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Abstract

This paper studies application performance on systemssivithgly non-uniform remote memory access. In cur-
rent generation NUMAs the speed difference between theesiband fastest link in an interconnect—the “NUMA
gap’—is typically less than an order of magnitude, and mastwentional parallel programs achieve good perfor-
mance. We study how different NUMA gaps influence appligagierformance, up to and including typical wide-area
latencies and bandwidths. We find that for gaps larger thaesetiof current generation NUMAS, performance suffers
considerably (for applications that were designed for &oumi access interconnect). For many applications, however
performance can be greatly improved with comparativelypténchanges: traffic over slow links can be reduced by
making communication patterns hierarchical—like thericanect. We find that in four out of our six applications
the size of the gap can be increased by an order of magnitudeg without severely impacting speedup. We
analyze why the improvements are needed, why they work soavel how much non-uniformity they can mask.
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1 Introduction

As computer systems increase in size, their interconnextsrbe more hierarchical, resulting in growing bandwidth
and latency differences in their interconnects. This trisndsible in NUMA machines and clusters of SMPs, where
local memory access is typically a factor of 2—10 faster ttemnote accesses [19]. The gap in future large-scale
NUMAs is larger, and the gap in meta-computers and compmutakigrids ismuch larger.

For NUMAs with a small gap good performance has been repevitbdconventional numerical applications [19,
24]. On systems with a larger gap, such as clusters of SMPretaarks of workstations, it is harder to achieve good
performance [22, 25, 31]. As gaps increase, it is likely reaformance will continue to suffer.

There is little insight in how a growing NUMA gap influencespéipation performance, or how good performance
can be achieved on systems with a large gap. This paper stindiperformance of six nontrivial parallel applications,
Barnes-Hut, Water, FFT, TSP, ASP, and Awari. We have builegperimental testbed using 128 Pentium Pros, a
high-speed network (Myrinet) and an ATM network. The tedtban be configured as multiple Myrinet clusters that
are interconnected by ATM links with different latenciegdldrandwidths. In this way, we can emulate a variety of
NUMA/meta-computer configurations, where the gap betwéenfast local network (Myrinet) and the wide-area
network (ATM) varies from 0 to 4 orders of magnitude. The pagter settings have been calibrated using a real
wide-area system.

The contributions of the paper can be summarized as folloMesanalyze the impact of a wide range of gaps be-
tween the slowest and fastest links of the interconnectdonhere performance of conventional parallel application
starts to deteriorate. We find that for gaps larger than tbbsarrent NUMAs (one order of magnitude) performance
rapidly drops to an unacceptable level.

* An earlier version of this paper appeared at HPCA'99 [29] isrmbpyright(©) 1999 IEEE.




For five out of six applications we describe performance oapments. (Since the applications were originally
designed for a machine with a uniform interconnect, it siqeérhaps not be surprising that there is room for im-
provement.) The applications are quite diverse, and scharalgorithmic changes, though all have in common that
the application’'s communication pattern is made to fit therdrichical interconnect—the changesrdid improve
performance on a uniform network. Commonalities betweerirttprovements are described.

For the improved applications, the impact of the same rafgays in the interconnect is analyzed, to see how the
changes influence application behavior, and how well theskwdaking 60% of the speedup under uniform remote
access as our criterion, we find that, for bandwidth, theatatde NUMA gap is increased to two orders of magnitude,
and for latency it is increased to three orders of magnitude.

We conclude that in many applications, with careful optimtian there is room for growth to large architectures
with highly non-uniform access times. The application immments themselves are straightforward programming
techniques—the challenge lies in understanding the iatierabetween interconnect and communication pattern. Fur
ther work is needed to make this easier, by expressing coreation with higher level primitives, or by incorporating
common traits of the improvements into coherency protocite experience with DSMs on SMP clusters suggests,
however, that this will be challenging [31].

Gaps of two to three orders of magnitude correspond to éiffees between local area and wide area links. Most
meta-computing projects currently use embarrassinglglighfjob-level) applications that barely communicateirO
results imply that the set of applications that can be runangd scale architectures, such as a computational grid,
is larger than assumed so far, and includes medium graiticatiphs. (Further research should study the impact of
variations in latency and bandwidth, which often occur odendrea links.)

The remainder of the paper is organized as follows. Sectidis@isses related work. Sections 3 and 4 describe
in detail the applications, improvements, and system thaé fbeen used in this experiment. Section 5 describes the
results of our measurements, and analyzes them. Sectiottiiesudirections of ongoing work. Section 7 concludes
the paper and discusses implications of this work.

2 Related Work and Background

In this paper, we try to understand how large differencesandwidths and latencies in an interconnect influence
application performance. For small gaps, several studjgsrt good performance on hardware DSM NUMA systems
[10, 19, 24, 33, 34, 41]. These systems have a gap of aboutoa t4@S between the slowest and the fastest links. The
picture changes for systems with longer access times. Pagdi 1, 22, 25, 31, 36, 42] study local area clusters of
SMPs, which have a gap of up to an order of magnitude. Theskesttend to focus on coherency protocol issues,
using software DSMs such as MGS, TreadMarks, SoftFLASHh®ase and Shasta, to see how the presence of
hardware shared memory improves performance. Performasoéis vary; earlier studies using partial simulation
or tighly coupled hardware [11, 42] showed better results thtudies using recent stock SMPs [12, 22, 25, 31, 36].
For SPLASH-like numerical applications, the experiencthwiommercial SMPs is that the presence of hardware
shared memory helps performance surprisingly little, dubus contention and the cost of the hardware coherence
protocol. Overall performance is somewhat disappointegpecially for applications that synchronize frequently.
Soundararajan et al. attempt to improve NUMA performanceugh better data locality, with migration/replication
protocols [35].

False sharing and disappointing performance in generéleiggason for work on data structure and algorithm
restructuring [17, 18]. Jiang et al. [18] use a software DSMtap of a network of workstations. Even though
here remote access times are uniform, the relatively laeg@ork overhead requires application changes for good
performance. Their changes exceed simple padding or tlatettge rearranging, requiring insight into both the
application and key aspects of the SVM. In previous work weetexperimented with a still larger gap, of two orders
of magnitude, for which we also found that applications ne@dmunication pattern changes [3].

Wide-area systems typically have gaps of three to four grdémagnitude, which covers the end of the range
that we study here. Compared to SMP clusters, they providera ihallenging environment in terms of latency
and bandwidth gap, but also of fault tolerance and hetemiggerMeta-computing research focuses on the latter two
issues [13, 15]. Because of the high (and non-uniform) taés) applications are typically embarrassingly parallel
unlike ours, which are of medium grain.

As NUMA systems scale up, itis inevitable that memory actiesss become less uniform. There is evidence that
applications can be quite sensitive to non-uniform memopess [3, 18, 35], and we want to know how applications



Table 1: Single-Cluster Speedup on 8 and 32 processors.

Program Speedup Speedup Total Traffic Runtime

32p. 8p. 32 p. MByte/s 32 p,insec
Water 31.2 7.8 3.8 9.1
Barnes-Hut 28.4 7.1 17.8 1.8
TSP 29.2 7.7 0.52 4.7
ASP 31.3 7.8 0.75 6.0
Awari 7.8 4.6 4.1 2.3
FFT 32.9 5.3 128.0 0.26

perform on such systems. So far, little attention has be@&htpahe effect of gap size. Previous studies use small,
fixed, gaps. We are interested in how performance scalesdiffdrent gaps; in our interconnect the gap is varied
over a large range, from zero to four orders of magnitude.dutiteon, many studies focus on issues such as DSM
protocols or message passing versus shared memory [9, LA&4&N, our focus is the NUMA gap. We investigate
where conventional applications break down, how commuioicgatterns can be adapted, and how far performance
improvement can be pushed. As an important aside, we wamtaew kow difficult it is to implement such changes.

Differences in link speeds pose interesting challengesagrammers. This paper explores how serious these
challenges are, and how we can deal with some of them.

3 Applications

Our application suite consists of six diverse programsnBstHut, Water, and FFT are numerical programs that orig-
inate from the Splash-2 suite [41], TSP and ASP are optinozabdes, and Awari is a symbolic artificial intelligence
program. The applications have diverse communicatiorpatt Table 1 summarizes the behavior of the applications
on a single Myrinet cluster. For all applications, largestgems give better speedups. We use relatively small pnoble
sizes in order to get medium grain communication. Mediuningisataken here as a total communication volume of
at least 100 KByte/s on a single level cluster of 32 processdit applications and problem sizes run efficiently on a
single Myrinet cluster. Five of our six applications aretten in the Orca parallel programming language [2], for ease
of use of the wide-area system, and for ease of debuggin@(©tgpe-safe). For most programs, serial performance
is comparable to serial C performance. Barnes-Hut is wriitteC with calls to the Panda [2] wide-area/local area
messaging layer.

3.1 Application Characteristics

This subsection summarizes key application charactesistihe next subsection describes the improvements that wer
implemented to achieve good performance on the highly nmofoum system.

Water The Water program is based on the “n-squared” Water apjgic&iom the Splash suite [41], rewritten for
distributed memory [30]. Related distributed memory ojitations are described by [18]. We report on experiments
with a medium sized input set of 1500 particles. The seriakdpof the distributed memory program is about ten
percent better than the original Splash code.

Barnes-Hut Barnes-Hut is ai) (n log n) N-body simulation. The implementation in the Splash-2eshis a fine
coherency unit which causes inefficiencies on coarse gridware [2, 18]. In this experiment a new distributed-
memory code by Blackston and Suel [5] has been used. Insfefattlimg out at runtime which nodes and bodies
are needed to compute an interaction, this code precomptit® nodes and bodies are needed, and sends them in
one collective communication phase at the start of eacétiter. Stalls in the computation phase are thus eliminated.
Related improvements have been reported by [14, 18, 40Jndusie same input problem, the serial program runs
slightly faster than the Splash code (while computing theesanswer). We used a set of 64K patrticles.

ASP The All-pairs Shortest Path program is a parallel versiothefclassic Floyd-Warshall algorithm. It uses a
replicated distance matrix of 1500 by 1500 entries. Eaclegssor iterates over rows in the matrix, and broadcasts
result rows as they are computed. These have to be processeter by the other processors before they can compute
their rows. A designated node issues sequence numbersievadhis ordering.



Table 2: Communication Patterns and Optimizations

Program Communication Optimization

Water All to Half Multicast Cluster Cache, Reduct Tree
Barnes BSP/Pers All to All BSP-msg Comb Node/Clus
TSP Centralized Work Queue Work Q/Clusteork Steal
ASP Totally Ordered Broadcast Sequencer Migration
Awari Asynch Unordered Msg Msg Comb/Clus

FFT Pers All to All —

TSP The Traveling Salesperson Problem computes the lengthedftibrtest path along cities, by enumerating
the possible paths. The program uses a centralized job quieiah is filled with partial paths, from which workers
get jobs. A 16 city problem is used as input; jobs consist ohwigl tour of 5 cities, creating small jobs and a (for
this application) fine communication grain, as Table 1 shddaterministic runs are ensured by using a fixed cutoff
bound [2].

Awari Awari, a retrograde analysis program, is a symbolic appticathat computes end game databases, of
importance for programs playing games such as checkessb#ised on backwards reasoning and bottom-up search.
Here we compute a relatively small 9 stone database for thieakf board game Awari. The program sends many
small, asynchronous packets of work to other processorsTHHése messages are combined into larger messages for
performance reasons. The communication pattern of Awamridgular asynchronous point-to-point messages.

FFT The FFT application computes a one-dimensional Fast Fotwaiesform, using the transpose algorithm [23].
The program is a rewrite of the Splash-2 code for distribuednory, and achieves an excellent speedup on a single
Myrinet cluster, despite the short run time. The commuicgpart of this program is very simple: it performs three
transposes, interspersed by parallel FFTs. The problezns®2Z?® complex floating point numbers, the largest that
would fit in memory. FFT shows a small superlinear speeduptdeache effects.

Table 2 summarizes the communication patterns and impremtsn Figure 1 summarizes inter-cluster traffic of
the original applications. The figures show data volumes BylM/s per cluster and numbers of messages per second
per cluster (for 6 MByte/s bandwidth per link and 0.5 ms latgand 4 clusters of 8 processors, a configuration with
12 wide-area links in total). TSP has an extremely low ildester communication volume, 0.1 MByte/s, though a
non-negligible number of messages. Barnes-Hut and FFT &digh communication volume of nearly 7 MByte/s
(note that the bandwidth limit in this case is 18 MByte/s gaster, since with 4 clusters there are 3 links of 6 MByte/s
out of each cluster). Awari can be found in the opposite cooféhe graph, with a high number of tiny inter-cluster
messages (more than 4000 per second per cluster). WaterSthti@dve a modest level of inter-cluster traffic, less than
1000 messages per second and less than 2 MByte/s per cluster.

Inter-cluster traffic, 4 clusters, 32 processors
Link: latency = 0.5 ms, bandwidth = 6.0 MByte/s
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Figure 1: Communication Volume and Messages



3.2 Optimizations per Application

The applications are run on an interconnect whose bandwittiHatency difference ranges from small to large. The
system consists of 4 clusters of 8 processors each. Ingd#ubters the processors are connected by fast Myrinet link
(0.020 ms application level latency, 50 MByte/s applicafievel bandwidth). The clusters themselves are fully con-
nected by slow ATM links through additional gateway machi(@&4—300 ms latency, 10-0.03 MByte/s bandwidth).
Thus, we have a two level interconnect.

The applications have originally been developed with aarnif network in mind, where all links have the same
latency and bandwidth. Performance suffers when the systdnighly non-uniform, as in our system, where slow
links have latencies up to 5000 times the latency of fasslirikhis subsection describes which problems have to be
resolved to achieve good performance. Some of the improntrhave been described previously in [3].

Water The Water program is a classical simulation program of theabier ofn water molecules in an imaginary
box. Each of the processors is assigned an equal number of water molecutescéimputation of thé (n?) inter-
molecular forces is the most time-consuming part of the kitian. Forces between two molecules are computed by
one of the two processors, the owner of that molecule. Attidue of this phase, each processor gets the positions of
the molecules of half of the other processors. As a forceleutated it is added locally to determine the total force
acting on the local molecule, and is sent to the appropri#er grocessor so that it can compute the total force for its
molecule. All individual molecule updates destined for agassor are combined into one message. The force update
phase amounts to two “all-to-half” communications (one igiribute molecule positions, one to send force updates
back). The total number of messages approximates = O(p?).

The Water program suffers from a severe performance detipadahen inter-cluster links are much slower than
intra-cluster links. With 4 clusters, 75% of all messages lz@tween clusters—that is, slow. The two operations,
copying of molecule positions anddding of force updates, are b-andn—1, reduction-like, operations. With the
original program, the position of a given molecule is transfd many times over the same inter-cluster link, since
multiple processors in a cluster need it. The optimizatimids sending the same data over the inter-cluster link more
than once. For every procesgoin a remote cluster, we designate one of the processors ilo¢aécluster as the
local coordinator fop. If a process needs the molecule data of processibrdoes an intracluster RPC to the local
coordinator ofp. The coordinator gets the data over the inter-cluster fimiyards it to the requester, and also caches
it locally. If other processors in the cluster ask for the satata, they are sent the cached copy. A similar optimization
is used at the end of the iteration for the force updates. pdiates are first sent to the local coordinator, which does a
reduction operation (addition) on the data and transfelgstbe result over the inter-cluster link.

Barnes-Hut Blackston and Suel’s distributed version of the Barnes-adigibrithm precomputes where nodes and
bodies will be needed in each iteration, and sends them icallective communication phase at the start of the itera-
tion. The program is coded in Valiant's BSP style [38]. Conmigation takes place in so-called supersteps, which are
separated by barriers. In each of these supersteps thapregnds many small messages, which incur large overhead
if sent indiscriminately over inter-cluster links. All effent BSP implementations perform message combining of
small messages for each recipient. To achieve good perfar@nan the multi-cluster, two more optimizations have
been implemented. First, each sender processor combirgesages to different recipients in the same target clus-
ter into one message towards the target cluster gatewang tis¢ fact that the code precomputes which parts of the
Barnes-Hut tree will be needed on other processors. Thessages are dispatched by the receiving cluster gateway
to the recipients. Second, the strict barrier synchroitimads relaxed by using explicit sequence numbers. (BSP is a
relatively young programming model. An active communitisexworking on efficientimplementations of the model,
see for example [37].)

ASP In ASP, processors iterate over rows in a distance matrixgigging result rows that are needed by the other
processors before they can start new iterations. In théafignplementation, a designated sequencer node is used to
ensure that rows arrive in order at the processors. The sehtle row has to wait for a sequence number to arrive
before it can continue. On a multi-cluster with 4 cluste&//of the broadcast requests will thus incur the inter-elust
penalty. This slows down the program significantly.

Communication in ASP is quite regular: first processor 1 cot@pand broadcasts its rows, then processor 2, etc.
On the multi-cluster we take advantage of this regularityrigrating the sequencer to the cluster of the node that does
the sending. In this way, sequencer requests can be satigfeedode in the local cluster. In a four cluster system, the
sequencer has to migrate only three times, incurring icltester latency only three times. (Another solution would
be to drop the sequencer altogether, since processors khowvill send which row. Again, this solution exploits the
regularity of the ASP algorithm.)



The row broadcasts themselves are asynchronous, so ther skrasd not suffer from inter-cluster latency. Overall
progress is, however, sensitive to inter-cluster bandwiBltoadcasts are performed using a multicast tree, withtpoi
to-point communication from the sender to the cluster gay@yand multicast primitives inside clusters.

TSP TSP uses a single job queue from which processors retrievie wioen their current job is finished. On 4
clusters, 75% of the traffic is between clusters. Even thpogimpared to the other applications, TSP communicates
infrequently, the level of traffic still limits performanaonsiderably. The centralized job queue causes too much
inter-cluster traffic. The multi-cluster optimization sdistribute the queue over the clusters. Each cluster naitha
own queue, and workers perform work stealing only from tbain queue. When the queue becomes empty it tries
to steal work from the other cluster queues, to maintain aldoad balance. In our system, the number of clusters
is small compared to the number of processors. There areasmyany queues as there are clusters, and inter-cluster
traffic is solely influenced by the number of clusters, noth®ytumber of processors per cluster.

Awari Awari performs a parallel search starting from known entestin a search space (for example, checkmate).
States are hashed to processors. The values of all readtatde are computed and sent to the processors owning
these positions, which start working on them by generatimayln values of their reachable states. This process results
in many small messages. The original parallel program pe$anessage combining for destination processors, to
reduce communication overhead. The search progresseagesstin each stage, the database for one more stone
is computed. Too much message combining results in loadlémbe since processors are starved of work at the
end of the stages. The high volume of small messages comhitiedhe larger overhead of the inter-cluster links
limits performance. To reduce the impact of this overheadadd another layer of message combining: cross-cluster
messages are first being assembled at a designated locakpoocare then sent in batch over the slow link, and are
subsequently distributed by a designated processor atthiee duster to the final destinations. The extra layer of
message combining reduces the impact of the large comntianicverhead of the inter-cluster links.

FFT The FFT application is renowned for its high communicatiolume. It is especially ill-suited for a system
with long latencies and low bandwidths, or a highly non-anif interconnect. The communication pattern is a matrix
transpose, with little computation. No multi-cluster opization was found. The purpose of this work is to gain
insight in the limits of multi-layer systems with a highlymaniform architecture. FFT serves as a reminder that there
are programs that are unsuited for our interconnects.

3.3 Optimization Overview

Despite the small input problems, all applications excepaperform well on a single Myrinet cluster (Table 1). Ta-
ble 2 lists for each program the base communication pattadritaimprovement. The main goal of the improvements
is to match the communication structure of the applicatiotin whe hierarchical interconnect; applications should
reduce their communication over slow links—or at least oediheir dependency on that communication.

Like the programs, the communication patterns are quiterde; the optimizations also appear to be quite varied.
The general strategy in optimizing for highly non-unifomdrconnects is to change the algorithm so that less traffic i
sent over the slow links. If that is not possible, then wedraff latency sensitivity at the cost of increased bandwidth
requirements. Four types of optimizable communicatiomepas can be distinguished in our applications; two are
of a more algorithmic nature, and two are more related to canication parameters. The first optimization is the
reduction operation, which was implemented in Water as aleved tree. For the multi-cluster interconnect, it is
implemented with a two-level tree, the cluster gatewaysiadating intermediate results. The second optimization
is the work queue, which is implemented in TSP as a singleraéred queue. For the multi-cluster interconnect,
it is implemented as a distributed queue, one queue pereclgsteway with work stealing among the clusters to
maintain load balance. The third optimization is messagehbioing, which is used in Barnes-Hut and Awari to
reduce communication overhead for frequent small messagé&igh-overhead links. The fourth optimization is to
exploit asynchrony inherent in the application, which isdign ASP to reduce the number of synchronization points.
Furthermore, it can be argued that Blackston and Suel hatferpeed just this kind of optimization in their rewrite of
a traditional SPLASH-like shared memory Barnes-Hut codee dommunication pattern of FFT is too synchronous
and fine grained; no optimization was found.

It is interesting to contrast our changes to the restrueguby Jiang et al [18]. Their work is performed on a
software DSM running on a network of workstations, a systeith wniform remote access links. They focus on
restructuring algorithms to reduce overheads caused lificieat remote access patterns, fine-grain synchronizatio
and multiple-writer algorithms. Our system has non-umfoemote access links; we focus on restructuring com-



munication patterns in a two-level system, reducing tradfier the slow links by clustered work stealing, message

combining, removing synchronization points, and optimigieduction operations. Our changes differ from Jiang’s

in that we make explicit use of the multi-level structureoé interconnect. Indeed, the changes are ineffective on an
interconnect with uniform remote access links.

The algorithmic changes are applications of well-knowintégues. The novelty lies not so much in the changes
themselves as in the magnitude of the performance improvethey cause. The hard part is the understanding of
the application behavior, and how it maps to the intercon(es®e also [3, 18]). Efforts to express communication
constructs on a higher conceptual level [7, 8, 27, 32], ontwiporate them in a cache coherency protocol, would
ease this problem (Soundararajan et al. describe work diegoiooptimizations for a NUMA gap of one order of
magnitude [35]).

The next section continues with the performance analysisipépplications.

4 Experimental Setup

We use an experimental cluster-of-clusters system calle8,3hown in Fig. 2. The DAS consists of four local
clusters of 200 MHz/128 MByte Pentium Pro machines conmklayeMyrinet [6], using LANai 4.1 interfaces. The
peak bandwidth of Myrinet is 2.4 Gbhit/s, and host-to-hottray is at least .us. In our system, application-level
bandwidth is 50 MByte/s, one-way application level lateigy0 us. The clusters are located at four universities
in the Netherlands. They are connected via dedicated gatevaghines over ATM by 6 Mbit/s Permanent Virtual
Circuits (application-level bandwidth is 0.55 MByte/s oW&P). The round trip latency is 2.5-3 ms. Three sites have
24 compute nodes each, one site has 128. The wide-area kasafofly connected, the system-area networks are
twodimensional meshes. The operating system is BSD/OSoweBsfrom BSDI. The wide-area ATM links have a
fixed latency and bandwidth. To allow for experimentatiotivdifferent speeds, 8 local ATM links have been installed
in the 128 processor cluster, using the same hardware ae ieshwide-area system (ForeRunner PCA-200E ATM
boards). The latency and bandwidth of the ATM links can béaaby delay loops in the cluster gateway machines.
Except for the local ATM links, this experimentation systisridentical to the real wide-area system; the same binaries
are run in both setups, and except for the delay loops, tlieneesimulated parts. When the delay loops are set to the
wide area latency and bandwidth, run times differ on avebag® 6% for our applications.
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Figure 2: The Distributed ASCI Supercomputer (DAS)

All runs on this experimentation system showed very repcdile timings, except for Barnes-Hut, whose timings
spread more than a factor of two over the runs. Since we sugpedCP stack of causing this behavior, Barnes-Hut
was run on a modified experimentation system where the ATN¥/Tiaks were replaced by Myrinet links. The delay
loops for this pure Myrinet system were calibrated to predexactly the same behavior as the ATM/TCP system.
On the pure Myrinet system, the timing anomalies disappkaf@erefore we present the performance on the pure
Myrinet system for Barnes-Hut.

The system can be programmed through different librariddamguages, from message passing libraries such as
MPI and Panda [2], software DSMs such as TreadMarks and CB]. {@ parallel languages such as Orca [2] and



Java [26]. The Panda messaging layer has been adapted mriscpmmunication over both Myrinet (using lllinois
Fast Messages [28] or the LFC Myrinet control program [4]) &M (using BSD’s TCP/IP).

5 Results

The goal of this work is charting the sensitivity of applioatperformance to gaps in bandwidth and latency. This
section discusses the performance measurements.

The speedup of a multi-cluster machine is bounded by thedspeef a single-cluster machine with the same
number of processors, and the same execution scheduleu{Toip differently, when some of the fast Myrinet links
of the interconnect are changed into slow ATM links, our patapplications will run more slowly.) Speedups are
shown relative to the all-Myrinet upper bound.

5.1 Relative Speedup

Figure 3 shows speedup graphs for the six applications, fdugters of 8 processors: unoptimized on the first and
third row, optimized on the second and fourth row. Speedugh@wvn relative to the speedup of the 32 processor
all-Myrinet cluster, for different inter-cluster bandwiid and latencies. It is computed as percent#gewhereTL is

the run time on the single cluster affd, is the run time on the multi-cluster. Startup phases aretethftom time
and traffic measurements. Myrinet bandwidth is constanDa¥1Byte/s, latency is constant at 2. Inter-cluster
bandwidth and latency are limited by the local OC3 ATM linki&b Mbit/s—at the application level, over TCP, this
yields 14 MByte/s bandwidth and 0.28 ms latency. Onithexis the bandwidth of the ATM links is shown. Delays
are set so that the resulting bandwidth is 6.3, 2.6, 0.95,0013 and 0.03 MByte/s. The one-way ATM latency is set
to 0.4, 1.3, 3.3, 10, 30, 100, and 300 ms.

The speedup profiles render performance relative to alliMyspeedup for latency/bandwidth combinations. The
general shape of the graphs is as can be expected: higheclmséer bandwidth and lower inter-cluster latency
improve performance, and multi-cluster performance iselothan single-cluster Myrinet performance. When we
compare the optimized to the unoptimized graphs, the optititins result in the graphs being shifted upward or to
the left. An upward shift indicates higher performance fag same inter-cluster latency. A shift to the left indicates
that the same performance can be achieved at lower intsteclbandwidth. (In most applications both effects can be
seen.) For Water, the optimizations extend the range of\siitid where speedup is better than 60% of all-Myrinet
from 1 MByte/s to 0.1 MByte/s. For the original program, permhance decreases steadily from 10 ms latency or
1 MByte/s bandwidth; the performance of the optimized paogiis much more stable, and deteriorates seriously
from 100 ms latency or 0.03 MByte/s. Overall, the NUMA gap\drich good performance is achieved is improved
by more than an order of magnitude for both inter-clusteeriay and bandwidth. For the fastest inter-cluster links,
however, the unoptimized program is faster: here, the as@en local communication is not (yet) outweighed by
the reduction in remote communication. For Barnes-Hut therovements have a similar effect, although overall
performance is not as good. For Awari the message combirg@agrore than doubled performance for latency up to
3.3 ms; the higher overheads can be masked by message comipirdvided that there is enough bandwidth.

The improved version of ASP has a good performance for up tm80atency, against 1 ms for the original
program. Speedup shows a sharp sensitivity to bandwidtwb&IMBYyte/s, as explained in Section 3.2. TSP, on the
other hand, is practically insensitive to bandwidth buteastive to latency. Its performance is increased by about
25% by the improvements.

For high bandwidth/low latency combinations, performaisagod for the improved versions of four of the appli-
cations, Barnes-Hut, Water, ASP, and TSP. For inter-dlstencies of 0.5—-3.3 ms and bandwidths of 0.3—6 MByte/s
multi-cluster speedup is well above 50% of single-cluspeeslup. For bandwidths better than 1 MByte/s speedup
reaches 60% for 30 ms latency, and about 40% for 100 ms latEocextreme bandwidths and latencies (30 KByte/s
bandwidth or 300 ms latency) relative speedup drops beld, 2Bhich corresponds to the performance of a single
Myrinet cluster of 8 processors. Thus, for these bandwidtitslatencies, using extra clusters actually slows down the
computation.

Performance for Awari and FFT is significantly lower. For RIF€ 25% point is not even reached. The reason for
the bad performance of Awari and FFT is that these applicati@ve a higher level of inter-cluster communication.
In Awari the extra level of message combining is moderatéfgcéive; too much message combining introduces load
imbalance. In FFT no optimization has been implemented.



Speedup relative to an All Myrinet Cluster

Speedup relative to an All Myrinet Cluster

100% r 0.5ms —— 1

750% 10ms e

50%

25%

100% r 0.5ms —— 1

750 10ms e

50%

0%

WATER unoptimized, 32 processors, 4 clusters

1.3ms -
33ms %

30ms ----
100 ms --e--
300ms o~ g
D
geimimmin L
- e
0.01 0.1 1 10

Bandwidth per link in Mbyte/s

WATER, optimized, 32 processors, 4 clusters

1.3ms -
33ms %

30ms ----
100 ms -- e
300ms -
L o ]
B 0 e
.
. .
0.01 0.1 1 10

Bandwidth per link in Mbyte/s

Speedup relative to an All Myrinet Cluster

Speedup relative to an All Myrinet Cluster

100% r 0.5ms —— 1
750% 10ms e
50%
25%

0%

50%
25%

0%

BARNES-HUT unoptimized, 32 processors, 4 clusters

1.3ms -
33ms %

30ms =~
100 ms --e-- °
300ms o~

0.01 0.1 1 10

Bandwidth per link in Mbyte/s

BARNES-HUT, optimized, 32 processors, 4 clusters

T T
100% r 0.5ms —— 1
1.3ms —x-—
33ms ¥
L 10ms e ]
5% 30ms --#--
100 ms --e-- e
300ms e
e
| |
0.01 0.1 1 10

Bandwidth per link in Mbyte/s

Speedup relative to an All Myrinet Cluster

Speedup relative to an All Myrinet Cluster

ASP unoptimized, 32 processors, 4 clusters

100% r 0.5ms ——

1.3ms %
33ms %
10ms e
05 F
5% 30ms ----

100 ms --e--

50%

25%

0%

0.01 0.1 1
Bandwidth per link in Mbyte/s

ASP, optimized, 32 processors, 4 clusters

10

Bandwidth per link in Mbyte/s

T T
100% r 0.5ms —— 1
1.3ms —x-—
33ms %
10ms e
% 30ms —a- g
100 ms --e--
300ms e
50% r 1
L i IR}
25% 1
e
0% L ‘
0.01 0.1 1 10

Speedup relative to an All Myrinet Cluster

Speedup relative to an All Myrinet Cluster

100% r 0.5ms —— 1

750 10ms e

25%

30ms -- * *
100 ms
300 Mg -0 8 ) B
50% [ g 1
0.01

100%

5%

50% r 0.5ms —— 1

TSP unoptimized, 32 processors, 4 clusters
T T

1.3ms %
33ms %

1.3ms -
33ms -ox
o | 10ms e ]

2% T 30 ms —-a--
100 ms --e
300ms -

0% L L
0.01 10

0.1 1
Bandwidth per link in Mbyte/s

Speedup relative to an All Myrinet Cluster

Speedup relative to an All Myrinet Cluster

100% r 0.5ms —— 1

50%

1.3ms %
33ms %
L 10ms e ]
5% 30ms ----
100 ms --e--
300ms e
25% 1
0.01

100% r 0.5ms —— 1

1.3ms %
33ms ¥
10ms e
0% F 4
% 30ms --u--
100 ms --e--

50%

25%

AWARI unoptimized, 32 processors, 4 clusters
T T

AWARI, optimized, 32 processors, 4 clusters
T T

300ms e

0.1 1
Bandwidth per link in Mbyte/s

Speedup relative to an All Myrinet Cluster

1D FFT, 32 processors, 4 clusters

100% r 0.5ms ——

1.3ms -
33ms %
L 10ms e ]
5% 30ms ----
100 ms --e--
300ms e
50% 1
25% 1
0%
0.01

0.1 1
Bandwidth per link in Mbyte/s

Figure 3: Speedup Relative to an All-Myrinet cluster



3.3 ms latency 0.9 MByte/s bandwidth

:
100% - e

80% [ FFT —— e

100% -

80%

60% 60% [ ASP ——a-

,,,,,

40%

Communication Time
Communication Time
=
%}
o

40% | A

s
e
- A

20% 20%

a P
s

. . e | % . Y Pt S .
0.01 0.1 1 10 0.1 1 10 100
Bandwidth in MByte/s Latency in ms

0%

Figure 4: Inter-cluster Traffic—Bandwidth and Latency

To summarize, for Barnes-Hut, Water, ASP, and TSP, the réogater-cluster bandwidth and latency at which
reasonable speedups are achieved is increased by an ondmgaftude or more by the restructuring of the com-
munication pattern. Reasonable speedup starts at ancinster bandwidth of 0.1-0.3 MByte/s and an inter-cluster
latency of 30—100 ms. Given a Myrinet bandwidth of 50 MByteisl a latency of 2@s, this corresponds to an intra-
cluster/inter-cluster performance gap of 167-500 for kadth and 1500-5000 for latency, depending on whether
40% or 60% of single-cluster speedup is desired. The opgichapplications allow a significantly larger gap for
latency than for bandwidth.

In addition to the sensitivity to bandwidth and latency gaps have also performed experiments with different
cluster structures. Performance increases as there aee smaller, clusters: a setup of 8 clusters of 4 processors
outperforms 4 clusters of 8 processors. This may seem oeimtgtive, since replacing fast links with slow links
ought to reduce performance. However, performance isduirtity wide-area bandwidth, and our wide-area network
is fully connected: in the multi-cluster, bisection bandthi actually increases as more slow links are added, despite
the loss of fast links. This effect can be traced to simplediadth sensitivity: speedup decreases as more processors
compete for the same wide-area links. (Graphs show a stfarglard effect, and are omitted for reasons of space.) In
a larger system it is likely that the topology is less perf@dtis effect will then diminish, and disappear in star, ring
or bus topologies. Future topologies will in practice be sainere in between the worst case of a star or ring and the
best case of a fully connected network.

5.2 Bandwidth and Latency Sensitivity

This subsection analyzes the inter-cluster traffic in mataitl to complement the speedup picture. We focus on syn-
chronous versus asynchronous communication by examinieg¢luster communication for different bandwidths and
latencies. Performance is influenced strongly by intestelutraffic (high-traffic applications have a low speedug an
vice versa). The speed of the interconnect influences conwaion and synchronization overhead of the programs.
The left-hand graph in Figure 4 shows the percentage ofmantihat is spent in communication over the inter-cluster
interconnect as a function of bandwidth, for 4 clusters pé$8; one-way latency is set to 3.3 ms. The right-hand
graph in Figure 4 shows the inter-cluster communicatiortofhthe interconnect as a function of latency; bandwidth
is set to 0.9 MByte/s). The communication time percentag®imputed asTMT;MTL - 100, or the difference between
multi-cluster run time and single cluster run time as a patage of multi-cluster run time. These graphs represent no
new data compared to Section 5.1, but they offer a differ@awpoint to increase understanding of communication
behavior.

These graphs indicate where applications are dominatedtghsonous communication, and where by asyn-
chronous communication. Purely asynchronous communitailimited by bandwidth (if we disregard startup time);
it corresponds to a horizontal line in the latency grapheBwynchronous communication (i.e., a null-RPC) is lidite
by latency; it corresponds to a horizontal line in the bamtflvgraph. The graphs in Figure 4 show that the commu-
nication patterns of the applications contain both stregnoif asynchronous communication and request/reply style
synchronous communication.

It is interesting to note the differences among the apptiaat In both the bandwidth and the latency graph, com-
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munication time for FFT is close to 100%, indicating that tiame is almost completely dominated by communication.
Awari is a close second, although at latencies lower thand6ammunication time drops sharply (at 3 MByte/s). For
Barnes-Hut, Water, ASP and TSP communication time is sigmifily less at high bandwidth and low latency.

Latency: Up to 3 ms Barnes-Hut, Water, and ASP are relatively inseedit latency; their lines are nearly flat.
For longer latencies, communication becomes quite seesdilatency. Apparently, up to 3 ms the data dependencies
of the programs allow latency hiding. TSP is quite indepemdébandwidth for latencies up to 10 ms.

Bandwidth: For a bandwidth of 10-3 MByte/s, Barnes-Hut, Water, Awanigd &SP are relatively insensitive to
bandwidth. TSP is almost completely insensitive to banthwyids work-stealing communication pattern comes quite
close to the null-RPC.

6 Further Work

Encouraged by these results, we have sought to package dleeanéa optimizations in a way that is transparent
for the application programmer, to make programming widsagvarallel applications easier. One of the types of
optimizations involved collective operations (see Sec8®).

The MPI message passing interface defines fourteen cebemiimmunication operations (in addition to the stan-
dard point-to-point send and receive). Examples of thesgations are broadcast, barrier, and reduce. For these
fourteen collective operations, we have implemented élgos that are designed to take advantage of the two-level
nature of our wide-area interconnect. The algorithms make that data items destined for another cluster are sent
only once over the slow wide area links; the completion tirha collective operation is on the order of one wide area
latency.

We have performed some early measurements with this syQamoderate cluster sizes, using wide area latency
of 10 milliseconds and a bandwidth of 1 MByte/s, the systertaies operations up to 10 times faster than MPICH
[16], a widely used MPI implementation. Application kemmé@hprove by up to a factor of 4. Due to the structure of
our algorithms, the system’s advantage increases for higitge area latencies. Our implementation is implemented
as a plug-in library for MPICH, and is called MagPle, in howbithe bird that collects things. With MagPle, MPI
programs can use collective operations efficiently andsparently on a hierarchical interconnect. Not a single line
of application code has to be changed to use the MagPle tigwi The system is described more fully in [21].

Simultaneously, we are currently trying to identify and lege wide area optimizations for parallel Java programs.
Early application experience has been reported in [39].

7 Conclusions

Current NUMA machines yield good performance for many aggtions [19]; however, there is little insight in appli-
cation performance on interconnects with a larger gap batvetow and fast link speed. Such a large gap will occur
in large-scale NUMAs, or when, as in a meta-computer, widadinks are added to the interconnect. As far as we
know, this is the first study to examine performance of nanalrapplications over a large range of gaps, using a
real system. Our main contribution is an analysis of wherdifference between slow and fast links starts to affect
performance. We describe ways to restructure the apgitaito make performance less sensitive to a large gap, and
we analyze how well the improvements work. We do this by ex#mgi speedup relative to the gap in bandwidth
and latency in the interconnect. We find that when the diffeeein speed in an interconnect grows larger than in
current generation NUMAs, performance suffers dramdyicator these gaps (one order of magnitude and larger)
communication becomes limited by the slow links in the iot@mect. Once the bottleneck is identified, we can apply
changes such as increasing the height of reduction treestedhg work stealing, combining messages, and removing
redundant synchronization points—changes that makeaxptie of the multi-level structure of the interconnect, in
contrast to the work by Jiang et al, who describe singleHelanges [18]. The changes can speed up applications
significantly. When acceptable performance is defined as@be speedup on a uniform interconnect, restructuring
the communication pattern increases the allowable gapridwi@th and latency by more than an order of magnitude:
in our system gaps of two orders of magnitude for bandwidtt taree orders of magnitude for latency, can be bridged
by four of our six applications. However, some communicapatterns, such as matrix transpose, resist optimization.
Interconnects are becoming increasingly hierarchicakinggt harder to achieve high performance. Nevertheless,
we believe that for many real applications it will remain gib¢e to do so. We also believe that to achieve this level

11



of performance, more effort is needed to assist programiméentifying performance problems, to help them better
to understand the characteristics of interconnect andranagWe have mentioned our experience with Java and with
MagPle, an augmentation of MPI, in this respect.
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