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Monte Carlo Tree Search (MCTS) repeats four steps in

a loop: a path of nodes is selected from the root node to

a leaf node inside a search tree (select), a new node is

generated and appended to this path (expand), a simula-

tion is performed until a terminal state in the state space

is reached (playout), the search tree is updated with the

acquired information from the simulated solution (backup)

[1]. Each iteration of MCTS computes a trajectory. Figure

1 illustrates the sequential loop of MCTS. Efficient parallel

implementation of MCTS algorithm is challenging due to

several types of overhead:

• Communication overhead which refers to the cost of

sending a message from one processor to another over

a network.

• Synchronization overhead which is the idle time that

some processors have to wait for the others to reach

the synchronization point.

• Search overhead which occurs when a parallel imple-

mentation of a search algorithm one searches useless

part of a search space because access to non-local

information is restricted.

The key to achieve a good performance in parallel search

is to minimize such overheads. However, these overheads

are not independent. For example, reducing search over-

head usually increases synchronization and communication

overhead [2]. The goal is to minimize the search overhead

without increasing the two other overheads.

The first step towards designing an efficient parallel

MCTS algorithm is finding possible concurrent tasks in

MCTS. There are two levels of tasks decomposition in

MCTS:

• Iteration-level tasks: in MCTS the computation associ-

ated with each trajectory is a separate task. Therefore,

it might work well to base a tasks decomposition on

mapping each iteration or trajectory onto a task.

• Operation-level tasks: another level of tasks decomposi-

tion for MCTS is happening inside each iteration. For

computing each trajectory the four MCTS operations

can be treated as separate tasks.

The tasks need to cooperatively update a large shared search
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Figure 1. The main loop of the MCTS algorithm.

tree in parallel MCTS. This shared data is modified by mul-

tiple tasks and therefore serves as a source of dependencies

among the tasks. In MCTS, there are two levels of data

dependency:

• Iteration-level dependency: computing each trajectory

is semi-independent of previous trajectory because tra-

jectory n needs the results from previous trajectories

to make an optimal decision. However, the requited

computations for iteration n is independent from the

iteration n-1. This kind of dependency comes from

Markov property. The information in each state should

be enough to make a decision without knowing the

history of the creation of the state. This information

should be updated for each trajectory before next tra-

jectory being selected. Otherwise, it produces search

overhead. It means going to part of the tree which are

not important or duplicate. Therefore, there is a subtle

dependency between two consecutive trajectories. This

dependency is not computational which means it is pos-

sible to performs operation on two separate trajectories

in parallel without fulfilling this dependency.

• Operation-level dependency: each of the four required

steps for computing a trajectory is dependent to its

previous step. Clearly, the expansion of a trajectory

cannot occur until the selection computation is com-

pleted. Also, the simulation can not be performed until
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Figure 2. The MCTS pipeline flow chart.

a trajectory being expanded. The backup also needs the

output of simulation.

MCTS needs a large number of trajectories or iterations

to make an optimal decision. There are two possible designs

based on tasks for parallel MCTS:

• Iteration-level Task Parallelism (ILTP): one way to

describe the concurrency is to define the computation

of each trajectory as a task [3]. The tasks have only

iteration-level dependencies. The large number of tasks

means that we can make effective use of any (reason-

able) number of processing elements.

• Operation-level Task Parallelism (OLTP): int this case,

the pipeline pattern can introduce parallelism into

operation-level tasks in MCTS and satisfy their de-

pendency requirements. A Pipeline is a linear flow of

data from one task to another. Parallelism comes from

repeating this pattern over and over. Pipeline pattern

is one way to achieve concurrency for computations

that are mostly parallel but require small sections of

code that must be serial. In MCTS, the flow of data

among operation-level tasks is regular, one-way and

does not change during the algorithm. Each trajectory

passes through all four steps in sequence. The steps

can be executed in parallel on different trajectories if

the data passes between them through buffers. Figure

2 illustrates how OLTP works.

It is important to compare the performance characteristics

of ILTP and OLTP. Suppose there are 8 trajectories (p1 to

p8) to process, on 4 processing elements (PEs), and each

trajectory requires four steps (S, E, P, and B), which take 1

unit of time (T) each. Assuming there is no other processing

that might affect the timings.

• ILTP: If you divide the 8 trajectories between 4 PEs,

then each PE has 2 trajectories to process. After 4T

you will have 4 trajectories processed, after 8T, 8

trajectories processed. Figure 3 shows the timeline for

task-parallel MCTS.

• OLTP: with a pipeline, things work differently compare

to ILTP algorithm. The four steps can be assigned one

to each PE. Now the first trajectory has to be processed

by each PE, so it still takes the full 4T. Indeed, after
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4T you only have one trajectory processed (p1), which

is not as good as with the ILTP. However, once the

pipeline is primed, things proceed a bit differently; after

the first PE has processed the fourth trajectory (p4), it

moves on to the fifth, so once the final PE has processed

the fourth item, it can perform its step on the fifth. You

now get one item processed every 1T rather than having

the items processed in batches of four every 4T. The

overall time to process the entire batch takes longer

because you have to wait 3T before the final core starts

processing the first item.
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