Validating Software-Implemented Fault Tolerance
Mechanisms for Critical Space Systems

Regular Paper

Abstract—Fault-tolerant system architectures for space ap-
plications are currently validated using system-level testing.
This is viable for systems relying on hardware measures, but
unsuitable for fault tolerance (FT) implemented in software.
Fault injection using a realistic test-setup is considered good
practice to validate software, but also challenging. Hence, few
published software FT concepts have been validated in this
way. Practical implementation, validation, and the possibility to
compare an implementation’s performance to literature, however,
are prerequisites for the space industry to consider FT concepts.
In consequence, software measures have largely been ignored for
space applications, and instead the field resorts to hardware-
only functionality, which is ineffective for modern, low feature-
size semiconductors. This must change. To increase acceptance
of software FT concepts, we therefore provide a guide and test
template for conducting systematic validation of software FT
measures. We do so by example of a thread-level coarse-grain
lockstep implementation we developed for use aboard satellites.

Index Terms—fault tolerance, fault injection, space, satellite,
coarse grain lockstep, validation guide

I. INTRODUCTION

Modern embedded technology is a driving factor in satellite
miniaturization, enabling a smaller, lighter, and cheaper class
of spacecraft, fueling a massive boom in satellite launches and
a rapidly evolving new space industry. Micro- and nanosatel-
lites (100kg-lkg mass) have become increasingly popular
for a variety of commercial and scientific missions, which
were considered infeasible in the past. However, they suffer
from low reliability, discouraging their use in long or critical
missions, and for high-priority science.

For larger spacecraft, various protective concepts are avail-
able to assure fault tolerance (FT) through hardware measures.
However, these concepts are effective only for semiconductors
manufactured in traditional, sturdy technology nodes. Such
hardware can not be utilized aboard miniaturized spacecraft
due to tight energy, mass, volume constraints, and high cost.
Conventional embedded and mobile-market systems-on-chip
(SoCs) are deployed in their stead, which only utilize error
correction to handle the handle wear and aging effects encoun-
tered on the ground. A significant share of post-deployment
issues aboard nanosatellites can be attributed directly to the
failure of these components and peripheral electronics, mostly
due to radiation-related effects [1].

Therefore, we developed a non-intrusive, flexible, hybrid
hardware/software architecture to assure FT with commercial-
off-the-shelf (COTS) mobile-market technology based on an
FPGA-implemented MPSoC design. Our architecture utilizes
multiple software-implemented FT measures, most notably a
coarse-grain thread-level lockstep implementation within an
MPSoC. It can offer strong fault coverage without relying upon
any space-proprietary logic, custom processor cores, or other
radiation-hardening measures in hardware.

The lockstep functionality we developed allows state syn-
chronization and forward error correction between otherwise
independent processor cores. It also provides fault detec-
tion capabilities for other FT stages which otherwise would
lack fault detection capabilities: FPGA reconfiguration and
dynamic thread-replication and relocation based on mixed
criticality. Therefore, it not only offers fault coverage, but also
triggers other protective features of our architecture, requiring
thorough validation before a custom-PCB based prototype can
be constructed.

Validation of such FT measures requires systematic testing
of the actual concept implementation, a realistic fault model,
a consistent fault model definition, and a suitable test setup.
Being software, fault injection at the system level does not
offer a sufficient level of test-coverage, and instead a variety
of fault injection techniques for software are available. While
validation using fault injection using a realistic test-setup is
best practice in fault tolerance research and space-hardware de-
velopment, almost no published coarse grain lockstep concepts
have been implemented and validated in this way. In contrast,
the concepts described in academic publications today are
predominantly validated only using mathematical models only,
but usually not actually implemented to allow fault injection.

At the time of writing, we are aware of only a single
lockstep concept [2] which is published, was practically imple-
mented, and validated based on a realistic fault profile, while
many other publications utilize validation using synthetic tests
and models only (see Section III). Practical implementation
and the possibility to compare an implementation’s perfor-
mance to literature, however, is seen as a prerequisite by users
in industry to consider an FT concept sufficiently mature for
implementation. For space industry applications, this then en-
ables further testing of a hardware/software system, e.g., in our
use-case, radiation testing and on-orbit demonstration with an
on-board computer (OBC) prototype. However, most proposed
lockstep concepts, however, are not practically validated today.
This has resulted in a gap between theory and application, with
industry often dismissing software-implemented FT concepts
due to a lack of maturity and an assumed tendency to ignore
practical implementation obstacles. Preventing the application
of the results of an entire field of research, dependable
computing using software measures, for an entire industry
segment even though there would be a technological need to
do just that.

Contribution:

In this paper, we show how realistic and systematic valida-
tion of software-implemented FT concepts can be conducted
using ISA-level fault injection for space applications, and
fields with a similar fault profile, e.g., critical and irradiated



environments. We do so based on the fault injection campaign
we carried out to validate a novel thread-level coarse grain
lockstep concept we developed for space applications. This
paper includes not only concept validation but is meant as
a template for other researchers who wish to validate their
own software-implemented FT concepts. We provide a detailed
description of the fault profile in the space environment, and
a through description of the utilized tools and scripts, which
have been made available to the public open source. Thereby,
we hope increase acceptance of software implemented FT
concepts by industry, but also to increase the share of concepts
that are validated in a practically meaningful way. We also
believe it is of great importance to offer a second set of
validation results to allow fellow researchers to compare their
forthcoming results to more than just one single paper. As a
single set of data points is insufficient to judge the performance
and effectiveness of the entire coarse-grain lockstep concept
class. The results of our fault-injection campaign are positive,
and resulted in a variety of lessons learned and allowed us to
develop a better understanding of our lockstep implementa-
tion’s behavior.

Paper Organization:

In the next section, we describe our architecture’s intended
operating environment, design constraints, and the physical
fault model. We then discuss how these challenges are handled
today in the industry, and outline which solutions currently
are available to the space industry and spacecraft designers in
academia. A brief overview of our multistage FT architecture
and an introduction to our coarse-grain lockstep approach is
provided in Section IV. For an RTOS implementation of this
approach, we then develop a fault model in Section V, and
analyze which testing techniques are available to verify our
approach VI. Having chosen the most suitable technique for
our use-case, in Section VII we describe our an automated
test toolchain which we use to systematically conduct fault
injection campaigns against an RTOS implementation of our
approach. The experiments are conducted using system emu-
lation of a SoC closely resembling compute tiles of our target
MPSoC, and we utilize a set of predefined fault-templates to
simulate the different faults types in different components as
described in Section VII-D. Subsequently the results of our
fault injection campaign are presented in Section VIII, and we
compare them to related work in IX. Before presenting conclu-
sions, the pitfalls we discovered while preparing and lessons
learned from conducting our fault injection experiments are
discussed in Section X.

II. THE SPACE ENVIRONMENT & RADIATION

The form factor constraints aboard miniaturized satellites
[3] and the drastically different fault model [4] prevent the
re-use of many FT and testing approaches developed for
ground applications. Even in atmospheric aerospace applica-
tions, these usually consider availability, non-stop operation,
and safety, but rarely guarantee computational correctness in
a fully autonomous system.

Physical access to a satellite during a mission is in practice
impossible, and servicing missions were conducted only on
rare occasions for satellites of outstanding importance in low-
Earth orbit (LEO) in manned space missions. Signal travel
times, brief communication windows, and scarce bandwidth
make live interaction impractical. Thus, faults detected by our
approach are resolved fully autonomously during a satellite
mission, which may exceed 10 years.

High-energy particles are the main cause of faults [5] during
a satellite mission. They travel along the Earth’s magnetic
field-lines in the Van Allen belts, are ejected by the Sun during
Solar Particle Events, or arrive as Cosmic Rays from beyond
our solar system. These particles can corrupt logical operations
or induce bit-flips within memory and semiconductor logic
(single event effects - SEE), and may cause displacement
damage (DD) at the molecular level to a chip’s substrate and
circuitry. The energy threshold above which SEEs induce tran-
sient faults decreases in chips manufactured in fine technology
node, and the ratio of events inducing multi-bit upsets or
permanent faults increases. Radiation events can also cause
single event functional interrupts (SEFIs), affecting sets of
circuits, individual interfaces, or even entire chips.

In general, the effects of bit-upsets and SEFIs can be tran-
sient or permanent, while DD is always permanent [4]. The ac-
cumulative nature of permanent faults implies accelerated and
often spontaneous aging, which must be handled efficiently
throughout a mission. The cumulative effect of charge trapping
in the oxide of electronic devices (total ionizing dose — TID)
further impacts the lifetime of an on-board computer (OBC).
However, chips manufactured in certain new technology nodes,
such as recent generation FPGAs [6] show drastically better
than expected TID performance [7] and resistance to latch-up
in contrast to projections based on technology scaling [8].

In LEO, the residual atmosphere and Earth’s magnetic field
provide some protection from radiation, but this absorption
effect diminishes quickly with distance. Many miniaturized
spacecraft operate in this region, and forego FT in favor of
developing a functional satellite within the boundaries of their
limited resources and manpower. Most nanosatellites today
do utilize COTS microcontroller- and application processors-
SoCs, FPGAs and combinations thereof [9], [10], occasionally
introducing basic, custom-designed redundancy with ground-
triggered fail-over. The choice to utilize such components
instead of proven FT technology usually is the result of risk
acceptance due to a lack of viable alternatives. Designers
in general are aware that these components may fail at any
given point in time, and may cause mission failure. Risk-
acceptance at this scale is a viable approach for low-priority
science and missions with brief duration. This is not possible
for for complex, critical, and long-term missions with a one
or multiple scientific or commercial objective.

Most nanosatellite hardware development efforts today are
more comparable to prototyping than to the sophisticated and
thorough ASIC development process. FPGAs have, hence,
become increasingly popular as they are well suited for this
design approach, despite being more vulnerable to radiation



than ASICs, due to their better fault detection, isolation and
recovery (FDIR) potential [11].

III. BACKGROUND & RELATED WORK

FT is traditionally implemented through circuit-, RTL-,
core-, and OBC-level majority voting [12]-[14] using space-
proprietary IP, which is difficult and costly to maintain and
test. Circuit-, RTL-, and core-level voting are effective for
small SoCs such as microcontrollers, but this does not scale for
the more potent processor cores used in modern mobile-market
MPSoCs [15], [16]. Software takes no active part in fault
mitigation within such systems, as faults are suppressed at the
circuit level and usually only indicated using hardware fault
counters, without a direct feedback between fault-mitigation
and the OS state.

SoC architectures for spacecraft usually undergo radiation
testing or laser fault injection, as the state of the art in
the field today is focused on hardware-level FT measures or
specialized manufacturing. Relevant radiation tests have been
conducted for the FPGAs utilized in our project, among others
by Lee et al. in [17] and Berg et al. in [7], or are currently
ongoing (Lange et al. [18]). Tests for further components
such as memory and supervisor-uCs are available in test
databases such as ESCIES, NASA’s NEPP' and the IEEE
REDW Records. For our architecture, radiation tests for the
utilized components yield device-specific data, which enabling
us to estimate fault frequencies, types, and effects on the
FPGA on which our MPSoC is implemented. We require this
information to choose appropriate checkpoint frequencies and
frame times for our coarse-grain lockstep approach, but by
itself, radiation testing does not allow an assessment of the
capabilities of software-implemented FT measures.

Prior research on software FT often utilizes simple fault
models, considering faults to be isolated, side effect free
and local to an individual application thread [19] or purely
transient [2], [20]. Many practical application obstacles could
be uncovered and resolved before publication by implementing
these concepts [21]. However, implementation and fault injec-
tion into a concept implementation is time consuming [22],
and often requires also custom hardware and new software
implementations, as outlined among others by Sangchoolie
et al. [23]. Especially fault injection for entire OS instances
is non-trivial [24], as thorough preparation and careful tool-
selection is necessary to obtain representative results from a
fault injection experiment [25]. Therefore, a sizable share of
FT concepts exists at a theoretical level [26]-[28], and instead
of fault injection or hardware testing, statistical modeling
using different fault distributions are utilized. This is a viable
approach for validating FT concepts directed towards, e.g.,
yield maximization [29] and aging [30], but not for validating
software-implemented FT measures operating in a critical
environment.

In this contribution, we therefore conduct systematic valida-
tion of our coarse-grain lockstep approach using fault injection

Isee https://escies.org and https://nepp.nasa.gov

to verify the effectiveness and efficiency of our coarse-grain
lockstep FDIR mechanics under stress. Specifically, we must
assure voter stability, a sufficiently high level of fault detection,
and verify fault-isolation and recovery, determine the level of
voter stability, hence the likelyhood of a fault to result in
a crash or another failure requiring replacement using spare
resources. This information is essential to define an appropriate
checkpoint frequency for the lockstep, which mainly defines
the fault coverage level of our MPSoC. Together with FPGA-
level fault-information obtained from radiation tests outlined
earlier in this section, and information on the mission specific
target environment, we can then calculate the appropriate fault-
frequency for a specific mission and spacecraft.

IV. OUR HYBRID FT ARCHITECTURE

The high-level logic including each FT stage in our archi-
tecture is depicted in Figure 1, and consists of three interlinked
fault mitigation stages implemented across the embedded
stack. The coarse-grain lockstep together with its forward error
correction mechanisms we are validating in this publication,
is the first FT stage in our architecture [Anonymous 2017],
and provides fault-detection capacity for the others.

Stage 1 implements forward error correction and uti-
lizes coarse-grain lockstep to generate a distributed majority
decision regarding the integrity of the software replicas run
on a set of isolated, weakly coupled processor cores. Fault
detection is facilitated through application-provided callback
functions, requiring no modifications to an application or
knowledge about intrinsics. Faults are resolved through state
re-synchronization and thread migration to processors with
spare processing capacity. In this contribution, we conduct a
validation of the mechanisms of Stage 1.

Stage 2 recovers defective compute tiles through FPGA
reconfiguration, thereby counteracting resource exhaustion.
It assures the integrity of the FPGA’s running configuration
and deploys scrubbing as well as Xilinx SEM to correct
transients in FPGA fabric. Its objective is to repair defective

Tile Supervisor
Bootup < ] Success
Reduce Full FPGA
z Miprne Reconfig.
./ : |
: Done 9
—>»{ State Update €— No Spare Alternative
Capacity Variants
v ? '
Keep RgFlace Tile (Partial)
> Thread : Tile ile Reconfig.
Execution A | |
* Spare Tile Faulty Tile
: Activation & Recovery
Checkpoint -
* <= limit T> limit
I
| o Read Majority | Tile Fault
Synchonization Decision ~ Counter

Fig. 1: Stage 1 (white) assures fault detection (bold) and
fault coverage, Stage 2 (blue) and 3 (yellow) counter resource
exhaustion and adapt to reduced system resources.



tiles affected by upsets in tile logic, and to cover permanent
faults using alternative configuration variants. Individual stand-
alone concepts utilizing comparable mechanisms as Stage 2
have been researched and validated e.g. by Nguyen et al. in
[31] and D. Cozzi in [32]. FDIR concepts using scrubbing and
partial reconfiguration have been demonstrated on-orbit [33].

Stage 3 [Anonymous 2018a] is activated when insufficient
processing time in the remaining intact processor cores is
available due to accumulating permanent faults. It re-allocates
processing time between application threads to maintain a
functioning system, to allow the system to gracefully age for
a strongly degraded system. To do so, it utilizes thread-level
mixed criticality inherent to data processing aboard satellites,
assuring sufficient compute resources are available to high-
criticality applications by sacrificing performance of lower-
criticality threads.

We deploy this architecture on an FPGA and developed an
MPSoC design [Anonymous 2018b] to best exploit the FT
capabilities of each stage. Each processor core exists in a
separate compartment, a tile, together with peripheral-IP (e.g.,
interrupt controller, timer, etc.) and interface cores, and has
a supervisor access port. It also contains a dedicated on-chip
memory slice, which is used to expose tile-internal OS state
information to the rest of the system. While peripherals thus
are in general replicated for each tile, this is not viable for
external memory controllers (main and program memory) due
to their large footprint, package-pin and PCB space limitations.
As on-chip memory is insufficient for modern data handling
applications and platform control, tiles utilize a shared set of
DDR and SPI controllers via an AXI interconnect in cross-
bar mode. These controllers are implemented redundantly to
enable fail-over, safeguard from SEFIs, and allow interleaved
access to reduce congestion. On a Xilinx Kintex Ultrascale+
XCKUSP FPGA, a quad-core design outfitted with Microblaze
processor cores and standard CubeSat interfaces (SPI, 12C,
UART, and GPIO), results in modest resource utilization (28%
LUTs, 33% BRAMs, 16% FFs, 5% DSPs) and 1.92W total
power consumption.

V. PRACTICAL FAULT MODEL DEFINITION

To properly validate software-implemented FT measures,
knowledge of the relevant target environment is required, as
well as the physical fault scenario. Hence, in the remainder
of this section, we reduce the physical fault scenario of our
operating environment to a practical fault model applicable to
fault-injection. This enables us to subsequently determine the
most suitable fault injection technique as well as to build a
concrete test-space for our fault injection campaign.

In the space environment, the main challenge towards an
MPSoC is radiation, though the precise effects of radiation
on semiconductors induced by a fault however varies. The
effect of a fault depends on the particular effected chip-region,
logic, and microfabrication technology used [4]. Today, the
characterization of these effects is of major concern when
implementing traditional hardware-FT based systems, and
the only practical way to evaluate them is radiation testing.

However, radiation testing can occur only at a very late stage in
development, and the results may vary even for identical chip-
designs manufactured in different fabrication lines or fabs.
This form of testing effectively yields heritage and increases
a system’s technology readiness level, instead of verifying
the effectiveness of a specific FT mechanism. In practice, a
software-implemented FT concept thus has be to validated
especially considering also permanent faults and intermediate
faults, which are neither transient nor truly permanent. In
contrast, literature today mostly considers transient faults,
which is unsuitable for applications intended for irradiated
environments.

In our case, we validate how well our lockstep implemen-
tation can actually detect faults that have occurred. We can do
this through injection of bit-flips and new-value fault injection.
Random fuzzing or type-fault injection are widely used for
finding exploits and vulnerabilities in software, as well as
logic bugs, but are not useful for our purposes due to the
different physical fault scenario. Hence, proper validation must
also include systematic testing, which is even theoretically
impossible using system-level testing with hardware. Thus,
software must be tested separately and systematically, before
actually conducting system-level testing. Therefore, we must
consider the actual effect and impact of faults on the system
from a programmatic perspective, which neither statistical
models nor system-level radiation testing can deliver.

Our Stage 1 implementation exists as part of the OS’s
scheduler and as a set of application callbacks, and therefore
faults will have the following effects on software executed
within one of our MPSoC'’s tiles:

« Data corruption associated with access to main memory,
caches, registers and scratchpad memory due to non-
correctable ECC words caused by SEEs.

« Bit upsets, new-value, and zero-value faults due to SEEs
and SEFIs in address and control logic of peripheral IP
due.

« Incorrect or non-execution of instructions in the processor
pipeline during the entire sequence of processing, i.e.
from instruction fetch, execute to write-back, as well
as incorrect decoding of instructions and execution of
different instructions with the given parameters.

o Control-flow deviations and data corruption due to failure
of interfaces and tile I/O peripherals, due to faults in
controller logic of FPGA’s I/O components.

A broad variety of synthetic, theoretical failure types are
well described in literature, e.g. in [25]. In practice these
do emerge as one of the described fault types. As discussed
among others e.g. in [34] most of these synthetic failure modes
[25] actually emerge as one of the aforementioned effects.
To validate the fault-detection and mitigation capabilities of
our lockstep to radiation effects, we are only interested in the
practical effects of a fault, not its theoretical origin.

Radiation can induce subtle effects into the FPGA itself, and
may affect the OBC at a larger scale (e.g., full component
failure or reset) [7]. Such faults either emerge disguised as
one of the aforementioned ones, or are covered by Stage 2



(FPGA fabric corruption) and detectable by the supervisor.
These are thus beyond the scope of what we need to validate
in this contribution. As such, these faults are either fatal to
a tile, therefore directly detectable by other tiles by majority
decision, or cannot be handled within a single-chip MPSoC. To
overcome this system-level limitation, FPGA reconfiguration
and other system-level measures are required and implemented
as part of Stage 2, and do not need to be considered separately
when testing pure software as discussed also by Sangchoolie
et al. in [23].

VI. FAULT-INJECTION TECHNIQUE SURVEY

As our approach is based upon an MPSoC on FPGA,
fault injection using netlist simulation [35] or directly into
the FPGA [32], [36] could be facilitated with comparably2
little development effort, as we already utilize a development-
board based MPSoC design implementation. Therefore, this
technique would grant maximum control over the type and
effect of faults and the simulation would be based on a
design which closely corresponds to the real MPSoC. Several
proprietary partially [32], [36], [37] and fully automated test
frameworks [38] as well as commercial applications [35]
have been developed for this purpose. Unfortunately, netlist
simulation is computationally disproportionately expensive,
preventing a meaningful level of test coverage from being
achieved, unless only a specific component was subjected to
the test instead of the MPSoC as a whole. The same applies
to fault injection in a live system (e.g. using OpenOCD), or
into an FPGA running our MPSoC, but this approach is time
too consuming and potentially destructive [36].

Faults could also be injected via widely available stan-
dard debug tools (e.g., GDB) into software running entirely
in userland. This is only representative for simple userland
applications [2], the effects of faults on an actual OS cannot be
simulated [39]. Furthermore, validation of embedded software
for low-power ARM or RISC-V SoCs using desktop-grade
1a32/amd64 hosts may bias the outcome of a fault injection
experiment. Fault injection into kernel functionality emulated
in userland can result in a different run-time behavior, and
will therefore not always produce meaningful validation re-
sults [25], in contrast to performance estimation, where this
approach can very well deliver worst-case performance esti-
mates. Debugger based fault injection into a virtual machine
can alleviate these constraints by allowing an entire OS to
be tested, but suffers performance limitations due to protocol
overhead. Furthermore, permanent fault injection into compo-
nents other than memory and the current execution context
are infeasible due to the limited means of interactions of a
debugger on the virtual machine itself [24]. In consequence,
the kind and type of faults which can be simulated using an
external debugger are significantly constrained [25], though
can be facilitated using standard open-source tools.

Fault injection using system emulation can combine many
of the advantages of the aforementioned techniques, without

2as compared to developing a new FPGA design from scratch for the

purpose of testing.

being constrained by the limited capabilities of a debugger in-
terface regarding the potentially injectable fault types. In some
prior research, computer architectures were simulated using
SystemC to demonstrate architectural features, and it could
also be used as compromise between fault injection using
netlist simulation and pure userland-software based debugging.
However, implementing fault injection via SystemC for an
entire MPSoC running a full operating system would not only
be excessively time consuming, but also require considerable
development effort just to achieve a functional simulation,
even if realism was ignored. Therefore, it is only viable for
fault injection into very simple process designs executing less
complex software [40].

ISA-level fault injection has been shown powerful and
efficient for conducting black- and grey-box fault injection
[23], though the tools discussed today in relevant publications
are mostly proprietary to individual research groups, largely
experimental, and usually not open sourced [41]. Virtualization
assisted emulation, instead, allows faults to be injected into
pre-existing emulated hardware and SoCs using standard tools,
while being computationally comparably cheap and requiring
no further changes to a victim application. Several test frame-
works implementing this approach have emerged in recent
years, though most are still custom tailored for specific use-
cases or have not been released to the public [22] and are
thus not relevant for our purposes. Notable exceptions here
are the two open source frameworks FAIL [34] and FIES [42],
which are publicly and freely available as open source software
and comparably mature. Hence, we use this fault injection
technique to systematically validate our FT approach using an
automated test toolchain.

VII. THE FAULT INJECTION SETUP

To provide systematic fault coverage, manual fault injection
or fault injection relying upon manual binary introspection
are unsuitable. Instead, an automated test setup is needed that
can then be executed continuously and executed in parallel to
achieve the desired test coverage without cross-effects. In this
section, we therefore describe how such a test setup can be
realized with limited development manpower, and pre-existing
standard software based on our own setup.

A. Fault Injection Tool Selection

The available ISA-level FI tools are not functionally equiva-
lent, and differ regarding the target environment, test setup and
intended test subject scope, and the way in which they inject
faults. FAIL utilizes a powerful C++ based test controller for
thoroughly analyzing small binaries in a fully automated test
campaign. While the test itself is therefore fully automatic, the
development of a test-specific controller application requires
deep knowledge of victim binary intrinsincs and program
structure, which must be obtained manually. The development
of FAIL is mainly focused on the Intel platform, while ARM is



available via GEMS for a virtual target or through (potentially
destructive) fault injection via JTAG into silicon® [43].

FIES* by H"oller et al. [42] was developed specifically to
validate ARM-based COTS-based critical systems and builds
upon the faster and more mature QEMU virtual machine
monitor, thereby supporting a broad variety of SoCs and virtual
hardware. This tool alone does not support automated test
campaigns, but allows rule-based and systematic fault injection
into opaque binaries during each run. Its fault injection engine
utilizes a fault library which can be generated automati-
cally using compiler-toolchain functionality and instruction
and memory access traces. It can therefore more efficiently
handle testing a full OS, without requiring a test monitor
with knowledge about application intrinsics. The test campaign
described in the remainder of this paper is thus being carried
out using an automated test toolchain build around FIES.

B. Test Campaign Setup

Our fault injection toolchain performs the following steps

implemented as a set of python scripts:

1) Obtain the victim application’s process state, results and
correct lockstep checksums for each payload application.
We run the emulation without fault injection and tracing,
outputting the application and OS state for comparison
during later steps. This allows us to e.g., include addi-
tional debug output or otherwise alter the victim-binary’s
code for our golden run. Thereby, we can obtain a correct
victim OS state without distorting the actual golden-run.

2) Execute a golden run and generate traces of the process
counter and executed instructions, register access and
memory access with an unmodified binary, using the
same parameters as in the previous step. Our lockstep
implementation does not require strict timing determin-
ism. It only requires a comparable level of work to
be executed between checkpoints allows us to avoiding
potential non-determinism due to code-changes in the first
step. When validating more timing-sensitive algorithms
however, special care must be taken to assure the golden
run and fault injection runs are equivalent [41], [42].

3) Filter the generated traces to constrain fault injection to
coarse-grain lockstep relevant code and data (e.g., omit-
ting platform bring-up and shutdown code). We remove
duplicates, and annotate each trace-entry with the number
of occurrence in the trace, generating the actual test-
campaign input trace.

4) For each address and occurrence, we generate a fault
definition library and launch an instance of FIES.

5) For each run, we determine the result of the fault injection
(e.g., OS crash, incorrect checksum, etc.) based on a
comparison to the known-correct results obtained in the
first step and log the result to a sqlite database.

Steps 1-3 are executed once at the beginning of a test

campaign, whereas steps 4 and 5 are computationally com-

3Due to constant reboots required for fault injection at the OS-level and
the possibility of faults in device drivers causing damage in the target device.
4Source code publicly available at https:/github.com/ahoeller/fies.git

parably expensive, and but be executed in parallel by splitting
the processed traces. Result databases from different systems
can be merged and combined, and each test record includes
information about the precise injected fault. Besides collecting
and interpreting the results of a fault injection run, we also
retain tile state information to enable manual analysis in the
future if necessary. This includes a tile human readable output
to each tiles’ serial port, CPU and gemu processor context
dumps, as well as the logs generated by FIES during the fault
injection, as well as its exit code.

In the process of developing our test toolchain, we extended
FIES’ functionality to better support different tracing tech-
niques and added functional improvements, and released the
necessary patches to the public. Specifically, we improved the
rule-driven fault injection engine, rebased FIES from QEMU
1.17 to 2.12 (gemu-head in December 2017), and added
support for the THUMB?2 instruction set, as most OS kernels
use both ARM and THUMB?2 assembly intermixed.

During development of our toolchain, we also conducted
fault injection manually by targeting specific locations in the
application binary structure. There, we chose interesting data
and logic which could cause an incorrect application state, or
would result in a different run-time behavior in a tile. These
experiments were conducted to verify the functionality of our
approach, the experiment setup and later, the fault-injection
toolchain and changes made to FIES.

C. Target Implementation and Payload

Our fault injection experiments were conducted against an
implementation of our approach in RTEMS 4.11.2 using the
ARMv7a-Zynq board-support-package, which closely resem-
bles the tiles of our MPSoC. A simplified function flow graph
is depicted in Figure 2

RTEMS is a real-time OS used in a broad variety of
space applications, from platform control to instrumenta-
tion. We cross-compiled the kernel image from Fedora 28
x86_64 with standard compile flags (-marm -mfpu=neon
-mfloat—-abi=hard -02) in RTEMS GCC 4.9.3. We
chose not to utilize the Linux kernel for our fault injection
experiments to maximize the level of control over our exper-
iment and reduce the test time overhead.

As payload application, we utilized two applications:

o The ESA Next Generation DSP benchmark® run as
POSIX threads within RTEMS. This is a space-industry
standard benchmark application used to measure and
compare system performance.

« An application alike the NASA/James Webb Space Tele-
scope Mid-Infrared Instrument readout software’ [44].

While this choice represents today’s space-borne computing
workloads well, test campaigns for other application fields
should utilize representative software for that field. If no spe-
cific target application code is available, synthetic algorithm

5We made our changes to FIES available in the form of the a rebased
QEMU-git form at https://redacted.for.peer.review.

Source code publicly available at https:/essr.esa.int

7See https://github.com/spacetelescope



Coarse Grain Application |  Application
Lockstep Bootup 'Igu'ead T : ’Iglread ’]L
g ] |
kS y | !
S Application ||[_Threadinit_].
= Initialization I iI Thread Init I
‘g I !
= Checkpoint < | I
Initialization | I
! |
¢ ! i
Checkpoint | I !
esc ta[I>101n N | !
2 | |
| I
|
Checksum |
Computation 4)' Gen. Checksum I:
| :I Gen. Checksum I
o I
= ¢ I i
g Checksum ! :
< Comparison [ [
Q | |
5§ ¥ | |
Yes | :
Disagree? W|
| :I Expose State I
I
Wait for :
Supervisor :
\4 [
Yes
State Update? WPl i
1
I
I

U}ildate to
Valid State

Scheduler

Application

Checkpoint
Interrupt

D el 4
Fig. 2: The execution cycle of our coarse-grain lockstep
implementation on a tile. Payload application callbacks are
depicted in yellow, checkpoint trigger timers in blue. Faults
are injected after initialization.

suites such as the SPEC performance tests® can be utilized at
a loss of realism due to the limited scope and low complexity.

D. Test Space and Target Components

Using our pipeline, we developed a set of template fault
definitions which our fault injection toolchain utilizes to
generate suitable fault definitions based on the aforementioned
program traces. In practice, choosing the right test-space for
a practical OS-scale implementation is non-trivial. Today, the
contrast is large between what is described as ideal in literature
for testing software [45], what is technically feasible today
with realistic financial and time investment, and what can be
achieved for system-level testing in industry [46]. Sufficient
test coverage for such software can often be unobtainable in
practice, and even fault injection using state-of-the-art tools
requires a compromise between realism and test-coverage to
avoid runaway test-times and high cost. Besides test coverage,
our architecture has to cope with not merely transients, but

8see https://www.spec.org/cpu

also radiation-induced permanent faults and SEFIs, as these
are common in modern memories and processor components
flying in space.

Transient Fault Injection: Transients are injected as bit-
flips and new-value errors into registers and the processor
pipeline using the program counter as trigger. Simple time
triggered injection is insufficient, as the relevant available
tools do not assure clock-cycle accurate timing, making test
results unpredictable. For instructions which are visited more
than once, we trigger faults after the n-th occurrence, which
is enabled by an extension of the FIES framework’s fault
definition language. Faults were injected also into memory ac-
cess operations based on physical memory addresses, thereby
simulating non-correctable upsets in ECC protected words in
caches and main memory, as well as faults in address logic
or buffers. To better simulate ECC-errors and faults in the
address logic, we can also directly replace accessed data or
replace the address of the operation, instead of just injecting
single bit-flips.

Permanent Fault Injection: Permanent faults are injected
into every access to the interconnect of the CPU, including
access to main memory and devices address space. They were
not injection, however, into general purpose registers, special
registers, and the CPU pipeline, as the effects of faults in these
components are fatal at the latest after a brief time period. Such
faults will crash the RTOS instance running on a tile, which
can be detected at the next checkpoint by the other tiles in
the MPSoC. While it is important to not ignore parts of our
fault model, testing for faults with an known result needlessly
inflates the test space and time.

Functional Interrupts and Intermittent Faults: SEFIs in
different functional units of a tile may also induce fault-
effects which are neither transient nor permanent. FIES allows
injecting periodic and intermittent faults (the effects of which
persist for a short period of time and are resolved afterwards).
This functionality was used to simulate SEFIs.

We chose 100ns as fault-duration for SEFIs, the period-
equivalent to 10 clock cycles at 100MHz’. This represents
reasonably well the interruption effect and the reset-induced
outage of specific circuit groups due to SEFIs. However,
we are not aware of radiation-test data further analyzing the
precise actual timing and detailed interruption behavior SEFIs
in processor logic and FPGA fabric.

Fault Placement during Execution: After executing bring-
up code and OS initialization, our victim binary executes
payload software for 3 lockstep cycles, and then terminates.
We chose a frame time of 2 seconds as interval between check-
points, which is reasonable for operation in LEO when passing
through increased radiation zones such as the South Atlantic
Anomaly, based on radiation-testing data for Ultrascale [7],
[17] in preliminary information obtained from Ultrascale+
FPGAs [18]. With our victim binary, execution during of a
golden run takes approximately 7 seconds of guest-virtual
time, which on our test system is equivalent to approximately

9The clock speed emulated by QEMU for the Zync MPSoC.



M| Fault M| N N
T inie T@ cpy| T, [Bff T |T -|
Co x >
||
Tinie I Ta | T T T T | —I
T inie T, | T, K| T. |B -|\
© N - N "

Fig. 3: The experiment sequence and fault placement for a
tile. Fault are injected during the red-outlined time period on
processor tile Cp.

30 seconds of host-time. In case the experiment does not
terminate in time, e.g., due to control flow corruption, the
experiment is terminated by the toolchain after 45 seconds
(allowing one additional checkpoint to be processed). FIES
can also be configured to end an injection run after executing
given number of instructions (e.g. 10 times the number of
instructions executed in the golden run).

The test sequence is depicted in Figure 3, and faults are
injected after the first and until to the end of the second
checkpoint. This allows faults to propagate within the system,
to corrupt the OS and application state, without requiring
excessive experiment time. Subsequently, we can analyze if
our coarse-grain lockstep approach could detect the effects
of a fault on the system (if any), and if they were resolved
through a state update from another tile. Upon reaching the
third checkpoint, the application state should have recovered
and thereby generated checksums, and the CPU state should
match the golden run’s results. This allows us to verify the full
FDIR cycle from fault injection to recovery. To reduce the test
space, we decided to limit fault injection and exclude the OS’s
platform bring-up and shutdown code. The bootup/shutdown
sequences of a tile are not relevant to validating our lockstep.

Limitations: We chose the duration of fault injection run
to allow our victim binary to exhibit the entire FDIR circle,
while allowing sufficient test coverage. However, this does not
allow detection and observation of dormant or latent faults,
e.g. such affecting OS data structures and logic resulting time-

delayed regressions. The time allotted to each fault injection
run therefore is a direct trade-off between test-coverage and
the ability to observe more long-term effects in a system.

Theoretically, it would be possible to inject faults in
QEMU’s virtual hardware directly as well. However, this is not
supported in FIES today in a scripted manner, requiring instead
source-code modification for each device in QEMU. We can
elevate this limitation by simulating such effects through data
corruption during memory access, and we can inject faults into
device address space.

VIII. RESULTS & INTERPRETATION

Table I contains raw results of our fault injection experi-
ments. In payload-application code, a majority of the injected
transient faults resulted in a corruption to the payload appli-
cations’ state. With less than 20% of all faults, the application
of the entire OS crashed or terminated prematurely (tile resets
were treated as early termination). Faults affecting the lockstep
mechanisms (e.g., resulting in false comparison or incorrectly
generated checksums from correct data) were rare due to the
minimal code and data footprint of the lockstep.

A comparable share of bit-flips with permanent effect
resulted in a corrupted thread state and thus checksum-
comparison mismatch, as was the case with transient faults.
However, this number alone is misleading, as the amount of
masked upsets without noticeable effects plummeted to just
19%, while the share of thread- or OS-crashes increased.
Therefore, we can deduct that a number of faults which due
to transient faults would have resulted in just thread state
corruption, now instead result in crashes. The total amount of
detected faults in turn was increased again by faults which
were previously masked. Intermittent faults have a similar
effects to permanent ones, though with slightly fewer crashes
and more faults affecting only the payload application.

Our coarse grain lockstep implementation most importantly
contributed fault-detection to the system, whereas the state
synchronization functionality serves to reduce the amount of
reboots needed to restore the state of each tile. In practice,
its fault-detection strength depends on both the frequency at
which checkpoints are execute (frame-time) and the likelihood
that faults can be covered and corrected. Hence, we analyzed
how rapidly a tile itself can detect faults in Figure 4.

Fault Detectable by Recovery Observed Effect per Fault Type
Impact Detectable | victim tile | other tiles through Transient | Permanent | Intermittent
Corrupted Thread State yes yes yes state-update 49% 44% 53%
Thread Crash yes yes no state-update 8% 17% 10%
Lockstep Failure yes no yes reboot 1% 2% 1%
OS Crash yes no yes reboot 10% 18% 15%
No Effect (Masked) (some¥*) (yes™) (no*) (reboot*) 32% 19% 21%

TABLE I: Fault injection experiment results for our RTOS implementation divided into transient, permanent, and intermittent
faults. Notice that our implementation can not detect silent data corruption with no impact on the thread state. Certain masked
faults affecting OS data structures could be detected through erasure coding, while memory protection and virtual memory
would allow us to detect misdirected memory access caused by faults. Neither measures is in place in our proof-of-concept.



(a) Detection by the Victim Tile:

92

Detection Capability (%)

Processed Checkpoints

(b) Detection by the Full System:

99

S
~ 90
)
2 80 .
S i
L; 00 Transient
S 70|, I Permanent
T
]
A 60
1

Processed Checkpoints

Fig. 4: Payload application and state corrupting fault detection chance of a single tile for different fault types after a given
number of execute checkpoints. Notice that intermittent faults are more likely to be detected than permanent faults by the
affected tile itself, which is counter intuitive. This is due to the increased percentage of faults that are fatal for a tile, and the
system as a whole can detect permanent faults with higher likelihood.

The fault injection campaign shows that there is indeed
a measurable different in behavior between transient and
permanent faults. As expected, we measures that permanent
faults would be more likely detectable than transients, due
to the more severe impact of faults in general. However, we
also expected permanent faults to be easier detectable by
a tile than SEFIs in the same way (see Figure 4a). This,
however, was not the case as the increased likelyhood of
permanent faults resulting in crashes and the higher percentage
of non-fatal state corruption faults due to SEFIs actually
make fault detection within the affected tile more likely for
SEFIs. For permanent faults, a larger percentage of faults
results in a crash, which can no longer be detected by the
affected tile. These deductions underline the importance of
conducting validation not only using transient faults, but also
using permanent and intermittent faults.

The effects of a fault with higher likely also be detected
through majority decision by the rest of the system, as the
MPSoC as a whole can also detect crashes of an entire tile or
lockstep mechanism failure, as shown in Figure 4b. In Figure
5, we therefore provide a direct comparison between self- and
consensus-based fault detection for transients, permanent and
intermittent faults. While the results for transient faults again
match our expectations, for permanent faults and SEFIs, the
initial fault detection capability for the full MPSoC even with
only a single executed checkpoint is drastically better than for
self-detection. Here, a fault detection chance of near 79% and
78% during the first checkpoints also implies a near certain
fault detection likelihood during the second checkpoint, see
Figure 5b and c. In contrast, for self detection, faults can
be detected after with 57%, 61% and 63% during the first
checkpoint after fault occurrence and near certain detection
only being achieved after three checkpoints.

When designing our lockstep concept, we considered fluc-
tuations in thread-assignment to the MPSoC’s tiles due to
crashes and reboots of individual tiles critical. Worst-case
benchmark results showed that frequent crashes of tiles could

degrade performance of the system by between 9% and 26%
for high checkpoint frequencies and brief frame times. Based
on our experiments, we find comparably few faults, between
11% and 20%, would inducing crash and lockstep-failures
encouraging. Hence, even assuming that faults would occur in
every single checkpoint period, only few faults would require
a reboot to be resolved. Hence, our lockstep implementation
can provides the necessary degree of voter stability to making
thread synchronization rare, and application reassignments
between tiles an exception.

A major share of injected faults that resulted in no observ-
able effect on our implementation may indeed be masked and
require no measures to be taken, as they may have no impact
on the application state [47]. This is a limitation of our fault
injection toolchain, as faults are also injected into registers and
memory which may be overwritten by subsequent instructions,
or faults that cause self-masking control flow deviations. Such
situations occur e.g., due to faults in branch or comparison
instructions triggering the same iteration of a loop more than
once. They have no practical impact on the application state
while, and also cause only minor timing deviations which do
not impact the work conducted until to the next checkpoint.

IX. COMPARISON TO LITERATURE

To place these results in context with results from other
lockstep concepts, we sought to compare our results to lit-
erature in order to provide a second point of reference for
verification. Unfortunately, few coarse-grain lockstep concepts
have been implemented in practice and tested using means
beyond modeling. At the time of writing, we are aware of
only one publicly released validation report by Dobel et al.
[2] considering practical fault injection with real software and
faults, instead of statistical estimation.

When directly comparing our results to Dobel et al’s
transient fault injection report [2], the share of faults causing
application thread and OS crashes measured with our approach
is increased. For transient faults, this can at least in part



(a) Transient

(b) Permanent

©

(¢) Intermittent

99 99

% I | } —5I |
90 .
I N I I
70 I
I 63 I 0o by Victim
I 60 Iaby System

2
Processed Checkpoints

96 ﬂ

S Q|
~ 90 59 90
2 5
Z fl I ]
% 80 I I 80 72
@)
& 0| & 70 &
[) 61
2 60|, I I 60 ﬁ.

1

2

Processed Checkpoints

2
Processed Checkpoints

3

Fig. 5: Comparison of the fault detection capabilities of an individual tile and the by MPSoC through majority decision. The
full system can also detect a crash of the OS instance running on a tile, and malfunctions in the lockstep logic.

be explained with the different capabilities of Dobel et al.’s
proposed lockstep mechanisms. In their contribution, lock-
step is facilitated through application intrusive function call
hooking. Thereby, they can offer more fine-grained protection
than our approach, but require considerable code overhead
and constrain the concept’s application to one specific OS.
Dobel et al. also consider their fault injection measurements
overly optimistic, as they utilized payload “applications of
little complexity (leading to few potential candidates for fault
injection)” [2].

Their validation and FT concept is constrained to handling
transient faults, while SEFIs or permanent effects are not cov-
ered as these faults were injected into a user-land application
of their approach through a debugger. Dobel et al. also assume
the OS to be guaranteed fault-free, we instead inject faults into
a full OS including POSIX libraries with payload applications.

The measured detection differences are consistent across
all effect categories: we measure a higher amount of masked
faults, a decreased amount of detected state deviations, and an
increased amount of crashes with our approach. In light of this
bias, we consider our results are in line with Dobel et al.’s,
and our lockstep implementation to function as desired.

X. DISCUSSION & LESSONS LEARNED

Fault injection today can be conducted for different reasons,
e.g. for detecting exploits in software, memory leaks, or to
assure code coverage. However, FI to validate the correction
functionality of a fault-detection and lockstep technique in
regards to practical faults is very different from FI for security
evaluation. Applying the same assumptions as for other fault
injection types does not result in proper validation. The choice
of fault injection techniques, target implementations, and the
used payload software all directly influence the obtained re-
sults, and validation using an overly simplistic implementation
or too simple payload software will bias the results obtained.
Comparing our results to Dobel et al.’s underlines that it is
important to conduct fault injection into a realistic concepts
implementation with non-trivial payload software. Today, there

is only one other publication available that aims to validate
a coarse-grain lockstep in practice, and it is of paramount
importance for future work in this field to compare to their
mechanisms to more than just one single implementation.

Our coarse-grain lockstep can detect faults resulting in a
crash or in corruption of the thread state, but currently is
oblivious to silent data corruption in OS data structures and
code. Currently, a tile’s checkpoint handler can only directly
derive a checksum for certain critical kernel data structures.
However, the scope to which this is possible is limited and
the computational cost high. Velasco et al. propose in [48] to
apply erasure coding for critical OS data structures in software.
The proposed concept is similar to code signing, and today
widely used for tamper-proving of embedded devices and e.g.
for secure boot. The availability of this functionality would
allow our lockstep to also detect silent data corruption in rarely
accessed OS structures and device drivers code and data.

When experimenting with different compiler flags, we found
that faults injected in equivalent code segments of differently
compiled binaries could result in different observed effects.
We determined through introspection of the relevant target
binary parts, that the changed behavior was caused due to
specific compiler flags. Especially loop unrolling (GCC’s
—-funroll-loops flag) had a particularly positive effect
when injecting permanent and intermittent faults. In practice
a compiler flattens the program structure, duplicating code
segments instead of executing the same segment multiple
times. Serrano Cases et al. in [49], [50] as well as Lins et
al. in [51] have begun to explore these effects for improving
reliability, but otherwise industry and literature today seem
oblivious on this issue. Designers of software-FT measures
must therefore also consider the impact of a broad variety
of behavior-altering flags and toolchain settings supported by
modern compiler suites, as these have a direct impact on the
utilized FT mechanisms as well as validation.

FIES originally offered no support for the THUMB in-
struction set. However, most OS kernels, many device drivers,



and even standard library functions mix THUMB and ARM
instructions. Therefore, we added support for the THUMB and
THUMB?2 instruction sets to FIES, to assure consistent tracing
and fault injection results. A jump between instruction sets
without compiler-interwork yields an undefined instruction
exception, as the opcode-encoding for ARM and THUMB
instructions differs. This effectively prevents undetected, incor-
rect jumps in ARM/THUMB interwoven code segments. Due
to the observed behavior during fault injection before we had
added THUMB support, we argue instruction set mixing could
be exploited to improve fault detection. Critical code segments
could intentionally be assembled with strong instruction-set
interweaving to assure that an incorrect jump immediately
results in an exception instead of silent data corruption or
control-flow deviations. For C-code, this can be achieved per
function using target attributes and prefixes, or more fine-
grained using preprocessor definitions and pragma. In this
could be facilitated in a similar manner as software diversity
through compiler instrumentation or scripted, automated code
transformation [52].

When designing our coarse grain lockstep measure, we were
aware of two ways of inducing checkpoints: tile internally
through timers and externally through interrupts. If timers are
used, checkpoint initialization for each tile is independent, as
tiles operate independently and do not direct interact with each
other. Interrupt induced checkpoints are however centrally
triggered by the off-chip supervisor, creating a potential single
point of failure. At design time we therefore considered timer
driven lockstep to be a better choice under the viewpoint of
fault potential than an interrupt driven approach. However, our
fault injection campaign showed that interrupt induced check-
points can have significant advantages. The timer-handling
related logic is considerably more complex than the logic
necessary for interrupt handling, and thus also more prone to
faults. While a timer driven lockstep implementation requires
interaction with several different subsystems and libraries of
the underlying OS, the same RTOS implementation using
interrupt-triggering can be very simple and thus more resilient.

XI. CONCLUSIONS

In this paper, we presented an automated fault injection
toolchain, and validation results of a software-implemented
fault tolerance (FT) concept. Few software-implemented FT
concepts proposed today have been validated, and therefore
this contribution also serves as practical guide for fellow
research, to make proper testing of fault tolerance techniques
a less challenging and time consuming task. Today, a broad
variety of fault injection techniques and tools are available
for finding bugs or security vulnerabilities, to assure log-
ical correctness of a concept, or to validate FT concepts.
Validation of software-implemented FT concepts requires a
realistic implementation, and in-depth knowledge on the tested
mechanisms and tools. Hence, not all tools and techniques are
suitable for all purposes, and validating FT concepts in the
same way as fault injection is conducted for, e.g., software
security purposes, does not work.

Proper validation thus is non-trivial, is time consuming and
requires considerable research. In consequence, developers
of coarse-grain lockstep concepts often forego the practical
concept implementation and validation, resorting instead to
modeling. Practical validation, however, is seen as a prereq-
uisite to even consider a concept for application in mission
critical systems, which then can be subjected to system-level
validation and prototype development. This has resulted in a
large gap between academic theory and practical application,
with researchers proposing powerful concepts but industrial
users disregarding them out of hand due to a perceived lack
of maturity and time pressure due deliver results.

The lockstep implementation validated in this publication
and is the key element of a hardware-software hybrid system
architecture which combines different FT measures across the
embedded stack within an FPGA-based MPSoC design. Vali-
dation of such concepts has to be conducted differently than
for traditional hardware-voting based systems, and requires
systematic fault injection. Hence, we developed an automated
fault injection toolchain, which enables systematical testing
using system emulation to validate the complete FDIR cycle.
To place our results into context, we compared them to
literature and discuss lessons learned and knowledge obtained
throughout our fault injection campaign beyond analyzing raw
numbers. The overall results of our fault injection campaign
are positive and the thread-level coarse grain lockstep’s per-
formance meets our requirements.

Our architecture now has to undergo radiation testing using
a hardware prototype for full system-level testing. System-
atic validation of our coarse-grain lockstep implementation
is therefore an intermediate step. As the other parts of our
architecture have been verified separately in related work, our
test campaign represent the final step in validating our cur-
rent development-board based proof-of-concept. The positive
outcome of our test enables us to now produce a prototype
OBC implementation, which then allows us to then subject it
to laser fault injection, radiation testing, and trials on-orbit.

REFERENCES

[1] M. Langer and J. Bouwmeester, “Reliability of cubesats-statistical data,
developers’ beliefs and the way forward,” in AIAA SmallSat, 2016.

[2] B. Dobel, “Operating system support for redundant multithreading,”
Ph.D. dissertation, Dresden University, 2014.

[3] M. Marinella and H. Barnaby, “Total ionizing dose and displacement
damage effects in embedded memory technologies,” Sandia National
Laboratories, Tech. Rep., 2013.

[4] J. R. Schwank, M. R. Shaneyfelt, and P. E. Dodd, “Radiation hardness
assurance testing of microelectronic devices and integrated circuits:
Radiation environments, physical mechanisms, and foundations for
hardness assurance,” IEEE Transactions on Nuclear Science, vol. 60,
no. 3, 2013.

[5] S. Bourdarie and M. Xapsos, “The Near-Earth Space Radiation Envi-
ronment,” IEEE Transactions on Nuclear Science, 2008.

[6] L. A. Tambara, F. L. Kastensmidt, N. H. Medina, N. Added, V. A.
Aguiar, F. Aguirre, E. L. Macchione, and M. A. Silveira, “Heavy ions
induced single event upsets testing of the 28 nm xilinx zyng-7000 all
programmable soc,” in Radiation Effects Data Workshop. 1EEE, 2015.

[71 M. D. Berg, K. A. LaBel, and J. Pellish, “Single event effects in FPGA
devices 2014-2015,” in NASA NEPP/ETW, 2015.



[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

M. Kochiyama, T. Sega, K. Hara, Y. Arai, T. Miyoshi, Y. Ikegami, S. Ter-
ada, Y. Unno, K. Fukuda, and M. Okihara, ‘“Radiation effects in silicon-
on-insulator transistors with back-gate control method fabricated with
OKI semiconductor 0.20 pm FD-SOI technology,” Nuclear Instruments
and Methods in Physics Research, Elsevier, vol. 636, no. 1, 2011.

F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures
for Aerospace Applications: Soft Errors and Fault-Tolerant Design.
Springer, 2016.

R. Carlson, K. Hand, and E. Ozer, “On the use of system-on-chip tech-
nology in next-generation instruments avionics for space exploration,”
in IEEE VLSI-SoC, revised paper. Springer, 2016.

M. Wirthlin, “High-reliability FPGA-based systems: space, high-energy
physics, and beyond,” Proceedings of the IEEE, vol. 103, no. 3, 2015.
K. Reick, P. N. Sanda, S. Swaney, J. W. Kellington, M. Mack, M. Floyd,
and D. Henderson, “Fault-tolerant design of the IBM Power6 micropro-
cessor,” IEEE micro, vol. 28, no. 2, 2008.

M. Hijorth, M. Aberg, N.-J. Wessman, J. Andersson, R. Chevallier,
R. Forsyth, R. Weigand, and L. Fossati, “GR740: Rad-hard quad-core
LEON4FT system-on-chip,” in Eurospace DAta Systems in Aerospace
(DASIA), 2015.

A. S. Jackson, “Implementation of the configurable fault tolerant system
experiment on NPSAT-1,” Ph.D. dissertation, Naval Postgraduate School
Monterey, 2016.

X. Iturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step ARM
Cortex-R5 processor for safety-critical and ultra-reliable applications,”
in IEEE DSN, 2016.

R. DeCoursey, R. Melton, and R. R. Estes, “Non-radiation hardened
microprocessors in space-based remote sensing systems,” in Sensors,
Systems, and Next-Generation Satellites X. International Society for
Optics and Photonics, 2006.

D. S. Lee, G. R. Allen, G. Swift, M. Cannon, M. Wirthlin, J. S. George,
R. Koga, and K. Huey, “Single-event characterization of the 20 nm
Xilinx Kintex Ultrascale field-programmable gate array under heavy ion
irradiation,” in Radiation Effects Data Workshop (REDW). IEEE, 2015.
T. Lange, M. Glorieux, A. Evans, A.-D. In, T. Bonnoit, A. Dan,
C. Boatella Polo, C. Urbina Ortega, V. Ferlet-Cavrois, M. Tali, and
R. Garcia Alia, “Single event characterization of a Xilinx UltraScale+
MP-SoC FPGA,” in SpacE FPGA Users Workshop, 2018, preliminary.
A. Holler, T. Rauter, J. Iber, G. F. H. Macher, and C. J. Kreiner,
“Software-based fault recovery via adaptive diversity for COTS multi-
core processors,” 2015, arXiv:1511.03528.

P. Munk, M. S. Alhakeem, R. Lisicki, H. Parzyjegla, J. Richling, and
H.-U. HeiB, “Toward a fault-tolerance framework for COTS many-core
systems,” in IEEE EDCC, 2015.

U. Kretzschmar, J. Gomez-Cornejo, A. Astarloa, U. Bidarte, and
J. Del Ser, “Synchronization of faulty processors in coarse-grained TMR
protected partially reconfigurable FPGA designs,” Elsevier Reliability
Engineering & System Safety, 2016.

R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Computing Surveys, 2016.
B. Sangchoolie, R. Johansson, and J. Karlsson, “Light-weight techniques
for improving the controllability and efficiency of isa-level fault injection
tools,” in PRDC. 1EEE, 2017.

D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experimental
analysis of binary-level software fault injection in complex software,”
in EDCC. IEEE, 2012.

R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On fault
representativeness of software fault injection,” IEEE Transactions on
Software Engineering, vol. 39, 2013.

S. Malik and F. Huet, “Adaptive fault tolerance in real time cloud
computing,” in IEEE World Congress on Services, 2011.

K. Smiri, S. Bekri, and H. Smei, “Fault-tolerant in embedded systems
(MPSoC): Performance estimation and dynamic migration tasks,” in
IEEE IDT, 2016.

Z. Al-bayati, J. Caplan, B. H. Meyer, and H. Zeng, “A four-mode model
for efficient fault-tolerant mixed-criticality systems,” in IEEE DATE,
2016.

L. Jiang, R. Ye, and Q. Xu, “Yield enhancement for 3d-stacked memory
by redundancy sharing across dies,” in /CCAD. IEEE, 2010.

L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in DATE.
EDAA, 2010.

[32]

(33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[Anonymous 2017]

N. T. H. Nguyen, “Repairing FPGA configuration memory errors using
dynamic partial reconfiguration,” Ph.D. dissertation, The University of
New South Wales, 2017.

D. Cozzi, “Run-time reconfigurable, fault-tolerant FPGA systems for
space applications,” Ph.D. dissertation, 2016.

D. Petrick, D. Espinosa, R. Ripley, G. Crum, A. Geist, and T. Flatley,
“Adapting the reconfigurable spacecube processing system for multiple
mission applications,” in IEEE Aerospace Conference. 1EEE, 2014.
H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann, and
O. Spinczyk, “FAIL*: An open and versatile fault-injection framework
for the assessment of software-implemented hardware fault tolerance,”
in EDCC. IEEE, 2015.

K. Suresh, C. W. Selvidge, S. Gupta, and A. Jain, “Debug environment
for a multi user hardware assisted verification system,” Feb. 1 2018, US
Patent App. 15/646,003.

J. L. Nunes, T. Pecserke, J. C. Cunha, and M. Zenha-Rela, “Fired —
fault injector for reconfigurable embedded devices,” in PRDC. IEEE,
2015.

M. Alderighi, F. Casini, S. D’ Angelo, M. Mancini, S. Pastore, and G. R.
Sechi, “Evaluation of single event upset mitigation schemes for sram
based fpgas using the flipper fault injection platform,” in DFT. IEEE,
2007.

'W. Mansour and R. Velazco, “An automated seu fault-injection method
and tool for hdl-based designs,” IEEE Transactions on Nuclear Science,
2013.

D. Cotroneo and R. Natella, “Software fault injection for software
certification,” IEEE Security & Privacy, 2013.

P. Lisherness and K.-T. T. Cheng, “Scemit: A systemc error and mutation
injection tool,” in DAC. ACM, 2010.

M. Kooli, P. Benoit, G. Di Natale, L. Torres, and V. Sieh, “Fault injection
tools based on virtual machines,” in Reconfigurable and Communication-
Centric Systems-on-Chip (ReCoSoC), 2014 9th International Symposium
on. IEEE, 2014.

A. Holler, G. Schonfelder, N. Kajtazovic, T. Rauter, and C. Kreiner,
“FIES: a fault injection framework for the evaluation of self-tests for
COTS-based safety-critical systems,” in MTV. IEEE, 2014.

J. Isaza-Gonzdlez, A. Serrano-Cases, F. Restrepo-Calle, S. Cuenca-
Asensi, and A. Maninez—Alvarez, “Dependability evaluation of cots
microprocessors via on-chip debugging facilities,” in JEEE LATS, 2016.
G. Rieke et al., “The mid-infrared instrument for the James Webb Space
Telescope introduction,” Astronomical Society of the Pacific, 2015.

R. Natella, S. Winter, D. Cotroneo, and N. Suri, “Analyzing the
effects of bugs on software interfaces,” IEEE Transactions on Software
Engineering, 2018.

R. L. Pease, A. H. Johnston, and J. L. Azarewicz, “Radiation testing of
semiconductor devices for space electronics,” Proceedings of the IEEE,
vol. 76, no. 11, pp. 1510-1526, 1988.

X. Li and D. Yeung, “Application-level correctness and its impact on
fault tolerance,” in HPCA. IEEE, 2007.

A. Velasco, B. Montruccio, and M. Rebaudengo, “A hardening approach
for the scheduler’s kernel data structures,” in CompSpace at ARCS2017,
2017.

A. Serrano-Cases, Y. Morilla, P. Martin-Holgado, S. Cuenca-Asensi, and
A. Martinez-Alvarez, “Automatic compiler-guided reliability improve-
ment of embedded processors under proton irradiation,” in RADECS.
IEEE, 2018.

A. Serrano-Cases, J. Isaza-Gonzilez, S. Cuenca-Asensi, and
A. Martinez-Alvarez, “On the influence of compiler optimizations
in the fault tolerance of embedded systems,” in JOLTS. IEEE, 2016.
F. M. Lins, L. A. Tambara, F. L. Kastensmidt, and P. Rech, “Register
file criticality and compiler optimization effects on embedded micropro-
cessor reliability,” IEEE Transactions on Nuclear Science, 2017.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy
(SP). IEEE, 2014, pp. 276-291.

Closely related publication describing a multistage

fault tolerance architecture and MPSoC design for Spacecraft. Published,
but details omitted as any citation to this work would break double-blind
reviewing, and we are currently (unfortunately) the only ones in this field
publishing papers on the results to the public. IEEE, 2017

[Anonymous 2018a]

In Press. Closely related publication describing the

dynamic fault tolerance and resource pooling through software measures.
Details omitted for double-blind reviewing. IEEE, 2018



[Anonymous 2018b] In Press. Closely related publication describing an
FPGA-based MPSoC implementation for satellite computing. Details omitted
for double-blind reviewing. IEEE, 2018



