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Abstract

Large-scale survey tools enable the collection of citizen feedback in opinion corpora.
Extracting the key arguments from a large and noisy set of opinions helps in understanding
the opinions quickly and accurately. Fully automated methods can extract arguments but
(1) require large labeled datasets that induce large annotation costs and (2) work well for
known viewpoints, but not for novel points of view. We propose HyEnA, a hybrid (human
+ AI) method for extracting arguments from opinionated texts, combining the speed of
automated processing with the understanding and reasoning capabilities of humans. We
evaluate HyEnA on three citizen feedback corpora. We find that, on the one hand, HyEnA
achieves higher coverage and precision than a state-of-the-art automated method when
compared to a common set of diverse opinions, justifying the need for human insight.
On the other hand, HyEnA requires less human effort and does not compromise quality
compared to (fully manual) expert analysis, demonstrating the benefit of combining human
and artificial intelligence.

1. Introduction

To make decisions on large public issues, such as combating a pandemic and transitioning to
green energy, policymakers often turn to the citizens for feedback (Kythreotis et al., 2019;
Lee et al., 2020). This feedback provides insights into public opinion and contains viewpoints
from many individuals with different perspectives. Involving the public in the decision-
making process helps in gaining their support when the decisions are to be implemented,
fostering the legitimacy of the process (Ostrom, 1990).
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In the face of crises, decisions must be made swiftly. Thus, collecting feedback, analyzing
it, and making recommendations ought to be performed under tight time constraints. For
example, when deciding on relaxing COVID-19 measures in the Netherlands, researchers had
one month to design the experiment, collect public feedback, and make recommendations to
the government (Mouter et al., 2021). The time constraint limits the amount of information
researchers can analyze, potentially painting an incomplete picture of the opinions. In the
scenario above, researchers processed data manually and they could only analyze less than
8% of the qualitative feedback provided by more than 25,000 participants.

Argument Mining (AM) (Lawrence & Reed, 2020) methods can assist in increasing the
efficiency of feedback analysis by, e.g., locating and interpreting argumentative feedback
and classifying statements as supporting or opposing a decision. However, applying auto-
mated AM methods for feedback analysis poses three main challenges. First, AM methods
generalize poorly across domains (Stab et al., 2018; Thorn Jakobsen et al., 2021). Thus,
they require large amounts of domain-specific training data, which is often not available.
The use of pretrained language models, with the pre- or fine-tuning paradigm, mitigates but
does not solve the reliance on large domain-specific training datasets (Reimers et al., 2019;
Ein-Dor et al., 2020). Second, although AM methods can identify argumentative content,
they do not compress the information. That is, they do not recognize whether two argu-
ments describe the same point of view, leaving the policymakers with the significant manual
labor of aggregating arguments. Finally, naively relying on a small sample of labeled data
might cause minority opinions to be ignored as they are not well represented (Klein, 2012),
creating a bias toward popular (repeated) arguments, which can perpetuate echo chambers
and filter bubbles (Price, 1989; Schulz-Hardt et al., 2000).

The key point analysis (KPA) task (Bar-Haim et al., 2020a) seeks to automatically com-
press argumentative discourse into unique key points, which can be matched to arguments.
However, synthesizing key points is a significant challenge. In the ArgKP dataset, domain
experts (skilled debaters) were asked to generate key points. Subsequently, a model was
trained to take over the task (Bar-Haim et al., 2020b). However, the reliance on few human
expert annotators introduces biases of the human experts and may not be representative
of the opinions of the larger population. This defeats the purpose of engaging the larger
public in a bottom-up deliberative decision-making process.

We argue for a crowd-sourced human-machine approach for argument extraction, com-
bining the scalability of automated methods and the human understanding of others’ per-
spectives. We propose HyEnA (Hybrid Extraction of Arguments), a hybrid (human +
AI) method for extracting a diverse set of key arguments from a textual opinion corpus.
HyEnA breaks down the argument extraction task into argument annotation, consolidation,
and selection phases. HyEnA employs human (crowd) annotators and supports them via
intelligent algorithms based on natural language processing (NLP) techniques for analyzing
opinions provided by a large audience, as shown in Figure 1.

HyEnA is evaluated on three corpora, each containing more than 10K public opinions
on relaxing COVID-19 restrictions (Mouter et al., 2021). We compare HyEnA with an
automated approach (Bar-Haim et al., 2020b) performing the KPA task. In addition, we
compare the key arguments generated by HyEnA with manually obtained insights identified
by experts (Mouter et al., 2021). We find that HyEnA outperforms the automated baseline
in terms of precision and diversity, specifically when confronted with a set of varied per-
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Figure 1: In a democratic cycle, citizens provide their opinions on options for governmen-
tal decision-making and their opinions need to be interpreted. Insights into the
arguments embedded in their comments can be provided by Key Point Analysis
(KPA). To perform KPA, most analysis is performed either manually or auto-
matically. In our work, we propose HyEnA, a hybrid method.

spectives. HyEnA also yields better results than manual analysis, as fewer opinions needed
to be analyzed in order to obtain a wider set of key arguments.

Contributions

C1 We present a hybrid method for key argument extraction, which generates a diverse
set of key arguments from a collection of opinionated user comments.

C2 We evaluate our method on real-world corpora of public feedback on policy options.
Compared to an automated baseline, HyEnA increases the precision of the key ar-
guments produced and improves coverage over diverse opinions. Compared to the
manual baseline, HyEnA identifies a large portion of arguments identified by experts
as well as new arguments that experts did not identify.

C3 We extensively discuss the implications of incorporating recent advances in NLP, such
as Large Language Models (LLMs), into the workflow of our hybrid method.

Extension In this paper, we extend the HyEnA method (van der Meer et al., 2022a) to
include argument selection. The original HyEnA method outputs argument clusters, and
leverages manual annotations from the first two phases to select arguments from argument
clusters. In this extension, we introduce a method for selecting the most representative
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argument from each cluster. The need to summarize argument clusters is not specific to
HyEnA, as previous AM applications also retrieve clusters instead of singular arguments
(Boltužić & Šnajder, 2015; Wachsmuth et al., 2018; Daxenberger et al., 2020). We compare
various techniques to accomplish this task, including generative large language models.
Furthermore, we run additional experiments to demonstrate how the new argument selection
step can be incorporated in the HyEnA pipeline. Finally, we perform additional analyses
to derive further insights from annotators in HyEnA.

Organization Section 2 provides background on Argument Mining for public opinions,
and Section 3 introduces the HyEnA method for extracting arguments. We outline the
experimental setup in Section 4 and provide extensive results in Section 5. A discussion of
our work is given in Section 6 and we conclude with Section 7.

2. Related work

We describe related work on Argument Mining, methods for summarizing arguments, and
their application to opinion analysis.

2.1 Computational Argument Analysis

Argument Mining (AM) methods (Cabrio & Villata, 2018; Lawrence & Reed, 2020) focus
on the recognition, extraction, and computational analysis of arguments presented in nat-
ural language. They seek to discover arguments brought forward by speakers and identify
connections between them. Typically, AM techniques concern themselves with finding the
structure of arguments (van Eemeren et al., 1987), with the goal of finding premises for
supporting or refuting conclusions.

AM is a challenging problem. The ability to recognize and extract arguments from text
(for humans and machines, alike) is dependent on the argumentativeness of the underlying
data. Often, significant effort is required by human annotators for reaching moderate inter-
rater agreement when annotating arguments (Teruel et al., 2018). Given argumentative
texts, modern NLP models are reasonably good at recognizing argumentative discourse
within specific contexts (Niculae et al., 2017; Eger et al., 2017; Reimers et al., 2019).

Typically, the first step of AM is to identify the elemental components of arguments
(e.g., claims and premises) in text (Palau & Moens, 2009). The combination of such com-
ponents forms a structured argument. However, there is currently no consensus on the
exact linguistic notion of such elemental components, with multiple levels of granularity
being proposed (Daxenberger et al., 2017; Walton et al., 2008; Freeman, 2011; Bentahar
et al., 2010). Nonetheless, a few characteristics have been recognized as important for rec-
ognizing arguments, namely that arguments (1) contain (informal) logical reasoning (Stab
& Gurevych, 2014), (2) address a why question (Biran & Rambow, 2011), and (3) have a
non-neutral stance towards the issue being discussed (Stab & Gurevych, 2014).

HyEnA is a novel AM method that combines human annotators and automated NLP
models. By splitting up the argument extraction task into distinct phases, we take advantage
of the diverse human perspectives, while addressing scalability through automation.
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2.2 Summarization of Arguments

Automated methods have been proposed to create a core set of key points from a large
corpus of individual comments (Bar-Haim et al., 2020b). In this paradigm, comments are
filtered by a manually tuned selection heuristic, resulting in a list of key point candidates.
The candidates are matched against all comments, based on a classifier trained for the
argument–key point matching task (Bar-Haim et al., 2020a). We evaluate the performance
of this approach on a novel domain on COVID-19 measures and compare it against HyEnA.

Additionally, there exists an extended body of work on Natural Language Inference
(NLI) and Semantic Textual Similarity (STS). In these works, models are trained to indi-
cate semantic similarity or logical entailment between two sentences (Conneau et al., 2017;
Reimers & Gurevych, 2019). They have made a significant impact across a range of tasks
(Xu et al., 2020; Zhong et al., 2020). However, downstream applications often need ad-
ditional fine-tuning (Howard & Ruder, 2018) in order to perform a task well. They also
capture generic aspects of semantic similarity and entailment, which may not be applicable
to arguments (Reimers & Gurevych, 2019), or overfit to spurious patterns in the data (Mc-
Coy et al., 2019). Thus, such methods require significant adaptation to effectively compress
information in particular domains. Recently, Large Language Models (LLMs) have been
shown to perform well on inference tasks with out-of-distribution data (Wang et al., 2023).
However, we argue that a plurality of (human) perspectives is necessary to perform sensi-
tive tasks such as the summarization of arguments, which may in turn be used to inform
policy-makers about the sentiment of a population (Talat et al., 2022). Yet, LLMs might
be adequate for specific subtasks, as we showcase in the third phase of the HyEnA method.

3. Method

HyEnA is a hybrid method since it combines automated techniques and human judgment
(Akata et al., 2020). HyEnA guides human annotators in synthesizing key arguments (i.e.,
semantically distinct arguments that describe relevant aspects of the topic under discussion)
from an opinion corpus composed of individual opinions (textual comments) on a topic.

HyEnA consists of three phases (Figure 2). In the first phase (Key Argument Annota-
tion), an intelligent sampling algorithm guides human annotators individually through an
opinion corpus to extract high-level information from the opinions. In the second and third
phases, HyEnA aims to reduce the subjectivity in the first phase annotations by combining
and rewriting arguments that were individually annotated. In the second phase (Key Ar-
gument Consolidation), an intelligent merging strategy supports a new group of annotators
in merging the results from the first phase into clusters of arguments, combining manual
and automatic labeling. In the third phase (Key Argument Selection), HyEnA employs an
automated method to synthesize a single argument that represents the arguments belonging
to the same merged argument cluster. The final output of HyEnA is a list of key arguments
grounded on the opinions in the corpus.

3.1 Opinion Corpora

Our opinion corpora are composed of citizens’ feedback on COVID-19 relaxation measures,
a contemporary topic. The feedback was gathered in April and May 2020 using the Par-
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Figure 2: Overview of the HyEnA method.

ticipatory Value Evaluation (PVE) method (Mouter et al., 2021). In a PVE, participants
are offered a set of policy options and asked to select their preferred portfolio of choices.
Then, the participants are asked to motivate why they picked certain options (pro stance)
and not pick the other options (con stance) via textual comments. Pro- and con-opinions
together form the opinion corpus. We analyze feedback from 26,293 Dutch citizens on three
of these options, treating comments on each option as an opinion corpus. Table 1 shows
examples of opinions provided for each different policy option. In our experiments, the
HyEnA method is applied to one corpus at a time. Since we use data from a publicly run
citizen feedback experiment, we observe that some options attracted more pro comments
than others. We picked these three options with different pro/con ratios to investigate their
impact on the key argument extraction task. The opinions in these corpora are similar
to noisy user-generated web comments (Habernal & Gurevych, 2017), may span multiple
sentences, and contain more than one argument at a time. For each policy option, we use
the keyword in uppercase as the option identifier in the remainder of the paper.

Policy option (Corpus) Example opinion #
Opinions

Pro/Con
Ratio

young people may come to-
gether in small groups

Then they can go back to
school (Pro)

13400 0.66/0.34

All restrictions are lifted for
persons who are immune

Encourages inequality (Con) 10567 0.17/0.83

reopen hospitality and en-
tertainment industry

The economic damage is too
high (Pro)

12814 0.55/0.45

Table 1: Example opinions in the COVID-19 corpora.

The original opinions were provided in Dutch. To accommodate a diverse set of an-
notators in our experiments, we translated all comments to English using the Microsoft
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Azure Translation service. All experiments are performed with the translated opinions.
Mixing (pretrained) embeddings and machine-translated comments has a minimal impact
on downstream task performance (Sennrich et al., 2016; Eger et al., 2018; Daza & Frank,
2020). Although all experiments are conducted in English, the link to the original Dutch
text is preserved for future applications.

3.2 Key Argument Annotation

In the first phase of HyEnA, human annotators extract individual key argument lists by
analyzing the opinion corpus. Since a realistic corpus consists of thousands of opinions, it
is unfeasible for an annotator to read all opinions. Thus, HyEnA proposes a fixed number
of opinions to each annotator. HyEnA employs NLP and a sampling technique to select
diverse opinions to present to an annotator.

Intelligent Opinion Sampling Each annotator is presented, one at a time, with a fixed
number of opinions. To sample the next opinion, we embed all opinions and arguments
observed thus far using the S-BERT model (MS) (Reimers & Gurevych, 2019). S-BERT
converts sentences into fixed-length embeddings, which can be used to compute semantic
similarities between pairs of sentences.

Then, we select a pool of candidate opinions using the Farthest-First Traversal (FFT)
algorithm (Basu et al., 2004). FFT selects the candidate pool as the f farthest opinions
in the embedding space from the previously read opinions and annotated arguments (in
our experiments, we empirically select f = 5). Next, we use an argument quality classifier
trained on the ArgQ dataset (Gretz et al., 2020) to select the opinion most clear and related
to the policy option. In this way, we aim at increasing both the diversity and quality of the
opinions presented to each annotator.

Annotation Upon reading an opinion, the annotator is asked, first, to identify whether
the opinion contains an argument or not. If so, the annotator is asked to check whether the
argument is already included in their current list of key arguments. If it is not, the annotator
should extract the argument into a standalone expression (i.e., into a key argument), and
add it to the list of key arguments. When adding a new argument, the annotator is asked
to indicate the stance of the opinion (i.e., whether it is in support or against the related
policy option). To facilitate this task, HyEnA highlights the most probable stance for the
user as a label suggestion (Schulz et al., 2019; Beck et al., 2021).

Topic Assignment We use a BERTopic (Grootendorst, 2022) model T to extract clusters
of topics from the corpus. We train T on all opinions in the corpus and select the most
frequent topics found by T , with duplicates and unintelligible topics manually removed
by two experts. We ask human annotators to associate the topics from the generated
shortlist to each argument. This topic assignment T is used in the second phase to compute
argument similarity. Thus, in the first phase, HyEnA yields multiple key argument lists
(one per annotator), each containing key arguments and their stances, and an assignment
of pre-selected topics to key arguments.
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3.3 Key Argument Consolidation

In the first phase, (1) the annotators are exposed to a small subset of the opinions in the
corpus, and (2) the interpretation of arguments is subjective. In the second phase, HyEnA
seeks to consolidate the key argument lists generated in the first phase. Our goal is to
increase the diversity of the resulting arguments and compensate for individual biases.

First, we create the union of all lists of key arguments generated in the first phase of
HyEnA. Then, we ask the annotators to evaluate the similarity of the key argument pairs
in the union list. Based on the similarity labels, we employ a clustering algorithm to group
similar key arguments, producing a consolidated list of key arguments.

Pairwise Annotation To simplify the consolidation task, the annotators are presented
with one pair of key arguments at a time and asked whether the concepts described by
the key arguments in the pair are semantically similar. To reduce human effort, we select
only the most informative key argument pairs for manual annotation and automatically
annotate the remaining pairs. To select the most informative pairs, we adopt a Partial-
Ordering approach, Power (Chai et al., 2016), as described below.

Let pij be a pair of key arguments 〈ai, aj〉. The similarity between the two key arguments
in the pair is described by two similarity scores, s1ij and s2ij . By using multiple scores,
we seek to make the similarity computation robust. For each pij , we compute the two
similarity scores described in Table 2. We use cosine similarity for s1ij since the angular
distance describes the semantic textual similarity between two arguments. In contrast, we
use Euclidean distance for s2ij since the absolute values of the topic assignment are relevant.

Measure Description

s1ij = i·j
‖i‖‖j‖ Cosine similarity between embeddings i = MS(ai) and j = MS(aj)

s2ij = 1
d(T (ai),T (aj))

Inverse of the Euclidean distance d between manual topic assign-
ments T of ai and aj

Table 2: The similarity scores between key argument pairs used to create the pairwise
dependency graph.

Given the similarity scores, we construct a dependency graph G (as in the top-left part
of Figure 3), where each key argument pair is a node in G and the edges indicate a Pareto
dependency (�) between two pairs as follows:

pij � pi′j′ if ∀n snij ≥ sni′j′ (1)

pij � pi′j′ if pij � pi′j′ and ∃n snij > sni′j′ (2)

Next, we follow Power to extract disjoint paths from G. The highlighted path in the
bottom-left part of Figure 3 is an example disjoint path. For every path, we perform a
pairwise annotation as in the right part of Figure 3. We select the vertex at the middle
of the unlabeled portion of the path and ask multiple (7) humans to indicate whether the
concepts described by the two arguments in the pair are similar on a binary scale, and
select the label with the majority vote. Given the annotation, we can automatically label
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Figure 3: Pairwise annotation of the dependency graph, combining human and automatic
judgments.

(1) all following pairs in the path as similar (green) in case the vertex is labeled as similar
or (2) all preceding pairs in the path as non-similar (red) in case the vertex is labeled as
non-similar. In essence, using the Pareto dependency, we search for threshold similarity
scores for each path, above which all pairs are considered similar, and below which all
pairs are non-similar. Because this is a local threshold, we prevent over-generalization.
To annotate the complete graph efficiently, we employ the parallel Multi-Path annotation
algorithm (Chai et al., 2016).

Clustering Given a similarity label for each key argument pair, our goal is to identify
groups of similar key arguments. However, the similarity among key arguments may not
be transitive—given 〈a1, a2〉 as similar and 〈a2, a3〉 as similar, 〈a1, a3〉 may be labeled as
dissimilar. This can happen because (1) the interpretation of similarity can be subjective
(for manually labeled pairs), and (2) the automatic approach is not always accurate (for
automatically labeled pairs). Thus, we employ a clustering algorithm for identifying a
consolidated list. First, we construct a similarity graph, where each key argument is a
node and there is an edge between two arguments if they are labeled as similar. Then,
we employ out-of-the-box graph clustering algorithms for constructing argument clusters.
These clusters form the key argument lists.

3.4 Key Argument Selection

In the third step of HyEnA, we extract a single argument from each cluster, obtaining the
final list of key arguments for the opinion corpus. Formally, for every cluster k ∈ K, we
create an argument ak that is representative of that cluster. Argument selection methods
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can be extractive (select an argument from the cluster) or abstractive (generate a new
argument that summarizes the cluster). Since there are many methods available for selecting
arguments, we can experiment with multiple, and pick the best-performing method. In
that case, we again pick an intermediate evaluation metric, which we use to select the
best selection method. While there is no human annotation involved in this step, we still
consider this higher-level algorithmic design a hybrid process, and thus a collaboration
between humans and AI. For the task of selecting relevant arguments, we compare the
following four types of approaches.

Centroids For every cluster k, we compute a sentence embedding of every argument ak
using MS . Then, we compute pairwise distances between all arguments inside the same
cluster. We select the argument with the lowest average distance, measured using cosine
similarity, to all other arguments.

Argument Quality We use a model that measures argument quality to select the argu-
ment from each cluster with the highest quality. We use the same argument classifier as in
the Key Argument Annotation phase, trained on the ArgQ dataset (Gretz et al., 2020).

Prompting We prompt an LLM to synthesize a single argument out of the arguments
provided in the argument cluster (Brown et al., 2020). We experiment with an open-source
and a closed-source model.

Random As a baseline, we randomly select an argument from the cluster to represent the
entire argument cluster.

4. Experimental Setup

We involve 378 Prolific (www.prolific.co) crowd workers as annotators to evaluate HyEnA.
We required the workers to be fluent in English, have an approval rate above 95%, and have
completed at least 100 submissions. Our experiment was approved by an Ethics Committee
and we received informed consent from each subject. We provide supplemental material,
containing instructions provided to the annotators, experiment protocol, experiment data,
analysis code, and additional details on the experiment (van der Meer et al., 2022b).

Table 3 shows an overview of the tasks in the experiment. First, we ask annotators to
perform the HyEnA method to generate key argument lists for three corpora. Then, we
compare the quality of the obtained lists with lists generated for the same corpora via two
baselines. All tasks except topic generation were performed by the crowd workers, with
most of the task instances annotated by multiple annotators to investigate the agreement
between annotators.

4.1 Phase 1: Key Argument Annotation

In the first phase of HyEnA, each annotator extracts a key arguments list from an opinion
corpus. In each corpus, five annotators annotated 51 opinions each, for a total of 255
opinions per corpus. Of the 51 opinions, the first is selected randomly, and the following
50 are selected by FFT. This number of opinions was empirically selected to make the
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Task Option # Items #
Annotators

Overlap

Key argument annotation
young 255 (O) 5

1immune 255 (O) 5
reopen 255 (O) 5

Topic generation all 45 (T) 2 2

Topic assignment
young 91 (A) 10

5immune 66 (A) 5
reopen 69 (A) 5

Key argument consolidation
young 1538 (A+A) 99

3immune 824 (A+A) 57
reopen 940 (A+A) 87

Key argument evaluation
young 248 (O+A) 42

7immune 193 (O+A) 29
reopen 221 (O+A) 29

Table 3: Overview of the tasks in the experiment. Items to be annotated can be opinions
(O), arguments (A), topics (T), or combinations.

annotation feasible within a maximum of one hour. We instantiate the S-BERT model MS

using the Huggingface Model Hub1.

Topics We train a BERTopic model on each opinion corpus, generating 59, 56, and 72
topics for the young, immune, and reopen corpora, respectively. Since the number of
resulting topics is too high for the manual assignment of arguments to topics, we curate
a short list of topics per corpus. We select the 15 most frequent topics in a corpus and
ask two experts, the first two authors, to remove duplicates (i.e., topics covering the same
semantic aspect) and rate the clarity (i.e., how well the topic describes a relevant aspect
of the discussion in the corpus) of each topic. Unique topics with an average clarity score
above 2.5 compose the shortlist of topics. Then, we ask crowd annotators to assign topics
to each key argument generated in the first phase of HyEnA.

4.2 Phase 2: Key Argument Consolidation

In the second phase of HyEnA, we obtain similarity labels y(ai, aj) (1 if similar, 0 if not)
for all key argument pairs 〈ai, aj〉—some pairs are labeled by the annotators and others
are automatically labeled. Given the similarity labels, we construct an argument similarity
graph and cluster the graph to identify a consolidated list of key arguments.

Clustering We experiment with two well-known graph clustering algorithms: (1) Louvain
clustering (Blondel et al., 2008) uses network modularity to identify groups of vertices based

1. https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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on a resolution parameter r. (2) Self-tuning spectral clustering (Zelnik-Manor & Perona,
2004) uses dimensionality reduction in combination with k-means to obtain clusters, where k
is the desired number of clusters. We select the parameters of these algorithms to minimize
the error metric E shown in Eq. 3. The metric penalizes clusters having dissimilar argument
pairs. That is, for a cluster k ∈ K and ∀ai, aj ∈ k, if y(ai, aj) = 1, the error for that cluster
is 0. If a cluster contains only a single element, we manually set the error for that cluster
to 1, to discourage creating single-member clusters.

E =
1

|K|

∑
k∈K

∑
ai,aj∈k

1y(ai,aj)=0(|k|
2

) (3)

4.3 Phase 3: Key Argument Selection

In the third phase, we use a mechanism for selecting single arguments per argument cluster.
We experiment with multiple methods and different models for selecting arguments. An
overview of the methods used is given in Table 4. Below, we explain the setup for each
method, and how we select the best-performing method to be used in the final output for
HyEnA.

Method Model Type Open Size

Random – extractive – –
Centroid S-BERT extractive yes 22M
Prompting ChatGPT abstractive no 175B

Llama abstractive yes 7B
Quality ArgQ extractive no 125M

Table 4: Argument selection algorithms.

Prompts We construct different prompts for the two models to extract the desired argu-
ment selection output. ChatGPT is an instruction-tuned model and can be prompted to an-
swer questions or follow instructions (Ouyang et al., 2022). Llama lacks instruction-tuning,
and thus requires prompts designed for next-token generation (Touvron et al., 2023).

Prompt 1: ChatGPT

Consider the context of the COVID-19 pandemic and the following arguments:
- Argument 1
...
- Argument k

Write a key argument that summarizes the above arguments, and make it short and
concise.
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Prompt 2: Llama

Consider the context of the COVID-19 pandemic and the following arguments:
- Argument 1
...
- Argument k

A short and concise key argument that summarizes the above arguments is:

Testing Cluster Coherence First, we investigate the coherence of the clusters generated
in Phase 2 according to each argument selection method, with the intent of measuring how
each (automated) method aligns with the results of the first two phases of the (hybrid)
HyEnA process. In cases of low coherence, semantically different arguments may end up
together. Vice versa, in highly coherent clusters, only arguments that are the same are
actually put together. While the error metric E (Equation 3) gives an error rate, it is
mostly a comparative method, designed to select the best clustering method. Whether or
not the clusters make sense to a human interpreter remains unclear. As such, we devise a
so-called odd-one-out task, in which we use the Argument Selection methods for selecting
arguments from a triple of arguments. In this triple, two arguments stem from the same
cluster, and the third from a different clsuter. The task for each argument selection method
is to select which is the deviating argument. Here, we expect an adequate method to succeed
well beyond random performance. Because Argument Quality is not intended for pairwise
comparisons of arguments, we omit it in the odd-one-out task. We evaluate the remaining
methods on a sample of 1K triples uniformly chosen from all possible triple combinations.

Evaluating Argument Selection We use different methods and different models for
experimenting with the argument selection phase. As before, we employ an error metric
to select the best-performing method, which we then inspect through a human evaluation.
We use BERT score (Zhang et al., 2020), a metric designed for model selection that uses
a trained BERT model to compare the semantic similarity between the selected argument
and the original opinions. Specifically, BERT score recall correlates well with human consis-
tency judgments, the factual alignment between selected argument and references (original
opinions) (Fabbri et al., 2021). We pick the best-performing method for argument selection
based on this metric. This way, we penalize any possible effect of hallucinations of LLMs on
the HyEnA method. We take the argument selected by each approach in the Key Argument
Selection phase of the HyEnA procedure. As references, we take all comments that were
involved in the creation of the cluster. We compute BERTscore and compare it across our
approaches.

4.4 Baselines

We compare the output of HyEnA to the results of an automated and a manual approach
to key argument extraction.
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4.4.1 Comparison to Automated Baseline

We use the ArgKP argument matching model (Bar-Haim et al., 2020b) to automatically
extract key points from the corpus. ArgKP selects candidate key points from opinions using
a manually-tuned heuristic, which filters opinions on their length, form, and predicted
argument quality (Gretz et al., 2020). The original approach suggests relaxing heuristic
parameters such that 20% of the opinions are selected as candidates. However, this caused
overly specific arguments as candidates. Instead, we departed from the parameters used for
the ArgKP dataset (Bar-Haim et al., 2020b), and only relax them slightly such that ∼10%
of opinions are selected as key point arguments.

Candidate key points and opinions are assigned a match score using a model trained for
matching arguments based on RoBERTa (Liu et al., 2019). Opinions only match the highest-
scoring candidate key points if their match score exceeds a threshold θ, corresponding to
the best match and threshold (BM+TH) approach. After deduplication, this results in a
single list of key arguments per option. We use three metrics, coverage (C), precision (P ),
and diversity (D) to compare HyEnA and ArgKP.

Coverage (C) is defined as the fraction of opinions mapped to an argument out of all
the processed opinions (Bar-Haim et al., 2020b). To compute C, first, we extract the set of
key arguments AH from HyEnA based on opinions Oobs

H (⊂ O) observed by the annotators.
Further, if an argument is extracted from an observed opinion oi ∈ Oobs

H , we add oi to
the set of annotated opinions Oann

H . Similarly, we extract the set of key arguments AA

from ArgKP based on its observed set of opinions Oobs
A (≡ O), producing a set of annotated

opinions Oann
A . Then, the coverage with respect to all observed opinions is:

CH =
|Oann

H |
|Oobs

H |
(4)

CA =
|Oann

A |
|Oobs

A |
(5)

Comparing the coverage scores as defined above naively may not be fair since the set of
observed opinions (i.e., the denominators of Equations 4 and 5) are not the same for HyEnA
and ArgKP. Thus, we also compute coverage with respect to a set of common opinions,
Oobs

H ∩Oobs
A , observed by both methods, as:

Ccommon
H =

|Oann
H ∩Oobs

A |
|Oobs

H ∩Oobs
A |

(6)

Ccommon
A =

|Oann
A ∩Oobs

H |
|Oobs

H ∩Oobs
A |

(7)

We add the same term to both denominator and numerator in Equations 6 and 7 so that the
coverage stays in the range [0, 1]. Note that Ccommon

H = CH since Oobs
H , Oann

H ⊂ Oobs
A (≡ O).

Precision (P ) is the fraction of mapped opinions for which the mapping is correct (Bar-
Haim et al., 2020b). Thus, we must map a set of opinions to arguments in order to compute
precision. For this mapping, we select the common opinions, Oann

H ∩Oann
A , that are annotated

in both HyEnA and ArgKP. Then for each oi ∈ Oann
H ∩Oann

A , we create two pairs 〈oi,AH(oi)〉
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and 〈oi,AA(oi)〉, where AH(oi) and AA(oi) are the arguments associated with oi by HyEnA
and ArgKP, respectively. Then, we ask annotators to label z(oi, ai) = 1 for all matching
pairs and z(oi, ai) = 0 for all non-matching pairs, and keep the majority consensus from
multiple annotators. Given the opinion-argument mapping, we compute precision as:

P common
H =

∑
oi∈Oann

H ∩Oann
A

z(oi,AH(oi))

|Oann
H ∩Oann

A |
(8)

P common
A =

∑
oi∈Oann

H ∩Oann
A

z(oi,AA(oi))

|Oann
H ∩Oann

A |
(9)

Diversity (D) is defined as the ratio of key arguments and the number of comments
seen by the method. We use diversity to signify how well our method is able to preserve
the perspectives present in the opinions seen by the method. In order to compare across
methods, we take (1) only correct mappings (z(oi, ai) = 1) using the labels from P and (2)
take the opinions seen by both A and H. We define diversity as follows:

DH =
AH

|Oobs
H ∩Oobs

A |
(10)

DA =
AA

|Oobs
H ∩Oobs

A |
(11)

4.4.2 Comparison to Manual Baseline

A manual analysis involving six experts analyzed the feedback from a sample of participants
(2,237 out of 26,293) over all policy options and identify key arguments (Mouter et al., 2021).
However, they do not report the exact number of opinions analyzed. Since there are 36,781
opinions for the three options we analyze (Table 1), we estimate the number of opinions the
six experts would have analyzed to be 3,129 across the three options. In contrast, HyEnA
annotators analyze 765 intelligently selected opinions across the three options.

It is evident that HyEnA reduces the number of opinions analyzed. Further, we in-
vestigate the extent to which the key argument lists generated by HyEnA and the manual
baseline have comparable insights. To do so, we report the number of HyEnA key arguments
that are overlapping, missing, and new compared to the expert-identified key arguments.
We cannot compute precision and coverage for the manual baseline because it does not
include a mapping between key arguments and opinions.

5. Results

First, we analyze the inter-rater reliability of annotations. Then, we analyze the interme-
diate results of the three phases of HyEnA. Finally, we compare our hybrid approach with
the automated and manual baselines.
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5.1 Annotator Agreement

Table 5 shows the inter-rater reliability (IRR) for four steps with overlapping human anno-
tations. We don’t obtain IRR ratings for the argument extraction task in Phase 1 since the
annotation is designed to be disjoint, and raters had little to no overlap in their extractions.
In the topic generation phase (Section 4.1), we use the intraclass correlation coefficient
ICC(3, k) (Shrout & Fleiss, 1979) since it involves ordinal ratings. In the other three tasks,
multiple binary labels are obtained for the same subjects. In these tasks, we use prevalence-
and bias-adjusted κ (PABAK) (Sim & Wright, 2005), which adjusts Fleiss’ κ for prevalence
and bias resulting from small or skewed distribution of ratings.

Task ICC3k PABAK

Topic generation 0.66 (0.14) –
Topic assignment – 0.81 (0.10)
Key argument consolidation – 0.34 (0.03)
Key argument evaluation – 0.36 (0.04)

Table 5: IRR scores per task in HyEnA. We show the average (and standard deviation)
over the three option corpora.

The lowest reliability score we obtain for the last two annotation tasks, Key argument
consolidation and Key argument evaluation task. The obtained scores may be due to the
difficulty of the task—for instance, lay annotators are asked to characterize the similarity
between two arguments, and they may not stick to the provided definition of argument
similarity. However, task difficulty may not be the only factor at play here. Argument
comparisons are made with limited context, and the personal perspective or background
of the annotator may influence their judgment. Thus, the low IRR scores may indicate
a combination of task difficulty and the relatively subjective nature of the task (Aroyo &
Welty, 2015). Similar reasoning holds for the task of evaluating arguments with respect to
the original opinions.

Prolific annotators were generally young (M=29.2, SD=7.8) and typically active users
with a median of over 300 tasks completed (M=404, SD=418). A little over half of our
annotators were male (58.8%), another 38.6% reported as female, and the rest had no data
available. 76.7% reported a language other than English as their native language (we did
require all annotators to be fluent in English). Annotators mostly resided in European
countries, with the UK, Mexico, and the US being the only non-EU countries with more
than 10 annotators. 23.8% reported as being a full-time student, with the rest either
reporting as not being a student or having no data available. Further work is required in
order to investigate the impact of demographic factors on the subjective interpretation of
the opinions and arguments involved (Shortall et al., 2022).

5.2 Phase 1: Key Argument Annotation

In Phase 1, individual annotators were guided through 51 opinions each and asked to anno-
tate the observed arguments. Table 6 shows the number of different operations annotators
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perform over the 51 opinions. On average, the annotators identified 15 unique key argu-
ments per option. About half of the opinions were skipped, mainly because the opinion
lacked a clear argument. Since the opinions had been automatically translated, we also
provided annotators with the option to skip an opinion due to an unclear translation. Out
of 51 actions, annotators reported mistranslations in 6, 7, and 2 opinions on average for
young, immune, and reopen, respectively.

Phase 1 Phase 2

Option # Args # Skip # Already ∆ τ

young 18.0 (5.5) 23.4 (5.4) 11.4 (9.0) -61.6% 0.34
immune 12.8 (2.6) 31.4 (4.5) 8.6 (4.4) -59.1% 0.42
reopen 13.8 (7.6) 29.2 (11.5) 10.2 (7.6) -59.8% 0.41

Table 6: The average annotation operations (and their standard deviation) in Phase 1, and
obtained statistics for Phase 2.

This is a positive result since the noise (i.e., irrelevant or non-argumentative opinions) in
public feedback can be much higher. Thus, the argument quality classifier we incorporate
for opinion sampling is effective in filtering noise. Further, the annotators marked only
about 15% of the encountered opinions as already annotated key arguments, which shows
that the FFT approach is effective in sampling a diverse set of opinions for annotation.

To further examine the behavior of the annotators, we measured the amount of text that
was literally copied from the opinions. In Figure 4, we show the distribution of overlap ratios
across all extracted arguments. While some arguments do get copied verbatim (overlap ratio
of 1), across all three corpora annotators generally rephrase the arguments themselves. This
shows that, in HyEnA, human intervention acts in shaping the arguments extracted from
the opinions, rather than simply copying part of an opinion (as automated methods would
do). Table 7 shows some examples of arguments extracted with different overlap ratios.

0 0.2 0.4 0.6 0.8 1

reopen (N=69)

immune (N=66)

young (N=90)

Overlap ratio

Figure 4: Distribution of argument overlap ratio for arguments generated by Key Argument
Annotation in Phase 1.
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Option Opinion Text Extracted Argument
Overlap
Ratio

young Our daughter misses her friends so
much and I notice that she really
needs it

Positive for the psychological
health of children

0.060

immune Keep one system, keep it simple.
Not too many deviations.

Everyone should be sub-
ject to the same set of
rules/restrictions.

0.091

immune Too little research has been done to
limit the measures for people who
are immune and too few opportu-
nities to test it. In addition, it is
difficult to control.

It is difficult to control. 1.000

reopen These measures are quite easy to
take compared to the unselected
measures.

Measures are easy to take
compared to the unselected
measures

0.820

Table 7: Examples of copied and paraphrased arguments in Phase 1 of HyEnA.

The topic models for each option generated a large variety of topics. After the generation
of the topic models T , we retain only the top-15 most frequent topics to make the annotation
feasible. Our experts eliminated one, two, and zero topics as duplicates in the three options
(Table 8). On average, the coherence scores—ranging from 1 (low) to 5 (high)—are high.
This suggests that these topics were suitable for assignment to the arguments stemming
from the crowd-extracted arguments. Table 9 shows the final list of topics, with low-scoring
topics removed.

Option |T |
Number of
duplicates Kept

Average
rating

young 59 1 12 4.4
immune 56 2 12 4.4
reopen 72 0 14 4.0

Table 8: Expert topic generation statistics in Phase 1.

5.3 Phase 2: Key Argument Consolidation

In Phase 2, HyEnA uses the Power algorithm to guide human annotations on arguments
similarity, with the intent of creating clusters of similar arguments across all arguments
individually annotated in Phase 1. Table 6 (right side) shows the benefit of the Power
algorithm—the number of pairs requiring human annotation (∆) was on average reduced
by 60%. The transitivity scores τ (Newman et al., 2002) indicate the extent to which
transitivity holds among the similarity labels of argument pairs. The relatively low τ scores
justify the subsequent clustering we perform.
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Option Topics

young
immune entertainment
hospitality restrictions

infection immunity risk in-
fected

virus susceptible spread
transmit

schools reopen education
students

risk limited low dangerous group risk target least

enforcement rules enforce
measures

pressure care effect in-
crease

distance keep difficult
keeping

exercise sports play exer-
cising

easing relaxation options
effects

mental development life
psychological

immune
homes nursing care vulner-
able

netherlands country
provinces dutch

risk contamination danger
dangerous

work companies home
economy

entertainment hospitality
catering industry

infect sick cant anymore

virus spread transmit
young

testing test immunity anti-
bodies

pressure care healthcare in-
crease

young distance age 15
exceptions rules enforce-
ment same

easing options relaxations
step

reopen
homes nursing care vulner-
able

netherlands friesland
groningen dutch

risk hospitality entertain-
ment dangerous

mental health income de-
crease

measures rules these
should

entrepreneurs work work-
ing industry

care healthcare psychologi-
cal decrease

life economy social enter-
tainment

relaxation easing options
relax

corona immune had immu-
nity

bankrupt companies
bankruptcies hospitality

infections increase risk out-
break

economy needs soon now
meters distance possible
industry

Table 9: Top 4 words per topic generated in Phase 1.

Figure 5 compares Louvain and spectral clustering for extracting argument clusters.
Generally, both methods show a clear minimum for obtaining the final argument clusters.
Louvain clustering yields the smallest error for the young and immune corpora, and spec-
tral clustering for reopen corpus. These methods create 20, 14, and 18 clusters respectively.
We pick these clusters as input to the argument selection phase.

Not all arguments inside the same cluster are constrained to have the same stance (pro
or con) towards the policy option. We count what proportion of arguments in the cluster
do not adhere to the majority stance. The distribution of stances scores is visualized in
Figure 6. While we see that the upper limit is that half the arguments in each cluster are
not agreeing with the majority label, the average ratio denotes that only a small fraction of
argument stances do not agree with the majority stance label. This shows that the clusters
generally represent a coherent distribution of arguments with similar stances to each policy
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Figure 5: Error rate E for different parameters per clustering method for each subcorpus
in Phase 2.

option. The ratio on average is lowest for immune, which is the option with the highest
ratio of con opinions.
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Figure 6: Stance distribution for clusters extracted for each corpus in Phase 2. A ratio of
0.5 denotes an equal number of pro and con arguments inside a cluster.
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5.4 Phase 3: Key Argument Selection

In Phase 3, we compare five Argument Selection methods for extracting a representative
argument for each of the clusters obtained in Phase 2. We first perform an odd-one-out
task to evaluate the coherence of the clusters according to each tested Argument Selec-
tion method (see Section 4.3 for additional details). Then, we evaluate the quality of the
arguments that are selected to represent clusters.

Odd-one-out task Figure 7 shows the results of the odd-one-out evaluation. Here, we
see that two methods outperform the random baseline. This indicates that these methods
identify cluster membership relatively consistently with the results of HyEnA, although with
considerable error rates. For Llama, we encountered a strong position bias with respect to
the ordering of the triple: independently of which was the odd-one-out argument, the model
primarily picks arguments at a specific index. This causes its performance to be similar to
random picking. We attribute this to the lack of instruction tuning for the Llama model.

centroid ChatGPT Llama random
0

0.2

0.4

0.6

0.8

1

0.64
0.52

0.31 0.33

A
cc

u
ra

cy
(%

)

Figure 7: Accuracy on the odd-one-out task per method.

Evaluating Argument Selection To select the best-performing Argument Selection
method, we compare BERTscores in Figure 8. We observe that all extractive methods have a
higher standard deviation when compared to the generative methods. The high maxima for
extractive methods are likely caused by the fact that some selected representative arguments
were verbatim copied from an opinion in the corpus. The low minima are instead due to
the fact that the extractive methods are required to use an argument from the cluster,
which may not be representative of the cluster (since there may be noise in the clusters,
see Figure 7). Conversely, the lower bound for the abstractive methods is higher, showing
how rephrasing the selected argument allows it to be more related to all arguments inside
a cluster. Between the abstractive methods, ChatGPT achieves a better score than Llama
on average but has a higher standard deviation as well. Since we did not perform extensive
prompt engineering, there is room for improvement in both methods with better-crafted
prompts.

All methods, except for Llama, achieve similar average BERTscores. Surprisingly, none
of the approaches on average performs considerably better than random. This suggests that
selecting a representative argument from the cluster is relatively simple—in practice, since
the argument clusters are coherent, a random selection is generally sufficient. However,
in the final evaluation, humans will be judging the match between selected arguments and
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Figure 8: Aggregated BERTscore for the different Key Argument Selection methods across
all corpora and argument clusters (Phase 3).

individual opinions. In this case, we strive for a better worst-case performance—we care less
about having perfect matches, but rather wish to have fewer misrepresentation errors. Thus,
given the comparable averages, we opt for the method with the highest lower boundary and
higher media score (ChatGPT), which we use for the remainder of the experiments.

Finally, we compare the output of Phase 3 of HyEnA against a version where the selec-
tion was manual. In particular, we take the extractions from Phase 1 and re-evaluate them
using a new set of annotators. In Table 10, we show the difference in Precision (Equation 8).

We find that the addition of Argument Selection has some impact on the ability of anno-
tators to match opinions and arguments, although, generally, the decrease in performance is
minor. Most interestingly, when comparing argument matches for the same set of opinions
before and after the addition of Argument Selection, we find that there is only fair agree-
ment between the re-matched labels (Cohen κ = 0.255). This indicates that the argument
selection phase causes some opinions easier to be matched to selected key arguments while
making others more difficult. ChatGPT generated as a selected argument a key argument
that is representative of the cluster, which sometimes is more general than the arguments
extracted from individual opinions. As such, for these opinions, external annotators do not
recognize the specific argument being present, but some others are now captured in the
selected argument.

5.5 Comparison with Automated Baseline

Figure 9 compares the coverage, precision, and diversity scores of HyEnA and ArgKP. The
low coverage (for both methods) indicates that a large number of opinions do not map to a
key argument. This is not surprising since real-world opinions are noisy.

Considering all observed opinions (CH and CA), HyEnA yields slightly higher coverage
than ArgKP in the young and reopen corpora. In contrast, ArgKP yields higher coverage
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Method young immune reopen Overall

HyEnA 0.816 0.833 0.641 0.765
HyEnA w/o Phase 3 0.787 0.848 0.739 0.789

Table 10: Comparing Precision (P ) scores with and without Phase 3 (Key Argument Se-
lection phase).

than HyEnA in the immune corpus. We attribute this to the repeated arguments in the
immune corpus. As 83% of opinions are con-opinions, the immune policy option (Table 1)
was highly opposed and its corpus contains many repeated arguments. Since the set of
all observed opinions is the entire corpus for ArgKP, the repeated arguments inflate its
coverage. However, since HyEnA is designed to observe only a small subset of diverse
opinions from the corpus, the repeated arguments do not influence its coverage significantly.
This is corroborated in the diversity scores, where we observe HyEnA to consistently output
a set of arguments that is more diverse than the ones produced by ArgKP.

In addition to comparing coverage over observed opinions, we compare the coverage of
HyEnA and ArgKP with respect to a common set of diverse opinions. In this comparison
(Ccommon

H and Ccommon
A ), HyEnA yields consistently higher coverage (0.34 on average) than

ArgKP (0.16 on average) in all three corpora. ArgKP often fails to recognize the key
arguments in the diverse set of opinions included by HyEnA.

ArgKP yields a larger number of key arguments (around 30 for each option) than
HyEnA. However, these arguments lead to an average precision of 0.56. In contrast, HyEnA
extracts fewer argument clusters (on average 17 per option), but with higher precision (0.80).

5.6 Comparison with Manual Baseline

Table 11 shows counts of overlapping (yes, yes), missing (no, yes), and new (yes, no) key
arguments between HyEnA and the manual baseline. HyEnA required an analysis of 765
opinions, compared to the estimated 3,000 opinions seen in the manual baseline. Despite
the lower human effort, the HyEnA lists largely overlap with the expert lists.

Manual baseline

young immune reopen

yes no yes no yes no

HyEnA
yes 8 7 7 2 10 1
no 1 – 0 – 4 –

Table 11: A confusion matrix comparing the key argument lists generated by HyEnA and
manual baseline.

HyEnA missed some key arguments that the experts identified, e.g., a key argument
about building herd immunity was not in the HyEnA list for the reopen option. We
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Figure 9: Comparing HyEnA and ArgKP.

conjecture that increasing the number of opinions annotated in HyEnA would subsequently
yield the missing insights. HyEnA also led to new insights that experts missed, e.g., an
argument about the physical well-being of young people was not on the expert list for the
young option. Likely, the larger (random) sample of opinions experts analyzed did not
include opinions supporting this argument, whereas the smaller (intelligently selected) set
sampled in HyEnA did.

6. Discussion

We find that HyEnA exploits the strengths of automated methods and the insights from
human annotation. HyEnA outperformed an automated KPA model in terms of precision
and diversity, and on a diverse set of opinions, is able to capture more nuanced arguments.
Further, HyEnA expanded beyond an expert analysis, showing how a fully manual procedure
may also be limited. In the remainder of this section, we expand on three specific aspects.

Limitations Our experimental setup and comparisons are limited in their scope in mul-
tiple ways, thus making our conclusions hard to generalize. Our choice of baseline is the
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ArgKP model, which was optimized for the task of extracting Key Arguments from a cor-
pus of opinions. However, other automated baselines are conceivable, especially with the
introduction of the current generation of flexible LLMs (e.g., ChatGPT, Bard). Those
models may be employed for KPA by using prompting techniques (Liu et al., 2023). The
capabilities of these models seem to imply that they have access to higher order argumen-
tation knowledge (Lauscher et al., 2022), and thus would fare better than the basic ArgKP
model. However, having such LLMs reliably process large amounts of citizen feedback with-
out hallucinations is a nontrivial task. In this process, due diligence to preserve a variety
of perspectives is required (e.g., by optimizing for a range of opinions instead of single-
annotator labels (Bakker et al., 2022)) in order to prevent rampant misrepresentation of
marginalized demographics.

Instead of relying solely on the judgment of an LLM for the task of KPA, we opted to
include one in the final step of HyEnA. While some of the criticism for using an LLM for end-
to-end KPA still holds for the Argument Selection step as well, our method investigated a
more controlled setup, supported by an objective task definition. Through our comparisons
with random and human-generated labels, we aim to show where, how, and to what extent
LLMs may aid in the KPA process. As ever, the choice of metrics remains important for
measuring the effect size.

Balancing Task Allocation The pairwise comparison in the consolidation phase is the
most human-intensive task in HyEnA, and the effort increases with the number of analyzed
opinions. Also, comparing arguments is cognitively demanding, partly evidenced by the low
IRR. While HyEnA reduced the number of comparisons required in the consolidation phase
by 60%, we may experiment with different setups or other techniques for comparing argu-
ments to remove this overhead. For example, first clustering the key arguments and then
consolidating the arguments within these clusters (reverse order as HyEnA) may drastically
reduce the number of judgments required in the second phase.

We place human efforts in places where there are multiple bidirectional benefits possible
stemming from performing the task. For instance, the Argument Annotation task both
serves the purpose of analyzing the opinions to progress our method, as well as actively
making annotators perform perspective-taking. On multiple occasions, annotators noted on
their increase in sympathy and recognition of the issues raised in the comments, showcasing
how the task could further help bring understanding to a group of citizens.

Ablations studies Any part of the HyEnA pipeline is open to adjustment and can be
performed by humans, machines, or a combination of both. HyEnA presents a general
framework that allows individual phases to be supported by different types of technologies.
Within this hybrid framework, we considered the following criteria when deciding to allo-
cate tasks to humans or to AI methods: (1) let humans read other’s opinions to promote
perspective-taking, (2) use humans to solve tasks where AI methods may incur considerable
error, (3) leverage AI methods for routine tasks, and (4) use task-specific intrinsic evaluation
metrics for selecting the right method.

In each phase, we perform both intrinsic evaluations (e.g., observe error rates for partic-
ular tasks or annotator behavior) and extrinsic evaluation against two baselines. This fits a
standardized machine learning pipeline, except that we are now able to (1) evaluate anno-
tator behavior and model performance jointly, and (2) make decisions on which techniques
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to use based on some intermediate statistic. We believe this setup to be generalizable for
Hybrid Intelligence systems, as it makes the role of the designer and their decisions explicit
(Akata et al., 2020). Furthermore, the results remain interpretable, as any decision made
by either annotators or models can be traced from opinion to selected key argument.

Different configurations of the HyEnA framework are possible, and the one we have
presented is an instance that tackles the problem of policy feedback analysis. HyEnA is
a complex combination of AI methods and human annotation. Our main objective was
to present the HyEnA framework, as well as a real-world use case to show the benefit of
using a Hybrid Intelligent methodology. However, other choices for individual components
of HyEnA can be used, or parts of the method can be performed solely by humans or AI
methods. We leave this open for future work, as running ablations requires considerable
amounts of work, and we envision research to come up with similar use cases where HI can
make a significant impact.

7. Conclusion and Future Directions

We develop and evaluate HyEnA, a hybrid method that combines human judgments with
automated methods to generate a diverse set of key arguments. HyEnA extracts key ar-
guments from noisy opinions and achieves consistent coverage, whereas the coverage of a
state-of-the-art automated method drops by 50% when switching from all (containing re-
peated) opinions to diverse opinions. Moreover, the key arguments extracted by HyEnA
are more precise than those extracted by the automated baseline. Additionally, HyEnA
provides important insights that were not included in an expert-driven analysis of the same
corpus, despite requiring fewer opinions to be analyzed.

Finding arguments in a discourse is only one aspect that constitutes the perspectives
in a discussion. Future work can incorporate analysis of other perspective factors, such
as values (Liscio et al., 2021, 2022), sentiment, emotion, and attribution (van Son et al.,
2016). By combining these rich aspects with arguments, we can merge the logical basis of
the discussion with other semantic and syntactic information, allowing close scrutiny of the
perspectives in opinions.
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Boltužić, F., & Šnajder, J. (2015). Identifying prominent arguments in online debates using
semantic textual similarity. In Proceedings of the 2nd Workshop on Argumentation
Mining, pp. 110–115.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot
learners. Advances in neural information processing systems, 33, 1877–1901.

Cabrio, E., & Villata, S. (2018). Five years of argument mining: A data-driven analysis.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence,
IJCAI’18, p. 5427–5433. AAAI Press.

Chai, C., Li, G., Li, J., Deng, D., & Feng, J. (2016). Cost-effective crowdsourced entity reso-
lution: A partial-order approach. In Proceedings of the 2016 International Conference

26



A Hybrid Intelligence Method for Argument Mining

on Management of Data, SIGMOD ’16, p. 969–984, New York, NY, USA. Association
for Computing Machinery.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2017). Supervised learning
of universal sentence representations from natural language inference data. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pp. 670–680, Copenhagen, Denmark. Association for Computational Linguistics.

Daxenberger, J., Eger, S., Habernal, I., Stab, C., & Gurevych, I. (2017). What is the essence
of a claim? cross-domain claim identification. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 2055–2066, Copenhagen,
Denmark. Association for Computational Linguistics.

Daxenberger, J., Schiller, B., Stahlhut, C., Kaiser, E., & Gurevych, I. (2020). Argumentext:
argument classification and clustering in a generalized search scenario. Datenbank-
Spektrum, 20, 115–121.

Daza, A., & Frank, A. (2020). X-SRL: A parallel cross-lingual semantic role labeling dataset.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 3904–3914, Online. Association for Computational Linguistics.

Eger, S., Daxenberger, J., & Gurevych, I. (2017). Neural end-to-end learning for compu-
tational argumentation mining. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 11–22, Van-
couver, Canada. Association for Computational Linguistics.

Eger, S., Daxenberger, J., Stab, C., & Gurevych, I. (2018). Cross-lingual argumentation
mining: Machine translation (and a bit of projection) is all you need!. In Proceedings of
the 27th International Conference on Computational Linguistics, pp. 831–844, Santa
Fe, New Mexico, USA. Association for Computational Linguistics.

Ein-Dor, L., Shnarch, E., Dankin, L., Halfon, A., Sznajder, B., Gera, A., Alzate, C., Gleize,
M., Choshen, L., Hou, Y., Bilu, Y., Aharonov, R., & Slonim, N. (2020). Corpus
wide argument mining—a working solution. Proceedings of the AAAI Conference on
Artificial Intelligence, 34 (05), 7683–7691.
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