object (see section 3.4), which we use to transfer the parameters from
the source model to the target model.

To obtain our baseline score we do not apply any transfer learning at all, and
let the model train on the given training set. In our first experiment we fine-tune
the network by transferring all the features from the source task to the model,
and continue with backpropagation on the new task.

However, since we are also interested in at what layer l of the network features
are able to generalize, we transfer the features from the source to the target task,
one layer at a time. AlexNet has eight layers in total. Therefore, we transfer from
layer l = 1, up until layer l = 7. When we transfer the parameters to the target
model, we keep them fixed. That is to say, we do not update the parameters by
gradient descent. The remaining 8 - l layers of the network we randomly initialize
and let the errors backpropagate through the layers.

Finally, to get a mean accuracy score, we run the experiments again by
following the same procedure, but now use Nsource as N target and vice versa.

3.4 Training

To conduct our experiments, we use the Caffe deep learning framework developed
at UC Berkeley [7]. We make use of a single Nvidida GTX Titan X graphics card
to enable Caffe in GPU mode, to speed up our training time. We use the AlexNet
reference model which is included in Caffe. Detailed information about the model
architecture can be found in [8]. Moreover, we follow the same training regime
as specified by the reference model.

Furthermore, in terms of data augmentation we take a random crop in the
training phase and use random mirroring as specified by Caffe. In the test phase
we take a center crop of the images. Since our input images are 64 X 64, we
change the crop size to 57, rather than upscaling the images to 256 X 256 and
applying the default crop size of 227. Thus, we stay consistent with the ratio
used in the AlexNet reference model. Moreover, we subtract the image mean
from each image.

Finally, to determine for how many iterations we should train the models,
we trained on Nsource of both data sets and validated on the respective V source,
without applying any form of transfer learning.
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We found that the model began to overfit on the training data around 10,000
iterations (see figure 3 and 4). Therefore, we found it reasonable for subsequent
experiments to let each model run for 10K iterations in order to measure the
positive effect of transfer learning. Moreover, the more we reduce N target, the
faster the model will reach the point of overfitting, which is evidenced by the
decreasing accuracy of the base training conditions across our experiments.

3.5 Results Tiny-ImageNet

In figure 5 we see the results of transfer learning on different data set sizes. The
plot shows the accuracy on the validation set after 10K iterations of training.
The first two conditions are the base case and fine-tune all. The condition base
indicates we did not apply transfer learning. Condition FTall means we fine-
tuned through all the layers, and the notation SnT denotes up until which
layers we freeze the transferred features from the source in the target model. For
instance, S3T implies we transferred the first three feature layers from the model
trained on Nsource to the model trained on M targeti . The final seven scores are
the accuracies where we transfer the parameters per layer from the source, and
freeze that particular layer. We notice an effect of data set size on the accuracy
of the baseline score. As we decrease the data set size, we find that the accuracy
decreases as well. In figure 5 we observe that the accuracy worsens as we keep
more layers fixed when transferring parameters from the source task.

3.6 Results MiniPlaces2

As can be seen from figure 6, even though this is a task from a different domain,
the results follow a pattern very similar to Tiny-ImageNet. With smaller target
set sizes the benefits of locking the first few layers increases. Only for M target1000

the graphs seem to indicate that training from scratch is better, but this is truly
just a baseline. In a real deployment one would probably expect that the source
classes also still need to be recognized, and performance of tuning all layers is
still lower then locking some of the initial layers.

4 Discussion

Our results reveal that data set size affects the accuracy in transfer learning with
deep convolutional neural networks. The first effect we notice is on the baseline
case (to repeat, just training the network with randomly initialized weights). We
can see that the model starts to overfit on the training data when we artificially
reduce the data set size, which leads to a steady decline in accuracy on both
Tiny-ImageNet as well as MiniPlaces2. This can be explained by a sub-optimal
parameter configuration as a result of overfitting on a small data set size.

Furthermore, fine-tuning all the layers only appears to have a positive effect
with smaller data sets for Tiny-ImageNet where i in M targeti ranges from 400
until 50, and MiniPlaces2 where M targeti equals 500. This is an interesting result,
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Fig. 3: Top: The accuracy on V source after training on Nsource of the Tiny-
ImageNet data set after 25K iterations. This split contains 100 classes, with 500
images per class. Bottom: The log loss over the training set with the identical
split.

0.1

0.2

0.3

0 10000 20000
iterations

ac
cu

ra
cy

Accuracy

1

2

3

4

0 10000 20000
iterations

lo
g 

lo
ss

Log Loss

Fig. 4: Top: The accuracy on V source after training on Nsource of the MiniPlaces2
data set after 25K iterations. This split contains 50 classes, with 1000 images
per class. Bottom: The log loss over the training set with the identical split.
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Fig. 5: Mean accuracy obtained after training on the target splits of Tiny-
ImageNet where i in M targeti equals 500, 400, 300, 200, 100 and 50 and validating
on V target. Note that we ran the same experiments again, but used Nsource as
N target and vice versa. Thus, we obtained our mean accuracies by averaging the
scores.
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Fig. 6: Mean accuracy after training on the target splits of MiniPlaces2, where i
in M targeti equals 1000, 900, 800, 700, 600 and 500 and validating on V target.
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as a network for which all layers can be adapted still benefits from potentially
valuable initialization of the weights. We speculate that the source features are
important for the target data set splits as well. Thus, the effect of initializing the
model with parameters obtained from a model trained on a larger data set clearly
shows its advantage. Moreover, we notice a visible spike in accuracy in all our
graphs, when we transfer parameters from the first two layers. Likewise, there
is a considerable decline in accuracy when transferring four layers, compared to
transferring the first three layers.

The results in figure 5 generally follow the findings of the study by Yosinski
et al. [17]. As we transfer more and more features (layers) from the source task,
the accuracy initially goes up but then decreases. This can be attributed to
feature specificity with regards to the source task. However, we observe a second
positive spike in the accuracy at layer l = 5 in nearly all of our experiments. This
result is quite surprising since the features have become substantially specific to
the source, and yet generalize well to the new task. Evidently, the transferred
features from the source task in this layer hold the same, or even superior,
representational power compared to the features solely learned from a target
data set.

All these results can be summarized into a fairly straightforward heuristic.
For the first n instances of a new class, freeze the first l layers of the network.
Once you have obtained more than n instances for new class, training can simply
affect all layers. Obviously the values for n and l depend on the data and task
at hand, in our experiments freezing the first 3 layers until 300 (Tiny-ImageNet)
and respectively 900 (MiniPlaces2) instances per class gave the best results.

Our study could have benefited from having more samples per data point, by
running repeated experiments. Since the initialization of the parameters happens
at random, the parameters might converge at different local minima each time
the model is run. This could effect the accuracy score in the test phase. Our
results still indicate that transferring features from a larger source data set to
a smaller target data set adds value by reducing the risk of overfitting, and
improves performance.

5 Conclusion

In this paper we investigated the effect of data set size on the generalizability
of features in deep convolutional neural networks. To this end, we transferred
features from a pre-trained network to a new network. We systematically reduced
the size of the target training set and trained our new network on these splits with
the pre-initialized features. In support for a general rule of thumb heuristic, we
found that freezing the first two to three layers of features results in a significant
performance boost over the baseline score, especially for smaller target set sizes
under a thousand instances per class.
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