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Abstract

This paper studies application performance on systems withstrongly non-uniform remote memory access. In cur-
rent generation NUMAs the speed difference between the slowest and fastest link in an interconnect—the “NUMA
gap”—is typically less than an order of magnitude, and many conventional parallel programs achieve good perfor-
mance. We study how different NUMA gaps influence application performance, up to and including typical wide-area
latencies and bandwidths. We find that for gaps larger than those of current generation NUMAs, performance suffers
considerably (for applications that were designed for a uniform access interconnect). For many applications, however,
performance can be greatly improved with comparatively simple changes: traffic over slow links can be reduced by
making communication patterns hierarchical—like the interconnect. We find that in four out of our six applications
the size of the gap can be increased by an order of magnitude ormore without severely impacting speedup. We
analyze why the improvements are needed, why they work so well, and how much non-uniformity they can mask.

Keywords: wide-area networks, application sensitivity, cluster computing, Orca

1 Introduction

As computer systems increase in size, their interconnects become more hierarchical, resulting in growing bandwidth
and latency differences in their interconnects. This trendis visible in NUMA machines and clusters of SMPs, where
local memory access is typically a factor of 2–10 faster thanremote accesses [19]. The gap in future large-scale
NUMAs is larger, and the gap in meta-computers and computational grids ismuch larger.

For NUMAs with a small gap good performance has been reportedwith conventional numerical applications [19,
24]. On systems with a larger gap, such as clusters of SMPs andnetworks of workstations, it is harder to achieve good
performance [22, 25, 31]. As gaps increase, it is likely thatperformance will continue to suffer.

There is little insight in how a growing NUMA gap influences application performance, or how good performance
can be achieved on systems with a large gap. This paper studies the performance of six nontrivial parallel applications,
Barnes-Hut, Water, FFT, TSP, ASP, and Awari. We have built anexperimental testbed using 128 Pentium Pros, a
high-speed network (Myrinet) and an ATM network. The testbed can be configured as multiple Myrinet clusters that
are interconnected by ATM links with different latencies and bandwidths. In this way, we can emulate a variety of
NUMA/meta-computer configurations, where the gap between the fast local network (Myrinet) and the wide-area
network (ATM) varies from 0 to 4 orders of magnitude. The parameter settings have been calibrated using a real
wide-area system.

The contributions of the paper can be summarized as follows:We analyze the impact of a wide range of gaps be-
tween the slowest and fastest links of the interconnect, to see where performance of conventional parallel applications
starts to deteriorate. We find that for gaps larger than thoseof current NUMAs (one order of magnitude) performance
rapidly drops to an unacceptable level.�An earlier version of this paper appeared at HPCA’99 [29] andis copyright c 1999 IEEE.
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For five out of six applications we describe performance improvements. (Since the applications were originally
designed for a machine with a uniform interconnect, it should perhaps not be surprising that there is room for im-
provement.) The applications are quite diverse, and so are the algorithmic changes, though all have in common that
the application’s communication pattern is made to fit the hierarchical interconnect—the changes donot improve
performance on a uniform network. Commonalities between the improvements are described.

For the improved applications, the impact of the same range of gaps in the interconnect is analyzed, to see how the
changes influence application behavior, and how well they work. Taking 60% of the speedup under uniform remote
access as our criterion, we find that, for bandwidth, the acceptable NUMA gap is increased to two orders of magnitude,
and for latency it is increased to three orders of magnitude.

We conclude that in many applications, with careful optimization there is room for growth to large architectures
with highly non-uniform access times. The application improvements themselves are straightforward programming
techniques—the challenge lies in understanding the interaction between interconnect and communication pattern. Fur-
ther work is needed to make this easier, by expressing communication with higher level primitives, or by incorporating
common traits of the improvements into coherency protocols. The experience with DSMs on SMP clusters suggests,
however, that this will be challenging [31].

Gaps of two to three orders of magnitude correspond to differences between local area and wide area links. Most
meta-computing projects currently use embarrassingly parallel (job-level) applications that barely communicate. Our
results imply that the set of applications that can be run on large scale architectures, such as a computational grid,
is larger than assumed so far, and includes medium grain applications. (Further research should study the impact of
variations in latency and bandwidth, which often occur on wide area links.)

The remainder of the paper is organized as follows. Section 2discusses related work. Sections 3 and 4 describe
in detail the applications, improvements, and system that have been used in this experiment. Section 5 describes the
results of our measurements, and analyzes them. Section 6 outlines directions of ongoing work. Section 7 concludes
the paper and discusses implications of this work.

2 Related Work and Background

In this paper, we try to understand how large differences in bandwidths and latencies in an interconnect influence
application performance. For small gaps, several studies report good performance on hardware DSM NUMA systems
[10, 19, 24, 33, 34, 41]. These systems have a gap of about a factor of 3 between the slowest and the fastest links. The
picture changes for systems with longer access times. Papers by [11, 22, 25, 31, 36, 42] study local area clusters of
SMPs, which have a gap of up to an order of magnitude. These studies tend to focus on coherency protocol issues,
using software DSMs such as MGS, TreadMarks, SoftFLASH, CashMere and Shasta, to see how the presence of
hardware shared memory improves performance. Performanceresults vary; earlier studies using partial simulation
or tighly coupled hardware [11, 42] showed better results than studies using recent stock SMPs [12, 22, 25, 31, 36].
For SPLASH-like numerical applications, the experience with commercial SMPs is that the presence of hardware
shared memory helps performance surprisingly little, due to bus contention and the cost of the hardware coherence
protocol. Overall performance is somewhat disappointing,especially for applications that synchronize frequently.
Soundararajan et al. attempt to improve NUMA performance through better data locality, with migration/replication
protocols [35].

False sharing and disappointing performance in general is the reason for work on data structure and algorithm
restructuring [17, 18]. Jiang et al. [18] use a software DSM on top of a network of workstations. Even though
here remote access times are uniform, the relatively large network overhead requires application changes for good
performance. Their changes exceed simple padding or data-structure rearranging, requiring insight into both the
application and key aspects of the SVM. In previous work we have experimented with a still larger gap, of two orders
of magnitude, for which we also found that applications needcommunication pattern changes [3].

Wide-area systems typically have gaps of three to four orders of magnitude, which covers the end of the range
that we study here. Compared to SMP clusters, they provide a more challenging environment in terms of latency
and bandwidth gap, but also of fault tolerance and heterogeneity. Meta-computing research focuses on the latter two
issues [13, 15]. Because of the high (and non-uniform) latencies, applications are typically embarrassingly parallel,
unlike ours, which are of medium grain.

As NUMA systems scale up, it is inevitable that memory accesstimes become less uniform. There is evidence that
applications can be quite sensitive to non-uniform memory access [3, 18, 35], and we want to know how applications
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Table 1: Single-Cluster Speedup on 8 and 32 processors.

Program Speedup Speedup Total Traffic Runtime
32 p. 8 p. 32 p. MByte/s 32 p, in sec

Water 31.2 7.8 3.8 9.1
Barnes-Hut 28.4 7.1 17.8 1.8
TSP 29.2 7.7 0.52 4.7
ASP 31.3 7.8 0.75 6.0
Awari 7.8 4.6 4.1 2.3
FFT 32.9 5.3 128.0 0.26

perform on such systems. So far, little attention has been paid to the effect of gap size. Previous studies use small,
fixed, gaps. We are interested in how performance scales withdifferent gaps; in our interconnect the gap is varied
over a large range, from zero to four orders of magnitude. In addition, many studies focus on issues such as DSM
protocols or message passing versus shared memory [9, 10, 35]. Again, our focus is the NUMA gap. We investigate
where conventional applications break down, how communication patterns can be adapted, and how far performance
improvement can be pushed. As an important aside, we want to know how difficult it is to implement such changes.

Differences in link speeds pose interesting challenges to programmers. This paper explores how serious these
challenges are, and how we can deal with some of them.

3 Applications

Our application suite consists of six diverse programs. Barnes-Hut, Water, and FFT are numerical programs that orig-
inate from the Splash-2 suite [41], TSP and ASP are optimization codes, and Awari is a symbolic artificial intelligence
program. The applications have diverse communication patterns. Table 1 summarizes the behavior of the applications
on a single Myrinet cluster. For all applications, larger problems give better speedups. We use relatively small problem
sizes in order to get medium grain communication. Medium grain is taken here as a total communication volume of
at least 100 KByte/s on a single level cluster of 32 processors. All applications and problem sizes run efficiently on a
single Myrinet cluster. Five of our six applications are written in the Orca parallel programming language [2], for ease
of use of the wide-area system, and for ease of debugging (Orca is type-safe). For most programs, serial performance
is comparable to serial C performance. Barnes-Hut is written in C with calls to the Panda [2] wide-area/local area
messaging layer.

3.1 Application Characteristics

This subsection summarizes key application characteristics. The next subsection describes the improvements that were
implemented to achieve good performance on the highly non-uniform system.

Water The Water program is based on the “n-squared” Water application from the Splash suite [41], rewritten for
distributed memory [30]. Related distributed memory optimizations are described by [18]. We report on experiments
with a medium sized input set of 1500 particles. The serial speed of the distributed memory program is about ten
percent better than the original Splash code.

Barnes-Hut Barnes-Hut is anO(n logn) N-body simulation. The implementation in the Splash-2 suite has a fine
coherency unit which causes inefficiencies on coarse grain hardware [2, 18]. In this experiment a new distributed-
memory code by Blackston and Suel [5] has been used. Instead of finding out at runtime which nodes and bodies
are needed to compute an interaction, this code precomputeswhere nodes and bodies are needed, and sends them in
one collective communication phase at the start of each iteration. Stalls in the computation phase are thus eliminated.
Related improvements have been reported by [14, 18, 40]. Using the same input problem, the serial program runs
slightly faster than the Splash code (while computing the same answer). We used a set of 64K particles.

ASP The All-pairs Shortest Path program is a parallel version ofthe classic Floyd-Warshall algorithm. It uses a
replicated distance matrix of 1500 by 1500 entries. Each processor iterates over rows in the matrix, and broadcasts
result rows as they are computed. These have to be processed in order by the other processors before they can compute
their rows. A designated node issues sequence numbers to achieve this ordering.
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Table 2: Communication Patterns and Optimizations

Program Communication Optimization
Water All to Half Multicast Cluster Cache, Reduct Tree
Barnes BSP/Pers All to All BSP-msg Comb Node/Clus
TSP Centralized Work Queue Work Q/Cluster+ Work Steal
ASP Totally Ordered Broadcast Sequencer Migration
Awari Asynch Unordered Msg Msg Comb/Clus
FFT Pers All to All �

TSP The Traveling Salesperson Problem computes the length of the shortest path alongn cities, by enumerating
the possible paths. The program uses a centralized job queuewhich is filled with partial paths, from which workers
get jobs. A 16 city problem is used as input; jobs consist of a partial tour of 5 cities, creating small jobs and a (for
this application) fine communication grain, as Table 1 shows. Deterministic runs are ensured by using a fixed cutoff
bound [2].

Awari Awari, a retrograde analysis program, is a symbolic application that computes end game databases, of
importance for programs playing games such as checkers. It is based on backwards reasoning and bottom-up search.
Here we compute a relatively small 9 stone database for the African board game Awari. The program sends many
small, asynchronous packets of work to other processors [1]. These messages are combined into larger messages for
performance reasons. The communication pattern of Awari isirregular asynchronous point-to-point messages.

FFT The FFT application computes a one-dimensional Fast Fourier transform, using the transpose algorithm [23].
The program is a rewrite of the Splash-2 code for distributedmemory, and achieves an excellent speedup on a single
Myrinet cluster, despite the short run time. The communication part of this program is very simple: it performs three
transposes, interspersed by parallel FFTs. The problem size is 220 complex floating point numbers, the largest that
would fit in memory. FFT shows a small superlinear speedup, due to cache effects.

Table 2 summarizes the communication patterns and improvements. Figure 1 summarizes inter-cluster traffic of
the original applications. The figures show data volumes in MByte/s per cluster and numbers of messages per second
per cluster (for 6 MByte/s bandwidth per link and 0.5 ms latency, and 4 clusters of 8 processors, a configuration with
12 wide-area links in total). TSP has an extremely low inter-cluster communication volume, 0.1 MByte/s, though a
non-negligible number of messages. Barnes-Hut and FFT havea high communication volume of nearly 7 MByte/s
(note that the bandwidth limit in this case is 18 MByte/s per cluster, since with 4 clusters there are 3 links of 6 MByte/s
out of each cluster). Awari can be found in the opposite corner of the graph, with a high number of tiny inter-cluster
messages (more than 4000 per second per cluster). Water and ASP have a modest level of inter-cluster traffic, less than
1000 messages per second and less than 2 MByte/s per cluster.
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3.2 Optimizations per Application

The applications are run on an interconnect whose bandwidthand latency difference ranges from small to large. The
system consists of 4 clusters of 8 processors each. Inside the clusters the processors are connected by fast Myrinet links
(0.020 ms application level latency, 50 MByte/s application level bandwidth). The clusters themselves are fully con-
nected by slow ATM links through additional gateway machines (0.4–300 ms latency, 10–0.03 MByte/s bandwidth).
Thus, we have a two level interconnect.

The applications have originally been developed with a uniform network in mind, where all links have the same
latency and bandwidth. Performance suffers when the systemis highly non-uniform, as in our system, where slow
links have latencies up to 5000 times the latency of fast links. This subsection describes which problems have to be
resolved to achieve good performance. Some of the improvements have been described previously in [3].

Water The Water program is a classical simulation program of the behavior ofn water molecules in an imaginary
box. Each of thep processors is assigned an equal number of water molecules. The computation of theO(n2) inter-
molecular forces is the most time-consuming part of the simulation. Forces between two molecules are computed by
one of the two processors, the owner of that molecule. At the start of this phase, each processor gets the positions of
the molecules of half of the other processors. As a force is calculated it is added locally to determine the total force
acting on the local molecule, and is sent to the appropriate other processor so that it can compute the total force for its
molecule. All individual molecule updates destined for a processor are combined into one message. The force update
phase amounts to two “all-to-half” communications (one to distribute molecule positions, one to send force updates
back). The total number of messages approximatesp � p2 = O(p2).

The Water program suffers from a severe performance degradation when inter-cluster links are much slower than
intra-cluster links. With 4 clusters, 75% of all messages are between clusters—that is, slow. The two operations,
copying of molecule positions andadding of force updates, are 1–n andn–1, reduction-like, operations. With the
original program, the position of a given molecule is transferred many times over the same inter-cluster link, since
multiple processors in a cluster need it. The optimization avoids sending the same data over the inter-cluster link more
than once. For every processorp in a remote cluster, we designate one of the processors in thelocal cluster as the
local coordinator forp. If a process needs the molecule data of processorp, it does an intracluster RPC to the local
coordinator ofp. The coordinator gets the data over the inter-cluster link,forwards it to the requester, and also caches
it locally. If other processors in the cluster ask for the same data, they are sent the cached copy. A similar optimization
is used at the end of the iteration for the force updates. All updates are first sent to the local coordinator, which does a
reduction operation (addition) on the data and transfers only the result over the inter-cluster link.

Barnes-Hut Blackston and Suel’s distributed version of the Barnes-Hutalgorithm precomputes where nodes and
bodies will be needed in each iteration, and sends them in onecollective communication phase at the start of the itera-
tion. The program is coded in Valiant’s BSP style [38]. Communication takes place in so-called supersteps, which are
separated by barriers. In each of these supersteps the program sends many small messages, which incur large overhead
if sent indiscriminately over inter-cluster links. All efficient BSP implementations perform message combining of
small messages for each recipient. To achieve good performance on the multi-cluster, two more optimizations have
been implemented. First, each sender processor combines messages to different recipients in the same target clus-
ter into one message towards the target cluster gateway, using the fact that the code precomputes which parts of the
Barnes-Hut tree will be needed on other processors. These messages are dispatched by the receiving cluster gateway
to the recipients. Second, the strict barrier synchronization is relaxed by using explicit sequence numbers. (BSP is a
relatively young programming model. An active community exists working on efficient implementations of the model,
see for example [37].)

ASP In ASP, processors iterate over rows in a distance matrix, generating result rows that are needed by the other
processors before they can start new iterations. In the original implementation, a designated sequencer node is used to
ensure that rows arrive in order at the processors. The sender of the row has to wait for a sequence number to arrive
before it can continue. On a multi-cluster with 4 clusters, 75% of the broadcast requests will thus incur the inter-cluster
penalty. This slows down the program significantly.

Communication in ASP is quite regular: first processor 1 computes and broadcasts its rows, then processor 2, etc.
On the multi-cluster we take advantage of this regularity bymigrating the sequencer to the cluster of the node that does
the sending. In this way, sequencer requests can be satisfiedby a node in the local cluster. In a four cluster system, the
sequencer has to migrate only three times, incurring inter-cluster latency only three times. (Another solution would
be to drop the sequencer altogether, since processors know who will send which row. Again, this solution exploits the
regularity of the ASP algorithm.)
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The row broadcasts themselves are asynchronous, so the sender does not suffer from inter-cluster latency. Overall
progress is, however, sensitive to inter-cluster bandwidth. Broadcasts are performed using a multicast tree, with point-
to-point communication from the sender to the cluster gateways, and multicast primitives inside clusters.

TSP TSP uses a single job queue from which processors retrieve work when their current job is finished. On 4
clusters, 75% of the traffic is between clusters. Even though, compared to the other applications, TSP communicates
infrequently, the level of traffic still limits performanceconsiderably. The centralized job queue causes too much
inter-cluster traffic. The multi-cluster optimization is to distribute the queue over the clusters. Each cluster now has its
own queue, and workers perform work stealing only from theirown queue. When the queue becomes empty it tries
to steal work from the other cluster queues, to maintain a good load balance. In our system, the number of clusters
is small compared to the number of processors. There are onlyas many queues as there are clusters, and inter-cluster
traffic is solely influenced by the number of clusters, not by the number of processors per cluster.

Awari Awari performs a parallel search starting from known end states in a search space (for example, checkmate).
States are hashed to processors. The values of all reachablestates are computed and sent to the processors owning
these positions, which start working on them by generating known values of their reachable states. This process results
in many small messages. The original parallel program performs message combining for destination processors, to
reduce communication overhead. The search progresses in stages; in each stage, the database for one more stone
is computed. Too much message combining results in load imbalance since processors are starved of work at the
end of the stages. The high volume of small messages combinedwith the larger overhead of the inter-cluster links
limits performance. To reduce the impact of this overhead, we add another layer of message combining: cross-cluster
messages are first being assembled at a designated local processor, are then sent in batch over the slow link, and are
subsequently distributed by a designated processor at the other cluster to the final destinations. The extra layer of
message combining reduces the impact of the large communication overhead of the inter-cluster links.

FFT The FFT application is renowned for its high communication volume. It is especially ill-suited for a system
with long latencies and low bandwidths, or a highly non-uniform interconnect. The communication pattern is a matrix
transpose, with little computation. No multi-cluster optimization was found. The purpose of this work is to gain
insight in the limits of multi-layer systems with a highly non-uniform architecture. FFT serves as a reminder that there
are programs that are unsuited for our interconnects.

3.3 Optimization Overview

Despite the small input problems, all applications except Awari perform well on a single Myrinet cluster (Table 1). Ta-
ble 2 lists for each program the base communication pattern and its improvement. The main goal of the improvements
is to match the communication structure of the application with the hierarchical interconnect; applications should
reduce their communication over slow links—or at least reduce their dependency on that communication.

Like the programs, the communication patterns are quite diverse; the optimizations also appear to be quite varied.
The general strategy in optimizing for highly non-uniform interconnects is to change the algorithm so that less traffic is
sent over the slow links. If that is not possible, then we trade off latency sensitivity at the cost of increased bandwidth
requirements. Four types of optimizable communication patterns can be distinguished in our applications; two are
of a more algorithmic nature, and two are more related to communication parameters. The first optimization is the
reduction operation, which was implemented in Water as a one-level tree. For the multi-cluster interconnect, it is
implemented with a two-level tree, the cluster gateways accumulating intermediate results. The second optimization
is the work queue, which is implemented in TSP as a single centralized queue. For the multi-cluster interconnect,
it is implemented as a distributed queue, one queue per cluster gateway with work stealing among the clusters to
maintain load balance. The third optimization is message combining, which is used in Barnes-Hut and Awari to
reduce communication overhead for frequent small messageson high-overhead links. The fourth optimization is to
exploit asynchrony inherent in the application, which is used in ASP to reduce the number of synchronization points.
Furthermore, it can be argued that Blackston and Suel have performed just this kind of optimization in their rewrite of
a traditional SPLASH-like shared memory Barnes-Hut code. The communication pattern of FFT is too synchronous
and fine grained; no optimization was found.

It is interesting to contrast our changes to the restructuring by Jiang et al [18]. Their work is performed on a
software DSM running on a network of workstations, a system with uniform remote access links. They focus on
restructuring algorithms to reduce overheads caused by inefficient remote access patterns, fine-grain synchronization,
and multiple-writer algorithms. Our system has non-uniform remote access links; we focus on restructuring com-
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munication patterns in a two-level system, reducing trafficover the slow links by clustered work stealing, message
combining, removing synchronization points, and optimizing reduction operations. Our changes differ from Jiang’s
in that we make explicit use of the multi-level structure of the interconnect. Indeed, the changes are ineffective on an
interconnect with uniform remote access links.

The algorithmic changes are applications of well-known techniques. The novelty lies not so much in the changes
themselves as in the magnitude of the performance improvement they cause. The hard part is the understanding of
the application behavior, and how it maps to the interconnect (see also [3, 18]). Efforts to express communication
constructs on a higher conceptual level [7, 8, 27, 32], or to incorporate them in a cache coherency protocol, would
ease this problem (Soundararajan et al. describe work on protocol optimizations for a NUMA gap of one order of
magnitude [35]).

The next section continues with the performance analysis ofour applications.

4 Experimental Setup

We use an experimental cluster-of-clusters system called DAS, shown in Fig. 2. The DAS consists of four local
clusters of 200 MHz/128 MByte Pentium Pro machines connected by Myrinet [6], using LANai 4.1 interfaces. The
peak bandwidth of Myrinet is 2.4 Gbit/s, and host-to-host latency is at least 5�s. In our system, application-level
bandwidth is 50 MByte/s, one-way application level latencyis 20�s. The clusters are located at four universities
in the Netherlands. They are connected via dedicated gateway machines over ATM by 6 Mbit/s Permanent Virtual
Circuits (application-level bandwidth is 0.55 MByte/s over TCP). The round trip latency is 2.5–3 ms. Three sites have
24 compute nodes each, one site has 128. The wide-area network is fully connected, the system-area networks are
twodimensional meshes. The operating system is BSD/OS version 3 from BSDI. The wide-area ATM links have a
fixed latency and bandwidth. To allow for experimentation with different speeds, 8 local ATM links have been installed
in the 128 processor cluster, using the same hardware as in the real wide-area system (ForeRunner PCA-200E ATM
boards). The latency and bandwidth of the ATM links can be varied by delay loops in the cluster gateway machines.
Except for the local ATM links, this experimentation systemis identical to the real wide-area system; the same binaries
are run in both setups, and except for the delay loops, there are no simulated parts. When the delay loops are set to the
wide area latency and bandwidth, run times differ on averageby 3.6% for our applications.

LeidenDelft

6 Mbit/s
ATM

128

24 24

24

VU Amsterdam UvA Amsterdam

Figure 2: The Distributed ASCI Supercomputer (DAS)

All runs on this experimentation system showed very reproducible timings, except for Barnes-Hut, whose timings
spread more than a factor of two over the runs. Since we suspect the TCP stack of causing this behavior, Barnes-Hut
was run on a modified experimentation system where the ATM/TCP links were replaced by Myrinet links. The delay
loops for this pure Myrinet system were calibrated to produce exactly the same behavior as the ATM/TCP system.
On the pure Myrinet system, the timing anomalies disappeared. Therefore we present the performance on the pure
Myrinet system for Barnes-Hut.

The system can be programmed through different libraries and languages, from message passing libraries such as
MPI and Panda [2], software DSMs such as TreadMarks and CRL [20], to parallel languages such as Orca [2] and
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Java [26]. The Panda messaging layer has been adapted to support communication over both Myrinet (using Illinois
Fast Messages [28] or the LFC Myrinet control program [4]) and ATM (using BSD’s TCP/IP).

5 Results

The goal of this work is charting the sensitivity of application performance to gaps in bandwidth and latency. This
section discusses the performance measurements.

The speedup of a multi-cluster machine is bounded by the speedup of a single-cluster machine with the same
number of processors, and the same execution schedule. (To put this differently, when some of the fast Myrinet links
of the interconnect are changed into slow ATM links, our parallel applications will run more slowly.) Speedups are
shown relative to the all-Myrinet upper bound.

5.1 Relative Speedup

Figure 3 shows speedup graphs for the six applications, for 4clusters of 8 processors: unoptimized on the first and
third row, optimized on the second and fourth row. Speedup isshown relative to the speedup of the 32 processor
all-Myrinet cluster, for different inter-cluster bandwidths and latencies. It is computed as percentageTLTM , whereTL is
the run time on the single cluster andTM is the run time on the multi-cluster. Startup phases are omitted from time
and traffic measurements. Myrinet bandwidth is constant at 50 MByte/s, latency is constant at 20�s. Inter-cluster
bandwidth and latency are limited by the local OC3 ATM link of155 Mbit/s—at the application level, over TCP, this
yields 14 MByte/s bandwidth and 0.28 ms latency. On thex-axis the bandwidth of the ATM links is shown. Delays
are set so that the resulting bandwidth is 6.3, 2.6, 0.95, 0.3, 0.1, and 0.03 MByte/s. The one-way ATM latency is set
to 0.4, 1.3, 3.3, 10, 30, 100, and 300 ms.

The speedup profiles render performance relative to all-Myrinet speedup for latency/bandwidth combinations. The
general shape of the graphs is as can be expected: higher inter-cluster bandwidth and lower inter-cluster latency
improve performance, and multi-cluster performance is lower than single-cluster Myrinet performance. When we
compare the optimized to the unoptimized graphs, the optimizations result in the graphs being shifted upward or to
the left. An upward shift indicates higher performance for the same inter-cluster latency. A shift to the left indicates
that the same performance can be achieved at lower inter-cluster bandwidth. (In most applications both effects can be
seen.) For Water, the optimizations extend the range of bandwidth where speedup is better than 60% of all-Myrinet
from 1 MByte/s to 0.1 MByte/s. For the original program, performance decreases steadily from 10 ms latency or
1 MByte/s bandwidth; the performance of the optimized program is much more stable, and deteriorates seriously
from 100 ms latency or 0.03 MByte/s. Overall, the NUMA gap forwhich good performance is achieved is improved
by more than an order of magnitude for both inter-cluster latency and bandwidth. For the fastest inter-cluster links,
however, the unoptimized program is faster: here, the increase in local communication is not (yet) outweighed by
the reduction in remote communication. For Barnes-Hut the improvements have a similar effect, although overall
performance is not as good. For Awari the message combining has more than doubled performance for latency up to
3.3 ms; the higher overheads can be masked by message combining, provided that there is enough bandwidth.

The improved version of ASP has a good performance for up to 30ms latency, against 1 ms for the original
program. Speedup shows a sharp sensitivity to bandwidth below 1 MByte/s, as explained in Section 3.2. TSP, on the
other hand, is practically insensitive to bandwidth but is sensitive to latency. Its performance is increased by about
25% by the improvements.

For high bandwidth/low latency combinations, performanceis good for the improved versions of four of the appli-
cations, Barnes-Hut, Water, ASP, and TSP. For inter-cluster latencies of 0.5–3.3 ms and bandwidths of 0.3–6 MByte/s
multi-cluster speedup is well above 50% of single-cluster speedup. For bandwidths better than 1 MByte/s speedup
reaches 60% for 30 ms latency, and about 40% for 100 ms latency. For extreme bandwidths and latencies (30 KByte/s
bandwidth or 300 ms latency) relative speedup drops below 25%, which corresponds to the performance of a single
Myrinet cluster of 8 processors. Thus, for these bandwidthsand latencies, using extra clusters actually slows down the
computation.

Performance for Awari and FFT is significantly lower. For FFTthe 25% point is not even reached. The reason for
the bad performance of Awari and FFT is that these applications have a higher level of inter-cluster communication.
In Awari the extra level of message combining is moderately effective; too much message combining introduces load
imbalance. In FFT no optimization has been implemented.
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Figure 3: Speedup Relative to an All-Myrinet cluster
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Figure 4: Inter-cluster Traffic—Bandwidth and Latency

To summarize, for Barnes-Hut, Water, ASP, and TSP, the rangefor inter-cluster bandwidth and latency at which
reasonable speedups are achieved is increased by an order ofmagnitude or more by the restructuring of the com-
munication pattern. Reasonable speedup starts at an inter-cluster bandwidth of 0.1–0.3 MByte/s and an inter-cluster
latency of 30–100 ms. Given a Myrinet bandwidth of 50 MByte/sand a latency of 20�s, this corresponds to an intra-
cluster/inter-cluster performance gap of 167–500 for bandwidth and 1500–5000 for latency, depending on whether
40% or 60% of single-cluster speedup is desired. The optimized applications allow a significantly larger gap for
latency than for bandwidth.

In addition to the sensitivity to bandwidth and latency gaps, we have also performed experiments with different
cluster structures. Performance increases as there are more, smaller, clusters: a setup of 8 clusters of 4 processors
outperforms 4 clusters of 8 processors. This may seem counter-intuitive, since replacing fast links with slow links
ought to reduce performance. However, performance is limited by wide-area bandwidth, and our wide-area network
is fully connected: in the multi-cluster, bisection bandwidth actually increases as more slow links are added, despite
the loss of fast links. This effect can be traced to simple bandwidth sensitivity: speedup decreases as more processors
compete for the same wide-area links. (Graphs show a straightforward effect, and are omitted for reasons of space.) In
a larger system it is likely that the topology is less perfect. This effect will then diminish, and disappear in star, ring,
or bus topologies. Future topologies will in practice be somewhere in between the worst case of a star or ring and the
best case of a fully connected network.

5.2 Bandwidth and Latency Sensitivity

This subsection analyzes the inter-cluster traffic in more detail, to complement the speedup picture. We focus on syn-
chronous versus asynchronous communication by examining inter-cluster communication for different bandwidths and
latencies. Performance is influenced strongly by inter-cluster traffic (high-traffic applications have a low speedup and
vice versa). The speed of the interconnect influences communication and synchronization overhead of the programs.
The left-hand graph in Figure 4 shows the percentage of runtime that is spent in communication over the inter-cluster
interconnect as a function of bandwidth, for 4 clusters of size 8; one-way latency is set to 3.3 ms. The right-hand
graph in Figure 4 shows the inter-cluster communication time of the interconnect as a function of latency; bandwidth
is set to 0.9 MByte/s). The communication time percentage iscomputed asTM�TLTM � 100, or the difference between
multi-cluster run time and single cluster run time as a percentage of multi-cluster run time. These graphs represent no
new data compared to Section 5.1, but they offer a different viewpoint to increase understanding of communication
behavior.

These graphs indicate where applications are dominated by synchronous communication, and where by asyn-
chronous communication. Purely asynchronous communication is limited by bandwidth (if we disregard startup time);
it corresponds to a horizontal line in the latency graph. Purely synchronous communication (i.e., a null-RPC) is limited
by latency; it corresponds to a horizontal line in the bandwidth graph. The graphs in Figure 4 show that the commu-
nication patterns of the applications contain both streaming of asynchronous communication and request/reply style
synchronous communication.

It is interesting to note the differences among the applications. In both the bandwidth and the latency graph, com-
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munication time for FFT is close to 100%, indicating that runtime is almost completely dominated by communication.
Awari is a close second, although at latencies lower than 10 ms communication time drops sharply (at 3 MByte/s). For
Barnes-Hut, Water, ASP and TSP communication time is significantly less at high bandwidth and low latency.

Latency: Up to 3 ms Barnes-Hut, Water, and ASP are relatively insensitive to latency; their lines are nearly flat.
For longer latencies, communication becomes quite sensitive to latency. Apparently, up to 3 ms the data dependencies
of the programs allow latency hiding. TSP is quite independent of bandwidth for latencies up to 10 ms.

Bandwidth: For a bandwidth of 10–3 MByte/s, Barnes-Hut, Water, Awari, and ASP are relatively insensitive to
bandwidth. TSP is almost completely insensitive to bandwidth; its work-stealing communication pattern comes quite
close to the null-RPC.

6 Further Work

Encouraged by these results, we have sought to package the wide area optimizations in a way that is transparent
for the application programmer, to make programming wide area parallel applications easier. One of the types of
optimizations involved collective operations (see Section 3.3).

The MPI message passing interface defines fourteen collective communication operations (in addition to the stan-
dard point-to-point send and receive). Examples of these operations are broadcast, barrier, and reduce. For these
fourteen collective operations, we have implemented algorithms that are designed to take advantage of the two-level
nature of our wide-area interconnect. The algorithms make sure that data items destined for another cluster are sent
only once over the slow wide area links; the completion time of a collective operation is on the order of one wide area
latency.

We have performed some early measurements with this system.On moderate cluster sizes, using wide area latency
of 10 milliseconds and a bandwidth of 1 MByte/s, the system executes operations up to 10 times faster than MPICH
[16], a widely used MPI implementation. Application kernels improve by up to a factor of 4. Due to the structure of
our algorithms, the system’s advantage increases for higher wide area latencies. Our implementation is implemented
as a plug-in library for MPICH, and is called MagPIe, in honorof the bird that collects things. With MagPIe, MPI
programs can use collective operations efficiently and transparently on a hierarchical interconnect. Not a single line
of application code has to be changed to use the MagPIe algorithms. The system is described more fully in [21].

Simultaneously, we are currently trying to identify and package wide area optimizations for parallel Java programs.
Early application experience has been reported in [39].

7 Conclusions

Current NUMA machines yield good performance for many applications [19]; however, there is little insight in appli-
cation performance on interconnects with a larger gap between slow and fast link speed. Such a large gap will occur
in large-scale NUMAs, or when, as in a meta-computer, wide-area links are added to the interconnect. As far as we
know, this is the first study to examine performance of non-trivial applications over a large range of gaps, using a
real system. Our main contribution is an analysis of when thedifference between slow and fast links starts to affect
performance. We describe ways to restructure the applications to make performance less sensitive to a large gap, and
we analyze how well the improvements work. We do this by examining speedup relative to the gap in bandwidth
and latency in the interconnect. We find that when the difference in speed in an interconnect grows larger than in
current generation NUMAs, performance suffers dramatically. For these gaps (one order of magnitude and larger)
communication becomes limited by the slow links in the interconnect. Once the bottleneck is identified, we can apply
changes such as increasing the height of reduction trees, clustering work stealing, combining messages, and removing
redundant synchronization points—changes that make explicit use of the multi-level structure of the interconnect, in
contrast to the work by Jiang et al, who describe single-level changes [18]. The changes can speed up applications
significantly. When acceptable performance is defined as 60%of the speedup on a uniform interconnect, restructuring
the communication pattern increases the allowable gap in bandwidth and latency by more than an order of magnitude:
in our system gaps of two orders of magnitude for bandwidth, and three orders of magnitude for latency, can be bridged
by four of our six applications. However, some communication patterns, such as matrix transpose, resist optimization.

Interconnects are becoming increasingly hierarchical, making it harder to achieve high performance. Nevertheless,
we believe that for many real applications it will remain possible to do so. We also believe that to achieve this level
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of performance, more effort is needed to assist programmersin identifying performance problems, to help them better
to understand the characteristics of interconnect and program. We have mentioned our experience with Java and with
MagPIe, an augmentation of MPI, in this respect.
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