
Bandwidth and Latency Sensitivity of Parallel Applications in a
Wide-Area System

Aske Plaat Henri Bal Rutger Hofman

Department of Mathematics and Computer Science, Vrije Universiteit
Amsterdam, The Netherlands

This paper has been submitted for publication

March 16, 1998

Abstract

As parallel architectures become larger, interconnects be-
come increasingly hierarchical, resulting in an increasing
gap in memory access times. Exactly how application per-
formance will be affected by this gap is unclear. In this
paper we study the effect of a gap of orders of magnitude
in bandwidth and latency. Our system consists of local
Myrinet clusters of Pentium Pros connected by dedicated
wide-area ATM links. We use applications with a medium
to high level of communication, that have been optimized
for such a two-level system. The results show a surpris-
ingly large tolerance to gaps in bandwidth and latency.
Four out of six applications achieve adequate speedup for
a wide-area latency up to 30–100 millisecond, implying
the feasibility of cluster computing up to a distance of
10,000 miles.

1 Introduction

As parallel computer systems become larger, their in-
terconnects will become more hierarchical, resulting in
nonuniform latencies and bandwidths. This trend is al-
ready visible in NUMA machines and clusters of SMPs,
where local memory accesses are typically a factor of 2–
10 faster than remote accesses [28, 29]. The performance
gap will be much larger in a meta-computer or a com-

putational grid, which are built by interconnecting multi-
ple parallel computers through wide-area networks. In a
meta-computer, the wide-area interconnect can be several
orders of magnitude slower than the local network. Given
the large interest in meta-computing (with projects such as
Legion [20], Globus [18], and others [1, 3, 16, 21, 14, 33,
35, 36, 42, 47]) application performance becomes an im-
portant topic. This paper studies the following questions:

Can adequate performance be achieved on a meta-
computer for non-trivial parallel applications?

What is the impact of a large gap in bandwidth and
latency between the fast and slow interconnect?

Performance is studied with several nontrivial parallel ap-
plications. We have built an experimental testbed using
64 Pentium Pros, a high-speed network (Myrinet) and an
ATM network. The testbed can be configured as multi-
ple Myrinet-clusters that are interconnected by ATM links
with different latencies and bandwidths. In this way, we
can emulate a variety of meta-computer configurations,
where the gap between the fast local network (Myrinet)
and the wide-area network (ATM) varies from 0 to 3 orders
of magnitude. The measurements have been validated us-
ing a real wide-area system.

The goal of this study is to gain insight in applica-
tion performance under a wide range of gaps in laten-
cies and bandwidths. Most meta-computing projects cur-
rently use embarrassingly parallel (job-level) applications

1

 0

 25

 50

 75

100

 0.0 0.1 1.0 10.0S
pe

ed
up

 r
el

at
iv

e
to

 a
n

A
ll

M
yr

in
et

 C
lu

st
er

Bandwidth per link in Mbyte/s

Average, 32 processors, 4 clusters

0.1 ms
1 ms

30 ms
100 ms

Figure 1: Mean Four-Cluster Performance

that barely communicate. Our study, on the other hand,
targets a more challenging set of applications, including
medium and fine-grained programs with diverse commu-
nication patterns. Furthermore, most existing applications
are written for a particular architecture, such as shared or
distributed memory. In order to eliminate this bias, and
come closer to the inherent limit on speedup of an appli-
cation, we have carefully hand-optimized each application
to take the gap between WAN and LAN speeds into ac-
count. Most optimizations are adaptations of well-known
ideas to a multi-cluster environment (e.g., cluster caches,
message combining, latency hiding). The performance of
these optimized programs is discussed and analyzed for
bandwidths ranging from 10 to 0.03 MByte/s, and for one-
way latencies ranging from 0.1 to 300 milliseconds. For
comparison, at application-level, Myrinet has a bandwidth
of 50 MByte/s and a one-way latency of 18 s in our sys-
tem.

We find that for surprisingly large bandwidth and la-
tency gaps good speedup can be achieved. As a preview,
Figure 1 shows the impact of wide area latency and band-
width, compared to performance of an all-Myrinet clus-
ter. The figure shows the geometric mean speedup of
four applications, Barnes-Hut, Water, TSP, and ASP, for
4 clusters of 8 processors, as a percentage of the speedup
on a single 32-node Myrinet cluster. For bandwidths as
low as 0.1–0.3 MByte/s, and one-way latencies as high as
30–100 ms, multi-cluster speedups of 40–60% of single-
cluster speedups can be achieved. This corresponds to
a bandwidth gap of around 300, and a latency gap of
around 3000. We conclude that in the optimized applica-
tions (a) speedup is insensitive to a gap in bandwidth be-
tween the local and wide-area network, and (b) speedup is

even less sensitive to a gap in latency. On an efficiently
routed fiber optics network, 100 ms corresponds to more
than 10,000 miles—close to half the circumference of the
earth. One implication is that the set of applications that
can be run on future large scale, computational-grid like,
architectures is larger than assumed so far, and includes
medium grain applications.

The rest of the paper is concerned with finding the rea-
son for such a good speedup, and its sensitivity to band-
width and latency gaps. Section 2 discusses related work.
Sections 3 and 4 describe in detail the system and the ap-
plications that have been used in this experiment. Sec-
tion 5 describes the results of our measurements, and an-
alyzes them. Section 6 concludes the paper and discusses
implications of this work.

2 Related Work

Other performance evaluations have used either single-tier
systems, or multi-tier systems with a qualitatively smaller
performance difference. The Splash-2 paper [46] charac-
terizes applications using a simulation of a cache coherent
NUMA machine. In NUMAs like the SGI Origin 2000
access times differ typically by a factor of three [26]. In
clusters of SMPs differences are up to one order of mag-
nitude. Many groups are extending their software DSM
to cover clusters of SMPs. Studies found that achieving
high performance may necessitate application rewriting,
and that performance can be quite sensitive to variations
in the configuration of the machine (such as the number
of processors per network interface) [9, 22, 29, 38, 41].
This agrees with our findings. Wide-area systems pro-
vide the most challenging environment in terms of latency
and bandwidth gaps, but also of fault tolerance and het-
erogeneity. Meta-computing research focuses on the lat-
ter two issues [18, 20]. Because of the high (and non-
uniform) latencies, applications are typically embarrass-
ingly parallel. The only other work that we know of that
tried medium grain applications on a meta-computer is [6].
They used a set of smaller applications, and did not per-
form a sensitivity analysis of bandwidth and latency gaps.

Bandwidth and latency sensitivity have been studied in
[12, 13, 30]. They focused on sensitivity of communi-
cation mechanisms to absolute, single-level, bandwidth
and latency, while we target the difference in a multi-tier

2

system. Related issues are also studied, for example, by
[31, 32, 48]. Again, the basic architecture assumptions are
based on traditional NUMA access latencies.

This work builds on other research in applications,
systems and networking. Compiler research has shown
promising results in locality optimizations (see for exam-
ple [2]), but does not address multi-tier locality. An excel-
lent introduction to algorithms for different physical net-
working topologies is [27]. Scheduling in heterogeneous
networks is discussed in [45]. The multi-level optimiza-
tions that we perform build on work in single-level com-
munication patterns that are also used in, for example,
[7, 25]. Studies devoted to restructuring applications and
communication patterns are [22, 40]. High performance
computing recognizes the importance of high level com-
munication patterns. See, for example, BSP [43] and MPI
[17]. In ccNUMAs, communication is multi-level by de-
fault [28, 39], in contrast to explicit use in our multi-tier
optimizations.

3 Experimental Setup

This section describes the system with which we perform
our experiments.

We use an experimental cluster-of-clusters system that
consists of four local clusters of 200 MHz/64 MByte
Pentium Pro machines connected by Myrinet [11], using
LANai 4.1 interfaces. The peak bandwidth of Myrinet
is 2.4 Gbit/s, and one-way host-to-host latency is at least
5 s. In our system, application-level bandwidth is
50 MByte/s, one-way latency is 18 s. The clusters are
located at four universities in the Netherlands, which are
at most 50 miles apart (it is a small country). They
are connected via dedicated gateway machines over ATM
by 6 Mbit/s Permanent Virtual Circuits (application-level
bandwidth is 0.55 MByte/s over TCP). The round trip la-
tency is 2.5–3 ms between the universities that are the fur-
thest apart, which corresponds to a third of the speed of
light through fiber. Three sites have 24 compute nodes
each, one site has 64. The wide-area network is fully con-
nected, the local area networks are hypercubes. The oper-
ating system is BSD/OS version 3 from BSDI.

There are three distinctive features about the system
that make it an interesting research vehicle. First, it
has a high speed local area network, with a throughput

that is comparable to modern SMP and hardware DSM
speeds, and a latency that is one order of magnitude worse
than typical SMP speeds. Second, the wide-area network
has predictable performance, making it well suited for
benchmarks, unlike the traditional Internet. The wide-area
bandwidth is higher than what most current Internet links
offer, but future networks will provide even higher, Gi-
gabit/s, bandwidths. Third, there is a large difference in
bandwidth and latency between the layers of the intercon-
nect, providing the basis for this research. Another im-
portant issue is that the system is homogeneous, making it
well suited for isolating individual communication aspects
(if unsuited for modeling “real life” behavior of heteroge-
neous meta-computing systems).

The goal of this paper is to gain insight into the effect
of the interconnect on application behavior using realis-
tic hard and software. The wide-area ATM links have a
fixed latency and bandwidth. To allow for experimenta-
tion with different speeds, 8 local ATM links have been
installed in the 64 processor cluster, using the same hard-
ware as in the real wide-area system (ForeRunner PCA-
200E ATM boards). The latency and bandwidth of the
ATM links van be varied by delay loops in the cluster gate-
way machine. Except for the local ATM links this experi-
mentation system is identical to the real wide-area system;
the same binaries are run in both setups, and except for the
delay loops, there are no simulated parts. When the de-
lay loops are set to the wide area latency and bandwidth,
run times differ on average by 3.6% for our applications.
All measurements presented in this paper have been per-
formed on the dedicated experimentation system using the
local ATM links.

The system can be programmed through different li-
braries and languages, from message passing libraries
such as MPI and Panda [4] to parallel languages such as
Orca [4] and CRL [23]. The Panda messaging layer has
been adapted to support communication over both Myrinet
(using Illinois Fast Messages [34]) and ATM (using BSD’s
TCP/IP). Panda hides the multiplexing/de-multiplexing
details, allowing the programmer to communicate locally
or remotely with the same primitives; the logical destina-
tion address determines whether communication will go to
a remote cluster. The system exposes the wide-area/local
area topology explicitly. On top of the messaging layer the
Orca system runs, an efficient, entry consistent [8], par-
allel language that has been extended to allow inquiries

3

Program Speedup Speedup Total Traffic Runtime
32 p. 8 p. 32 p. MByte/s 32 p, in sec

Water 31.2 7.8 3.8 9.1
Barnes 27.2 7.1 17.8 1.8
TSP 31.1 7.9 0.48 5.9
ASP 31.3 7.8 0.75 6.0
Awari 7.8 4.6 4.1 2.3
FFT 26.7 5.3 128.0 0.3

Table 1: Single Cluster Speedup on 8 and 32 processors

about the cluster topology at runtime. Five of our six ap-
plications are written in Orca, for ease of use of the wide-
area system, and for ease of debugging (Orca is type-safe).
For most programs, serial performance is comparable to
serial C performance. Barnes-Hut is written in C with calls
to the Panda wide-area/local area messaging layer.

4 Applications

This section provides a summary of the applications that
are run, the optimizations that were applied to these ap-
plications, and a characterization of their communication
behavior on a single Myrinet cluster. The applications
have diverse communication patterns. More details about
the applications can be found elsewhere [4, 5, 46]. Ta-
ble 1 summarizes the behavior of the applications on a sin-
gle Myrinet cluster. For all our applications larger prob-
lems give better speedups. We use relatively small prob-
lem sizes in order to get medium grain communication, so
that the speedup measurements show interesting behavior.
Medium grain is defined here as a total communication
volume of at least 100 KByte/s on a single level cluster of
32 processors. All applications and problem sizes run with
a good efficiency on a single Myrinet cluster. Because of
the good performance of the other applications, we also in-
cluded FFT in the test set. This application has high com-
munication requirements that could not be optimized for
the multi-cluster, providing a way to explore the limits of
our parameter space.

Water The Water program is based on the “n-squared”
Water application from the Splash suite [46], rewritten for
distributed memory [37]. Related distributed memory op-
timizations are described by [22]. We report on experi-
ments with a medium sized input set of 1500 particles. The
serial speed of the distributed memory program is about
ten percent better than the original Splash code.

This version suffers a severe performance degradation
on multiple clusters. A form of application-level cluster
caching is used for better performance. The problem is the
exchange of molecule data. With the original program, the
data for a given molecule are transferred many times over
the same WAN link, since multiple processors in a cluster
need the same data item. In the optimized program, for ev-
ery processor P in a remote cluster, one of the processors
in the local cluster is designated as the local coordinator
for P. If a process needs the molecule data of processor P,
it does an intra-cluster RPC to its local coordinator, which
gets the data over the WAN, forwards it to the requester,
and caches it locally. When other processors in the clus-
ter ask for the same data, they are sent the cached copy.
A similar optimization is used at the end of the iteration.
All updates are first sent to the local coordinator, which
does a reduction operation (addition) on the data and trans-
fers only the result over the WAN. Table 2 lists the perfor-
mance impact of the optimization on a 4-cluster system.

Barnes-Hut Barnes-Hut is an O n logn N-body sim-
ulation. The version of the Splash-2 suite has a fine co-
herency unit which causes inefficiencies on coarse grain
hardware [4, 22]. In this experiment a new distributed
memory code by Blackston and Suel [10] has been used.
Instead of finding out at runtime which nodes and bod-
ies are needed to compute an interaction, this code pre-
computes where nodes and bodies are needed, and sends
them in one collective communication phase at the start of
each iteration. Stalls are thus eliminated from the com-
putation phase [10]. Related improvements for Barnes-
Hut codes for distributed memory have been reported by
[19, 22, 44]. Using the same input problem, the serial pro-
gram runs slightly faster than the Splash code (while still
computing the exact same answer). We used a moderate
sized input set of 64K particles. The program is written
for the BSP communication library [43] in C, with calls
to the wide-area/local area messaging layer. It is further
optimized with message combining at the BSP and clus-
ter level and overlaps communication with computation to
further reduce the impact of wide-area communication.

ASP The All-pairs Shortest Path program is a parallel
version of the classic Floyd-Warshall algorithm [15]. It
uses a relatively small replicated distance matrix of 1500
by 1500 entries. Each processor iterates over rows in the
distance matrix, and broadcasts result rows as they are
computed. These have to be received in-order by the other

4

processors before they can compute their rows. A desig-
nated node issues sequence numbers to achieve this order-
ing. On the wide-area cluster an optimization is performed
by taking advantage of the predictable nature of the broad-
casts: since the algorithm computes the rows in the matrix
in sequence, all sends first originate from the processors
in a single cluster. The optimization is to migrate the se-
quencer to a processor in the cluster of the sending pro-
cessor. In this way, the sequencer only migrates 3 times
with 4 clusters, and senders will get a sequence number
quickly, allowing them to continue computing, while in
the mean time their rows will get delivered to the other
clusters asynchronously.

TSP The Traveling Salesperson Problem computes the
length of the shortest path along n cities, by enumerat-
ing the number of possible paths. The program, originally
written in Orca, uses a centralized job queue which is filled
with partial paths, from which workers get jobs. A small
16 city problem is used as input; jobs consist of a partial
tour of 6 cities, creating small jobs and a fine communica-
tion grain, as the high communication volume in Table 1
shows. Deterministic runs are ensured by using a fixed
cutoff bound [4].

Even though the program communicates infrequently
on a single-tier cluster, its centralized job queue causes too
much wide-area traffic on a multi-tier cluster to achieve
good performance. The wide-area optimization is to repli-
cate the queue, by giving each cluster its own queue, and to
perform work stealing among the cluster queues to achieve
a good load balance. The work stealing mechanism com-
municates infrequently. Wide-area traffic is solely influ-
enced by the number of clusters, not by the number of pro-
cessors per cluster.

Awari Awari, or more precisely retrograde analysis, is
a symbolic application that computes end game databases,
of importance for programs playing games such as check-
ers. It is based on backwards reasoning and bottom-up
search. The program, written in Orca, sends many small,
asynchronous, packets of work to other processors [5].
These messages are combined into larger messages for
performance reasons. Here we compute a relatively small
9 stone database for the African board game Awari, whose
speedup on the single cluster is mediocre. The communi-
cation pattern of Awari is random asynchronous point to
point messages. The optimization uses message combin-
ing at the cluster level, with cross cluster messages first

being assembled at a designated local processor, then sent
in batch over the wide-area link, and subsequently being
distributed by a designated processor at the other clus-
ter to the final destinations. Here wide-area communica-
tion is structurally the same as the original pattern, though
messages are larger and less frequent. Messages represent
work for the other processors. The computation proceeds
in phases, and increasing message combining increases
load imbalance, since processors are starved of work at the
end of a phase.

FFT The FFT application computes a one dimensional
Fast Fourier transform, using the transpose algorithm [24].
The program is a rewrite of the Splash-2 code for dis-
tributed memory, and achieves an excellent speedup on a
single Myrinet cluster. The communication part of this
program is very simple: it performs three transposes, in-
terspersed by parallel FFTs. No multi-tier optimization for
the transposes has been found. 1D FFT is well known for
its high communication volume. It is especially ill-suited
for a system with long latencies and low bandwidths, such
as a wide-area network. The purpose of this work, how-
ever, is to gain insight in the limits of multi-layer wide-
area systems, and 1D FFT fits this purpose. Due to Orca’s
pointer-less array handling the serial code runs about 80
percent more slowly than the original C code. (Speedup is
not inflated, however, since a C version of the same rewrit-
ten algorithm using the CRL DSM achieved the same
single-cluster speedup.) The problem size is 220 complex
floating point numbers, the largest that could fit in mem-
ory, which still takes only a few seconds to run.

Despite the small input problems, all applications ex-
cept Awari perform well on a single Myrinet cluster (Ta-
ble 1). Table 2 compares speedup (relative to a single pro-
cessor) of the optimized and the unoptimized versions, for
a bandwidth of 1 Mbyte/s, a wide-area latency of 3 ms, and
4 clusters of 8 processors each.

For the Barnes-Hut application, the “original” version is
the Blackston and Suel code run without our own latency
hiding optimizations (e.g., message combining at the BSP
and cluster level).

5 Results

The goal of this work is charting the sensitivity of appli-
cation performance to gaps in bandwidth and latency—

5

Program Optimized Original
Water 27.2 0.2
Barnes-Hut 19.3 0.12
TSP 20.0 5.95
ASP 24.0 6.37
Awari 1.57 0.94
FFT 1.16

Table 2: Optimized versus Unoptimized Speedup

the effort invested in restructuring the applications is but
a means to achieve this goal. This section discusses the
performance measurements.

The speedup of a multi-cluster machine is bounded
from above by the speedup of a single-cluster machine
with the same number of processors, and the same ex-
ecution schedule. (To put this differently, when some
of the fast Myrinet links of the interconnect are changed
into slow wide-area ATM links, our parallel applications
will run more slowly.) For multi-cluster runs the wide-
area bandwidth and latency are limited by our local OC-3
ATM link of 155 Mbit/s—at application level, over TCP,
this comes to about 10 MByte/s and 0.1 ms, substantially
worse than the Myrinet speeds of the corresponding sin-
gle cluster setup. Speedups are shown relative to the all-
Myrinet upper bound.

5.1 Relative Speedup

Figure 2 shows speedup graphs for the six applications,
for 4 clusters of 8 processors. Speedup is shown relative
to the speedup of the 32 processor all-Myrinet cluster, for
different wide-area bandwidths and latencies. It is com-
puted as TL

TM
where TL is the run time of the single clus-

ter and TM is the run time of the multi-cluster. The wide-
area ATM links run TCP, whose occasional retransmis-
sions cause small perturbations in run time for bursty com-
munication in Barnes-Hut and FFT (as it does in the real
wide area system). Startup phases are omitted from time
and traffic measurements. Myrinet bandwidth is constant
at 50 MByte/s, latency is constant at 18 s. ATM band-
width is shown along the x-axis for 10, 3, 1, 0.3, 0.1, and
0.03 MByte/s. ATM latency is measured at 0.1, 0.3, 1, 3,
10, 30, 100, and 300 ms. To avoid clutter in the graphs,
some latency lines are omitted. All latencies are one-way.

The general shape of the graphs is as can be expected:
higher bandwidths and lower latencies improve perfor-
mance, and multi-cluster (ATM) performance is lower

than single-cluster Myrinet performance. For high band-
width/low latency combinations performance for four ap-
plications, Barnes-Hut, Water, ASP, and TSP, is very good.
For wide-area latencies of 0.1–3 ms and bandwidths of
0.3–10 MByte/s multi-cluster speedup is well above 50%
of single-cluster speedup. For bandwidths better than 1
MByte/s speedup reaches 60% for 30 ms latency, and
about 40% for 100 ms latency. (In ASP, communica-
tion can be overlapped with computation. Performance
drops sharply at 1 MByte/s, since at that point the net-
work becomes saturated.) For extreme bandwidths and la-
tencies (30 KByte/s bandwidth or 300 ms latency) rela-
tive speedup drops below 25%, which corresponds to the
performance of a single Myrinet cluster of 8 processors.
Thus, for these bandwidths and latencies, using extra clus-
ters actually slows down the computation.

Performance for Awari and FFT is significantly lower.
For Awari 40% speedup is achieved for bandwidths bet-
ter than 1.0 MByte/s and latencies better than 0.3 ms. For
FFT the 25% point is not even reached. FFT at last shows
the performance that one would expect when some of the
links are slowed down by an order of magnitude. The rea-
son for the bad performance of Awari and FFT is that these
applications have a higher level of wide-area communica-
tion. In Awari the multi-level optimizations are less effec-
tive because too much cluster combining introduces load
imbalance; in FFT no optimization has been implemented.

To summarize, for Barnes-Hut, Water, ASP, and TSP,
reasonable speedups start at a bandwidth of 0.1–0.3
MByte/s and a latency of 30–100 ms. Given a Myrinet
bandwidth of 50 MByte/s and a latency of 18 s, this
corresponds to a local area/wide-area performance gap of
167–500 for bandwidth and 1667–5556 for latency, de-
pending on whether 40% or 60% of single-cluster speedup
is desired. Thus, the applications allow a significantly
larger gap for latency than for bandwidth.

In addition to the sensitivity to bandwidth and latency
gaps, we have also performed experiments with different
cluster structures. (This is a straightforward effect, and
graphs are omitted for reasons of space.) Performance in-
creases as there are more, smaller, clusters: a setup of 8
clusters of 4 processors outperforms 4 clusters of 8 proces-
sors. This may seem counter-intuitive, since replacing fast
links with slow links ought to reduce performance. How-
ever, performance is limited by wide-area bandwidth, and
our wide-area network is fully connected: in the multi-

6

 0

 25

 50

 75

100

 0.0 0.1 1.0 10.0S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 a

n
 A

ll
 M

y
ri
n
e
t
C

lu
s
te

r

Bandwidth per link in Mbyte/s

BARNES-HUT, 32 processors, 4 clusters

0.1 ms
1 ms

10 ms
30 ms

100 ms
300 ms

 0

 25

 50

 75

100

 0.0 0.1 1.0 10.0S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 a

n
 A

ll
 M

y
ri
n
e
t
C

lu
s
te

r

Bandwidth per link in Mbyte/s

WATER, 32 processors, 4 clusters

0.1 ms
1 ms

10 ms
30 ms

100 ms
300 ms

 0

 25

 50

 75

100

 0.0 0.1 1.0 10.0S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 a

n
 A

ll
 M

y
ri
n
e
t
C

lu
s
te

r

Bandwidth per link in Mbyte/s

ASP, 32 processors, 4 clusters

0.1 ms
1 ms

10 ms
30 ms

100 ms
300 ms

 0

 25

 50

 75

100

 0.0 0.1 1.0 10.0S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 a

n
 A

ll
 M

y
ri
n
e
t
C

lu
s
te

r

Bandwidth per link in Mbyte/s

TSP, 32 processors, 4 clusters

0.1 ms
1 ms

10 ms
30 ms

100 ms
300 ms

 0

 25

 50

 75

100

 0.0 0.1 1.0 10.0S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 a

n
 A

ll
 M

y
ri
n
e
t
C

lu
s
te

r

Bandwidth per link in Mbyte/s

AWARI, 32 processors, 4 clusters

0.1 ms
0.3 ms

1 ms
10 ms
30 ms

100 ms

 0

 25

 50

 75

100

 0.0 0.1 1.0 10.0S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 a

n
 A

ll
 M

y
ri
n
e
t
C

lu
s
te

r

Bandwidth per link in Mbyte/s

1D FFT, 32 processors, 4 clusters

0.1 ms
1 ms

10 ms
30 ms

100 ms
300 ms

Figure 2: Speedup Relative to an All-Myrinet cluster

cluster, bisection bandwidth actually increases as more
slow links are added, despite the loss of fast links. This
effect can be traced back to simple bandwidth sensitiv-
ity: speedup decreases as more processors compete for the
same wide-area links.

In a larger system it is likely that the topology is less per-
fect. This effect will then diminish, and disappear in star,
ring, or bus topologies. Future topologies will in practice
be somewhere in between the worst case of a star or ring
and the best case of a fully connected network.

5.2 Wide-Area Communication

This subsection analyzes the wide-area traffic in more de-
tail, to complement the speedup picture. The left graph in
Figure 3 summarizes wide-area traffic of the applications.
It shows data volumes in MByte/s per cluster and num-
bers of messages per second per cluster (for 3 MByte/s

bandwidth per link and 0.3 ms latency, and 4 clusters of 8
processors, a configuration with 12 wide-area links in to-
tal). TSP can be found in the origin of the graph; it has
extremely low wide-area communication, a few tens of
KByte/s and few messages per second. FFT has a high
communication volume of more than 3 MByte/s (note that
the bandwidth limit in this case is 9 MByte/s per cluster,
since with 4 clusters there are 3 links of 3 MByte/s out
of each cluster). Awari can be found at the other end of
the graph, with a high number of messages over the WAN
(more than 4000 per second per cluster). Barnes-Hut, Wa-
ter and ASP have a modest level of wide area traffic, less
than 1000 messages per second and less than 0.5 MByte/s
per cluster.

Performance is influenced strongly by intercluster traf-
fic (high traffic applications have a low speedup and vice
versa). The speed of the interconnect influences commu-
nication and synchronization overhead of the programs.

7

0

0.5

1

1.5

2

2.5

3

3.5

1000 2000 3000 4000 5000

V
o

lu
m

e
 M

B
y
te

/s

Messages/s

 4 clusters of 8 processors, Traffic

asp
tsp

barnes
water

fft
awari

 0

 20

 40

 60

 80

100

 0.0 0.1 1.0 10.0

C
o
m

m
u
n
ic

a
ti
o
n
 T

im
e

Bandwidth in MByte/s

3 ms latency

FFT
ASP

BARNES
WATER
AWARI

TSP
 0

 20

 40

 60

 80

100

 0.1 1.0 10.0 100.0 1000.0

C
o
m

m
u
n
ic

a
ti
o
n
 T

im
e

Latency in ms

3 MByte/s bandwidth

FFT
ASP

BARNES
WATER
AWARI

TSP

Figure 3: Wide-Area Traffic

The middle graph in Figure 3 shows the percentage of
runtime that is spent on communication over the wide-
area interconnect, relative to bandwidth, for 4 clusters of
size 8 (one-way latency is set at 3 ms). The right graph
in Figure 3 shows the wide-area communication time of
the interconnect relative to latency (bandwidth is set at 3
MByte/s). The communication time percentage is com-
puted as TM TL

TM
100, or the difference between multi-

cluster run time and single cluster run time as a percentage
of multi-cluster run time.

In both the bandwidth and the latency graph commu-
nication time for FFT is close to 100%, indicating that
run time is almost completely dominated by communi-
cation. Awari is a close second, although at latencies
lower than 10 ms communication time drops sharply (at
3 MByte/s). For Barnes-Hut, Water, ASP and TSP com-
munication time is significantly less at high bandwidth and
low latency.

These graphs show which applications are dominated
by synchronous communication, and which by asyn-
chronous communication. Purely asynchronous commu-
nication is limited by bandwidth (if we disregard startup
time). Purely synchronous communication (i.e., a null-
RPC) is limited by latency. Purely asynchronous commu-
nication would give a horizontal line in the latency graph
(and vice versa). The graphs in Figure 3 show that the ac-
tual applications have a mix of both: streaming of asyn-
chronous communication is present, but also request/reply
style synchronous communication. (These effects trans-
late for the speedup graphs in Figure 2 to the trivial obser-
vation that both lower latency and higher bandwidth give

better speedup.)

It is interesting to note the differences among the ap-
plications, however. First, FFT is heavily communication
bound. Little more can be said about its line, since it is so
close to 100%.

Latency: Up to 3 ms Barnes-Hut, Water, and ASP are
relatively insensitive to latency; their lines are still rather
flat. For longer latencies communication becomes quite
sensitive to latency. Apparently, at the 3 ms point the room
in the data-dependencies of the programs that hides la-
tency becomes exhausted. TSP’s line stays quite flat up
to 100 ms.

Bandwidth: For a bandwidth of 10–3 MByte/s, Barnes-
Hut, Water, and ASP are relatively insensitive to band-
width. TSP is almost completely insensitive to band-
width; its work-stealing communication pattern comes
quite close to the null-RPC. Awari is also quite sensitive
to latency, more so than to bandwidth. It sends many rel-
atively short messages, to obtain a good load balance.

The previous subsection comes to the general conclu-
sion that Barnes-Hut, Water, ASP and TSP are more sen-
sitive to the bandwidth gap than to the latency gap (by a
factor of 167–500 and 1667–5556, respectively), and that
Awari and especially FFT have a significantly lower per-
formance. The bandwidth and latency graphs of Figure 3
show in more detail for each application the nature of its
sensitivity to wide-area bandwidth and latency.

The reason for the low level of inter cluster communica-
tion of Barnes-Hut, Water, ASP, and TSP is that the multi-
cluster optimizations work well. For Awari the optimiza-
tion has limited effectiveness, and for FFT no optimiza-

8

tion was found. The communication patterns of Awari and
FFT are quite simple (asynchronous point-to-point mes-
sages and personalized all-to-all), leaving little room for
optimizations.

In Barnes-Hut, Water, ASP, and TSP, the single-tier
communication patterns have a medium communication
load; when, in the single-level situation the capacity of all
links is the same, one need not distinguish between com-
munication loads over different links. All communication
is lumped together and described as “medium grain.” In
the two-tier case it pays to be more careful and to look for
ways to reduce communication over certain links, creating
a (clustered) multi-level communication pattern, to reduce
the communication load over the slow links. Calling such
a communication pattern “medium grain” is a simplifica-
tion.

6 Conclusions

We have analyzed the performance of applications with
a non-trivial communication load on a cluster of clusters,
focusing on the effect of large gaps in bandwidth and la-
tency between the slow and the fast part of the intercon-
nect. The main conclusion is that performance is remark-
ably high for a bandwidth gap up to a factor of 167–500,
and a latency gap up to a factor of 1667–5556. The fact
that performance is even less sensitive to latency than to
bandwidth gaps is fortunate since in the future bandwidth
is expected to improve more than latency. The tolerance to
latency is remarkable. Our situation is different from oth-
ers in that we have a multi-tier system. Most of the links
in the interconnect are still fast Myrinet links, and the load
over the (few) slow links has been reduced by optimiza-
tions. The surprisingly large opportunity for creating clus-
tered communication out of flat communication patterns is
the reason for the large tolerance to different latencies in
the interconnect.

This work has important implications for related fields.
First of all, meta-computing has largely been targeted to-
wards embarrassingly parallel applications. The set of ap-
plications that can be run efficiently on a meta-computer
is larger than expected (although meta-computers suf-
fer from additional overheads due to non-dedicated wide
area links and heterogeneous hardware, whereas our sys-
tem is homogeneous). Second, the large tolerance to la-

tency gaps suggests ample room for multi-tier prefetching.
Third, it implies the feasibility of scaling up current hard-
ware and software DSM designs to larger interconnects
with longer latencies. Finding an effective long latency
cache coherence protocol, however, is a challenging prob-
lem. Another, less general, approach is to embed multi-
tier optimizations in a high level communication library
such as BSP or the collective communication primitives
of MPI.

Future systems will have deeper hierarchical intercon-
nects than today. This paper has given a preview of how
good performance can be obtained on such systems.

7 Acknowledgements

This research is supported in part by a PIONIER and a
SION grant from the Dutch Organization for Scientific Re-
search (NWO) and a USF grant from the Free University.
NWO has further supported the DAS machine, providing
a basis for this research. We are grateful to Torsten Suel
for providing us with his n-body code. We thank Raoul
Bhoedjang for many insightful and inspiring discussions.
We thank Andy Tanenbaum for his sound judgment. This
work benefited further from discussions with Tom Cor-
men, Andrew Grimshaw, Arvind Krishnamurthy, Mon-
ica Lam, Koen Langendoen, Rich Martin, Sivan Toledo,
and Kees Verstoep. Raoul Bhoedjang, Thilo Kielmann,
and Andy Tanenbaum provided valuable feedback on the
paper. Mirjam Bakker implemented the Awari optimiza-
tions. Peter Dozy implemented the Water and TSP opti-
mizations. Kees Verstoep kept the DAS alive.

References
[1] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman.

SuperWeb: Towards a Global Web-Based Parallel Computing In-
frastructure. In 11th International Parallel Processing Symposium,
April 1997.

[2] J. Anderson, S. Amarasinghe, and M. Lam. Data and computation
transformations for multiprocessors. In 5th Symposium on Princi-
ples and Practice of Parallel Processing, July 1995.

[3] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and
P. Stephan. Dome: Parallel programming in a heterogeneous multi-
user environment. In 10th International Parallel Processing Sym-
posium, pages 218–224, April 1996.

[4] H. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen,
T. Rühl, and F. Kaashoek. Performance Evaluation of the Orca

9

Shared Object System. ACM Transactions on Computer Systems,
16(1), February 1998.

[5] H.E. Bal and L.V. Allis. Parallel Retrograde Analysis on a Dis-
tributed System. In Supercomputing ’95, December 1995. Online
at http://www.supercomp.org/sc95/proceedings/.

[6] H.E. Bal, A. Plaat, M.G. Bakker, P. Dozy, and R.F.H. Hofman. Op-
timizing Parallel Applications for Wide-Area Clusters. In IPPS-98
International Parallel Processing Symposium, April 1998.

[7] J. Bennett, J. Carter, and W. Zwaenepoel. Implementation and
performance of munin. In 13th Symposium on Operating Systems
Principles, pages 152–164, October 1991.

[8] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway
Distributed Shared Memory System. In Proc. COMPCON 1993,
pages 528–537, 1993.

[9] A. Bilas, L. Iftode, and J.P. Singh. Shared Virtual Memory across
SMP Nodes using Automatic Update: Protocols and Performance.
Technical Report TR-96-517, Princeton University, 1996.

[10] David Blackston and Torsten Suel. Highly portable and effi-
cient implementations of parallel adaptive n-body methods. In
SC’97, November 1997. online at http://www.supercomp.org
/sc97/program/TECH/BLACKSTO/.

[11] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W. Su. Myrinet: A Gigabit-per-second Local
Area Network. IEEE Micro, 15(1):29–36, February 1995.

[12] S. Chandra, J. Larus, and A. Rogers. Where is Time Spent in
Message-Passing and Shared-Memory Programs. In ASPLOS-94
Architectural Support for Programming Languages and Operating
Systems, 1994.

[13] F. Chong, R. Barua, F. Dahlgren, J. Kubiatowicz, and A. Agarwal.
The Sensitivity of Communication Mechanisms to Bandwidth and
Lantency. In HPCA-4 High Performance Communication Archi-
tectures, pages 37–46, February 1998.

[14] B. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E.
Schauser, and D. Wu. Javelin: Internet-Based Parallel Comput-
ing Using Java. Concurrency: Practice and Experience, 1997. to
appear.

[15] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algo-
rithms. MIT Press, 1989.

[16] D.H.J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne.
A Worldwide Flock of Condors: Load Sharing among Workstation
Clusters. Future Generation Computer Systems, 12(1):53–66, May
1996.

[17] MPI Forum. Mpi: A message passing interface standard. Int.
J. Supercomputer Applications, 8(3/4), 1994. Version 1.1 at
http://www.mcs.anl.gov/mpi/mpi-report-1.1/mpi-report.html.

[18] I. Foster and C. Kesselman. Globus: A metacomputing infras-
tructure toolkit. Int. Journal of Supercomputer Applications,
11(2):115–128, Summer 1997.

[19] A. Grama, V. Kumar, and A. Sameh. Scalable parallel formulations
of the barnes-hut algorithm for n-body simulations. In Supercom-
puting ’94, November 1994.

[20] A.S. Grimshaw and Wm. A. Wulf. The Legion Vision of a World-
wide Virtual Computer. Comm. ACM, 40(1):39–45, January 1997.

[21] P. Homburg, M. van Steen, and A.S. Tanenbaum. Communication
in GLOBE: An Object-Based Worldwide Operating System. In
Proc. Fifth International Workshop on Object Orientation in Op-
erating Systems, pages 43–47, October 1996.

[22] D. Jiang, G Shan, and J. Singh. Application Restructuring and
Performance Portability on Shared Virtual Memory and Hardware-
Coherent Multiprocessors. In PPoPP-97 Symposium on Principles
and Practice of Parallel Programming, June 1997.

[23] K. Johnson, F. Kaashoek, and D. Wallach. Crl: High-performance
all-software distributed shared memory. In Symposium on Operat-
ing Systems Principles 15, pages 213–228, December 1995.

[24] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to
Parallel Computing: Design and Analysis of Algorithms. Ben-
jamin Cummings, November 1993.

[25] K. Langendoen, R. Hofman, and H. Bal. Challenging applications
on fast networks. In HPCA-4 High-Performance Computer Archi-
tecture, pages 125–137, February 1998.

[26] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. In 24th Ann. Int. Symp. on Computer Architecture,
pages 241–251, June 1997.

[27] F. Thomson Leighton. Introduction to parallel algorithms and ar-
chitectures. Morgan Kaufmann, 1992.

[28] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta,
J. Hennessy, M. Horowitz, and M.S. Lam. The Stanford Dash Mul-
tiprocessor. IEEE Computer, 25(3):63–79, March 1992.

[29] S.S. Lumetta, A.M. Mainwaring, and D.E. Culler. Multi-protocol
active messages on a cluster of SMP’s. In SC’97, November 1997.
Online at http://www.supercomp.org/sc97/proceedings/.

[30] R.P. Martin, A.M. Vahdat, D.E. Culler, and T.E. Anderson. Effects
of Communication Latency, Overhead, and Bandwidth in a Cluster
Architecture. In 24th Ann. Int. Symp. on Computer Architecture,
pages 85–97, June 1997.

[31] L. Monnerat and R. Bianchini. Efficiently Adapting to Sharing Pat-
terns in Software DSMs. In HPCA-4 High Performance Commu-
nication Architectures, pages 289–299, February 1998.

[32] T. Mowry, C. Chan, and A. Lo. Comparative Evaluation of Latency
Tolerance Techniques for Software Distributed Shared Memory. In
HPCA-4 High Performance Communication Architectures, pages
300–311, February 1998.

[33] B. J. Overeinder, P. M. A. Sloot, R. N. Heederik, and L. O.
Hertzberger. A Dynamic Load Balancing System for Parallel Clus-
ter Computing. Future Generation Computer Systems, 12:101–
115, May 1996.

[34] S. Pakin, M. Lauria, and A. Chien. High Performance Messaging
on Workstations: Illinois Fast Messages (FM) for Myrinet. In Su-
percomputing ’95, San Diego, CA, December 1995.

[35] M. Philippsen and M. Zenger. JavaParty—Transparent Remote
Objects in Java. In ACM 1997 PPoPP Workshop on Java for Sci-
ence and Engineering Computation, June 1997.

10

[36] A. Reinefeld, R. Baraglia, T. Decker, J. Gehring, D. Laforenza,
J. Simon, T. Rümke, and F. Ramme. The MOL Project: An Open
Extensible Metacomputer. In Heterogenous computing workshop
HCW’97 at IPPS’97, April 1997.

[37] John W. Romein and Henri E. Bal. Parallel n-body simulation
on a large-scale homogeneous distributed system. In Seif Haridi,
Khayri Ali, and Peter Magnusson, editors, EURO-PAR’95 Parallel
Processing, Lecture Notes in Computer Science, 966, pages 473–
484, Stockholm, Sweden, August 1995. Springer-Verlag.

[38] D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-grain soft-
ware distributed shared memory on SMP clusters. In HPCA-4
High-Performance Computer Architecture, pages 125–137, Febru-
ary 1998.

[39] J. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy. Load bal-
ancing and data locality in adaptive hierarchical n-body methods:
Barnes-hut, fast multipole and radiosity. Journal of Parallel and
Distributed Computing, June 1995.

[40] E. Speight and J. Bennett. Using Multicast and Multithreading to
Reduce Communication in Software DSM Systems. In HPCA-4
High Performance Communication Architectures, pages 312–323,
February 1998.

[41] R. Stets, S Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanas-
sis, S. Parthasarathy, and M. Scott. Cashmere-2L: Software coher-
ent shared memory on a clustered remote-write network. In Proc.
16th ACM Symp. on Oper. Systems Princ., October 1997.

[42] H. Topcuoglu and S. Hariri. A Global Computing Environment for
Networked Resources. In Proc. 1997 Int. Conf. on Parallel Pro-
cessing, pages 493–496, Bloomingdale, IL, August 1997.

[43] L. Valiant. A Bridging Model for Parallel Computation. Comm.
ACM, 33(8):100–108, August 1990.

[44] M. Warren and J. Salmon. A parallel hashed oct-tree n-body algo-
rithm. In Supercomputing ’93, November 1993.

[45] Jon B. Weissman and Andrew S. Grimshaw. A Federated Model
for Schedupling in Wide-Area Systems. In 5th International Sym-
posium on High Performance Distributed Computing (HPDC-5),
August 1996.

[46] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations. In Proceedings of the 22nd International Symposium
on Computer Architecture, pages 24–36, June 1995.

[47] W. Yu and A. Cox. Java/DSM: A Platform for Heterogeneous
Computing. In ACM 1997 PPoPP Workshop on Java for Science
and Engineering Computation, June 1997.

[48] Y. Zhou, L. Iftode, J. Singh, K. Li, B. Toonen, I. Schoinas, M. Hill,
and D. Wood. Relaxed Consistency and Coherence Granularity
in DSM Systems: A Performance Evaluation. In PPoPP-6 Sym-
posium on Principles and Practice of Parallel Programming, June
1997.

11

