
1

Fault-Tolerant Nanosatellite Computing on a Budget
Christian M. Fuchs, Member, IEEE, Nadia M. Murillo, Aske Plaat, Erik van der Kouwe, Daniel Harsono,

and Todor P. Stefanov, Member, IEEE

Abstract—We present an on-board computer architecture designed
for small satellites (<50kg), which exploits software-fault-tolerance to
achieve strong fault coverage with commodity hardware. Micro- and
nanosatellites have become popular platforms for a variety of commercial
and scientific applications, but today are considered suitable mainly for
short and low-priority space missions due to their low reliability. In
part, this can be attributed to their reliance upon cheap, low-feature
size, COTS components originally designed for embedded and mobile-
market applications, for which traditional hardware-voting concepts are
ineffective. Software-fault-tolerance has been shown to be effective for
such systems, but have largely been ignored by the space industry
due to low maturity, as most have only been researched in theory. In
practice, designers of payload instruments and miniaturized satellites are
usually forced to sacrifice reliability in favor of delivering the level of
performance necessary for cutting-edge science and innovative commercial
applications. Thus, we developed a set of software measures facilitating
fault tolerance based upon thread-level coarse-grain lockstep, which we
validated through fault-injection. To offer strong long-term fault coverage,
our architecture is implemented as tiled MPSoC on an FPGA, utilizing
partial reconfiguration, as well as mixed criticality. This architecture
can satisfy the high performance requirements of current and future
scientific and commercial space missions at very low cost, while offering
the strong fault-coverage guarantees necessary for platform control even
for missions with a long duration. This architecture was developed for
a 4-year ESA project. Together with two industrial partners, we are
developing a prototype to then undergo radiation testing.

Index Terms—CubeSat, SmallSat, Nanosatellite, Satellite, System-on-
chip, RTOS, FPGA, ARM, Cortex-A53, Microblaze, Xilinx, COTS, partial
reconfiguration, forward error correction, fault tolerant systems, fault tol-
erance, integrated circuit reliability, fault injection, reliability, robustness,
software defined fault tolerance

I. INTRODUCTION

Satellite miniaturization has enabled a broad variety of scientific
and commercial space missions, which previously were technically
infeasible, impractical or simply uneconomical. However, due to their
low reliability, nanosatellites, as well as light microsatellites, are
typically not considered suitable for critical and complex multi-phased
missions and high-priority science. The on-board computer (OBC) and
related electronics constitute a large part of such spacecraft, and were
shown to be responsible for a significant share of post-deployment
failure [1]. Indeed, these components often lack even basic fault
tolerance (FT) capabilities.

Due to budget, energy, mass, and volume restrictions, existing FT
solutions originally developed for larger spacecraft can not be adopted.
In this paper we describe an multiprocessor System-on-Chip (MPSoC)
that utilizes conventional hardware, providing FT for miniaturized
satellites. The MPSoC is assembled from well tested COTS compo-
nents, library logic (IP), and powerful embedded and mobile-market
processor cores, yielding a non-proprietary, open architecture. Our key

C.M. Fuchs was with the Leiden Institute of Advanced Computer Science
and Leiden Observatory at Leiden University, 2333 CA, The Netherlands, e-
mail: christian.fuchs@dependable.space

A. Plaat, E.v.d. Kouwe, and T.P. Stefanov were with the Leiden Institute of
Advanced Computer Science

N.M. Murillo and D. Harsono were with Leiden Observatory
This approach was developed for a 4-year European Space Agency (ESA)

NPI project supported by two industrial partners. N.M. Murillo and D. Harsono
acknowledge funding through the European Union A-ERC grant 291141
CHEMPLAN, by the Netherlands Research School for Astronomy (NOVA),
and the Royal Netherlands Academy of Arts and Sciences (KNAW) professor
prize.

Manuscript submitted to RADECS2018 on April 17th, 2018, revised
September 16th, 2018 and reworked and extended on October 4th, 2018

contribution is a fault tolerant OBC architecture that consists only
of extensively validated standard parts, and can be reproduced with
minimal manpower and financial resources.

In the next section, we describe our architecture’s intended appli-
cation, design constraints, and the physical fault model encountered.
An overview of our multi-stage FT architecture and our coarse-grain
lockstep approach is provided in Section III. In Section IV we outline
a publicly reproducible variant of our architecture’s MPSoC design
based on Xilinx Microblaze processor cores. Our architecture utilizes
software defined FT, and Section V-E contains validation results
of the coarse-grain lock-step approach, which were obtained using
fault injection. We begin by discussing the available test techniques,
and then describe our test setup, the target application as well
as the types of fault injection. In order to place our results into
context, we compare them to the Dobel at al. [2] test-campaign, the
only other openly published practical test-campaign conducted with
a comparable scope and for software-FT mechanics. Subsequently,
we present knowledge obtained from conducting our fault injection
experiment, discuss the different applications of our architecture, and
then finally present our conclusions.

II. BACKGROUND & RELATED WORK

Aboard nanosatellites, subsystems are controlled by just one com-
mand & data handling system, whereas aboard a larger satellite these
tasks are distributed across multiple dedicated payload and subsystem
computers. This implies a varying OBC workload throughout a
nanosatellites mission, which traditional FT solutions only handle
through over-provisioning. The tiled MPSoC design presented in this
paper can efficiently handle faults through thread migration and partial
reconfiguration. Major parts of our approach are implemented in
software, allowing the OBC to deliver the desired combination of
performance, robustness, functionality, or to meet a specific power
budget. To enable strong FT with low-cost commodity hardware,
we combine fault detection, isolation and recovery in software,
FPGA configuration scrubbing with other fault detection, isolation
and recovery (FDIR) measures across the embedded stack.

Nanosatellites today utilize almost exclusively COTS microcon-
trollers and application processors-SoCs, FPGAs, and combinations
thereof [3], [4]. Due to manufacturing in fine technology nodes,
and the use of extensively optimized standard IP, they offer superior
efficiency and performance as compared to space-grade OBC designs.
The energy threshold above which highly charged particles can induce
faults (SEE – single event effects) in such components decreases,
while the ratio of events inducing multi-bit upsets (MBU), and the
likelihood of permanent faults, increase. To adapt such hardware-FT
based concepts additional FT-circuitry is required, inflating logic size
and producing diminishing returns, resulting in limited scalability and
low clock frequencies [5]–[7]. We can observe that traditional FT-
concepts applied to modern COTS hardware yield no nanosatellite
compatible architectures.

While more sensitive to transient faults than ASICs [8], [9], FPGA-
based Soft-SoCs have been shown to offer excellent FDIR potential
for miniaturized satellites [10]. Transients in critical parts of the FPGA
fabric can be scrubbed [11], while permanent faults may be compen-
sated through reconfiguration with differently routed configuration
variants [12]. Fine-grained, non-invasive fault detection in FPGA
fabric, however, is challenging, and subject of ongoing research [13],

2

[14]. Relevant FT-concepts thus rely on error scrubbing, which has
scalability limitations and cover only parts of the fabric [11], [13].
We overcome these limitations by implementing fault-detection in
software through thread-replication and coarse-grain lockstep within
an MPSoC using weakly coupled cores.

Tiled architectures [15], [16] are often used for well paralellizable
applications with many low-performance processor cores. Among
others, [17] and [16] showed that such typologies can also be
exploited to achieve FT for image processing applications with a very
specific structure. We combine a tiled architecture with coarse-grained
lockstep [18], enabling FDIR without constraining the application
type or system architecture. Thus, the architecture presented in this
paper is well suited for platform control and can be used as a
template, allowing a high level of OBC design freedom, and enabling a
considerable amount of testing to be inherited from COTS components
and logic.

Thread migration has been shown to be a powerful tool for assuring
FT, but prior research ignores fault detection, and imposed tight con-
straints on an application’s type and structure (e.g., video streaming
and image processing [19]). Thread-level coarse-grain lockstep of
weakly coupled cores instead supports general purpose computing,
and in the past, has already been used for high availability, non-stop
service, and error resilience concepts. However, in prior research,
faults are usually assumed to be isolated, side effect free, and
local to an individual application thread [20] or transient [2], [21],
entailing high performance [22] or resource overhead [23], [24]. More
advanced proof-of-concepts [2], [25], however, attempt to address
these limitations, and even show a modest performance overhead
between 3% and 25%, but utilize checkpoint & rollback or restart
mechanics [2], which make them unsuitable for spacecraft command
& control applications.

Many of these limitations and obstacles ultimately can be attributed
to low maturity, as a majority of software-FT concepts are published
as a concept TRL1 but remain unvalidated. Hence, they could be
uncovered, and in many cases, can be potentially resolved through
implementation and practical validation [25], increasing maturity
to TRL2 or TRL3. However, development of a testable proof-of-
concept is a time consuming and costly undertaking [26], as outlined
among others by Sangchoolie et al. [27] with limited immediate
yield for academic publication. Fault injection for entire OS instances
is especially non-trivial [28], as thorough preparation and careful
tool-selection is necessary to obtain representative results from a
fault injection experiment [29]. Therefore, a broad variety of TRL1
software-FT concepts exist today at a theoretical level [30]–[32],
for which validation was only conducted statistically using modeling
with different fault distributions or not a all. In this contribution, we
therefore conduct validation of our coarse-grain lockstep approach
using systematic fault-injection. Thereby we verify the effectiveness
of our coarse-grain lockstep FDIR mechanics under stress using a
RTOS-based proof-of-concept implementation, increasing maturity to
TRL3.

III. A HYBRID FAULT-TOLERANCE APPROACH

Conventional FT architectures require proprietary logic in hardware
to facilitate fault detection and coverage. In contrast, the architec-
ture described in this paper can offer strong FT using just COTS
components and proven standard library logic. This is made possible
through the use of the FT approach we presented in [18]. The high-
level functionality of this approach is depicted in Fig. 1, and consists
of three interlinked fault mitigation stages implemented across the
embedded stack:

Stage 1 implements forward error correction and utilizes coarse-
grain lockstep of weakly coupled cores to generate a distributed

majority decision across tiles. Fault detection is facilitated through
application callback functions, without requiring deep modifications
to an application or knowledge about intrinsics.

Stage 2 recovers failed tiles through reconfiguration and self-
testing. It assures the integrity of programmed logic and deploys con-
figuration scrubbing, as well as Xilinx Soft-Error-Mitigation (SEM),
to correct transients in FPGA fabric. Its objective is to assure and
recover the integrity of processor cores and their immediate peripheral
IP through FPGA reconfiguration and the use of differently routed
and placed alternative configuration variants, thereby counteracting
resource exhaustion.

Stage 3 engages when too few healthy tiles are available, and re-
allocates processing time to maintain reliability. To do so, thread-level
mixed criticality is exploited, assuring sufficient compute resources
are available to high-criticality applications by sacrificing performance
or availability of lower-criticality threads.

In the remainder of this section, we outline the functionality and
purpose of each stage and provide an example of the coarse-grain
lockstep’s functionality.

Stage 1: Short-Term Fault Mitigation

The objective of Stage 1 is to detect and correct faults within a
tile, and assure a consistent system state through checkpoint-based
FEC. It is implemented as sets of tiles running two or more copies
of application threads (siblings) in lock step. Checkpoints interrupt
execution, facilitating the lockstep and enforcing synchronization,
allowing thread assignment within the system to be adjusted if
required.

This approach enables us to utilize application intrinsic code and
data to assess the health state of the system without requiring in-depth
knowledge about the application itself. The supervisor reads out the
results of the tiles’ decentralized consistency decision. Application
threads can be scheduled and executed in an arbitrary order between
two checkpoints, as long as their state is equivalent upon the next
checkpoint.

We avoid thread synchronization issues as encountered by Kret-
zschmar et al. in [25] by merely reusing existing OS functionality
without breaking or ABI/API guarantees. Therefore, we can con-
tinue relying upon pre-existing synchronization mechanics such as

Tile Supervisor

Bootup

State
Update

Checkpoint

Application
Execution

Read Majority
Decision

Check Tile
Fault Counter

Keep
Tile

Stage 3
Mixed Criticality

Replace
Tile

Stage 2
Reconfiguration

 < limit > limit

Fig. 1: Stage 1 (white) assures fault detection (bold) and fault
coverage. Stages 2 (blue) and 3 (yellow) counter resource exhaustion
and adapt the on-board computer application schedule to reduced
system resources.

3

POSIX cancellation points1 and their bare-metal equivalents (e.g.,
RTEMS_NO_PREEMPT in RTEMS’s Classic API if used instead of
newlib or the POSIX API).

Stage 1 can deliver real-time guarantees if required, and the tight-
ness of the RT guarantees depends upon the time required to execute
application callbacks. In our RTEMS/POSIX-based implementation,
we utilize priority-based, preemptive scheduling with timeslicing,
allowing threads to delay checkpoints until they reach a viable state
for checksum comparison.

An application should provide four callback routines to the OS,
which are executed during tile boot by the OS or as part of a
checkpoint routine:

• an initialization routine, to be executed on all tiles at bootup;
• a checksum callback, used to generate a checksum for comparison

with siblings,
• a expose state callback, exposing all thread-state relevant data to

synchronize a sibling with a lockstep group; This data can either
be placed directly in the tile’s local memory, or as a reference to
structures in main memory.

• an update callback, which is executed on a tile that needs to
synchronize its state to a lockstep group.

Besides the addition of these callbacks, no alterations to an ap-
plication’s logic are necessary, except a viable way to assure it
can be interrupted by a callback routine periodically. The required
development effort for implementing these features in general is
comparably low, but depends on the structure of an application. For
the astronomical instrumentation applications utilized in our proof-
of-concept, these routines could be implemented with 10-20 lines of
C-code each. For example, the checksum callback consists almost
exclusively of CRC library calls for generating a checksum from a
set of state relevant variables and data structures in heap and stack.

Callbacks may be omitted due to practical reasons. For applications
which require little code and time for initialization, the initialization
routine can be omitted. Applications which are not executed con-
tinuously could return a pre-generated checksum to the OS, instead
of providing checksum, synchronization and callback handlers, for
example, by providing the OS with a signature or checksum before
program termination. Applications without a persistent state, or in
which the state is continuously re-generated based on input data, no
update callback would be necessary.

Checkpoints were designed to be time triggered on each tile
independently, but can also be induced by the supervisor through an
interrupt, for example, to signal that new threads have been assigned
(see also Section VI for additional information on time-vs-interrupt
driven checkpoint triggering). Thus, the OS only has to support
interrupts, timers, and a multi-threading-capable scheduler. To the best
of our knowledge, such functionality is available in all widely used
RT- and general purpose OS implementations.

Stage 2: Tile Repair & Recovery

Stage 1 can not reclaim defective tiles, eventually resulting in
resource exhaustion. Therefore, in this stage, we recover defective
tiles through reconfiguration to counter transients in FPGA fabric.
To do so, the supervisor will first attempt to recover a tile us-
ing partial reconfiguration. Afterwards, the supervisor validates the
relevant partitions to detect permanent damage to the FPGA (well
described in, e.g., [33]), and executes self-test functionality on the tile
to detect faults in the tile’s main memory segment and peripherals. If
unsuccessful, the supervisor will repeat this procedure with differently

1For example, sleep, yield, pause; for further details, see IEEE Std 1003.1-
2017 p517

Stage 1
Fault Detected

Tile Partial
Reconfiguration

Try Alternative
Partition Variant

Validate
Integrity

Successful
Recovery

Stage 3
Mixed Criticality

Full FPGA
Reconfiguration

Scrubbing &
Xilinx UltraSEM

Failure

Fig. 2: The objective of Stage 2 is to recover defective tiles and
other logic through partial and full FPGA reconfiguration via ICAP. If
this is unsuccessful as well and no further spare processing capacity
is available to handle future faults, Stage 3 is activated to find a
more resource conserving application schedule, replenishing the spare
resource pool.

routed configuration variants, potentially avoiding or repurposing
permanently defective logic.

The supervisor can also attempt full reconfiguration implying a full
reboot of all tiles. Further details on reconfiguration and error scrub-
bing with a microcontroller-based proof-of-concept implementation
for a nanosatellite are available in [34]. If both partial- and full-
reconfiguration are unsuccessful and all spare resources have been
exhausted, Stage 3 is utilized to assure a stable system core to enable
operator intervention.

Stage 3: Applied Mixed Criticality

Stage 3 maintains system stability of an aged or degraded OBC, if
the remaining healthy tiles of the MPSoC no longer have sufficient
processing capacity available for all applications. When considering a
miniaturized satellite’s OBC, we can differentiate individual applica-
tions and parts of the flight software by criticality. At the very least,
we will find software essential to a satellite’s operation, for example,
platform control and commandeering, as well as other applications
of various levels of lower criticality. If the previous stages no longer
have enough spare processing capacity or tiles to compensate a fault,
this stage utilizes thread-level mixed criticality to assure stability of
core OBC functions. To do so, it can sacrifice lower criticality tasks in
favor of providing compute resources to reach the desired replication
level for critical threads.

Dependability for higher-criticality threads can be maintained ef-
ficiently by reducing compute performance or reliability of lower-
criticality applications. Lower-criticality tasks may be executed less
frequently or on fewer tiles, thereby reducing functionality or fault
coverage for these tasks, retaining resources for higher-criticality
threads. This decision is taken autonomously, and the operator can
then define a more resource conserving satellite operation schedule at
the spacecraft level (e.g., sacrifice link capacity, or on-board storage
space) to make the best use of the OBC in its degraded state.

Further information on Stage 3 including dynamic thread-mapping,
as well as performance, energy and robustness optimization at run-
time is available in [35].

A Practical Example

Figure 3 depicts the four cores (Cn) of a quad-core MPSoC running
two applications (Tn) on in TMR mode with a single idle spare core

4

Reboot

C

C

C

C

T T

T T cpy

0

1

2

3

T T

T T

T T

a

a

a

b

b

b

T T

T T

a

a

b

b

a b T T

T T

a

a

b

b

T T

T T

a

a

b

b

T T a ba b

Fault

T

T

T

init

init

init

T init

Fig. 3: Tile initialization and a complete Stage 1 lockstep cycle.
Application threads are replicated across on a set of tiles, with execu-
tion being interrupted by checkpoints (blue), enabling fault tolerance
through forward error correction. The checkpoint frequency and the
scheduling algorithm can be freely chosen by the developer, requiring
only work-equivalence between tiles upon reaching a checkpoint.

available. A fault has occurred during the second lockstep cycle on
core C2, which is subsequently replaced with the idle core C3. C3

must retrieve a copy of the state of its threads Ta and Tb from another
core. The replaced core, C2, can subsequently be tested for permanent
defects by the OS and the supervisor.

This example illustrates Stage 1’s mechanics only and was origi-
nally published as part of [18]. [18] also contains a much more de-
tailed explanation of the mechanics outlined in this section, including
performance overhead measurements.

IV. THE MPSOC ARCHITECTURE

We developed our software-FT architecture for use on top of an
MPSoC consisting only of COTS technology. The main target in our
project is the ARM Cortex-A53 application processor. For many size-
optimized space applications, smaller cores such as the Cortex-A32,
A35 and A5 may also offer a better balance between performance,
universal platform support, and logic utilization. The Cortex-A53 core
was chosen as it is today widely used in a variety of industrial
and mobile-market devices, though our architecture is processor and
instruction set architecture (ISA) independent.

In this section, we describe a publicly reproducible MPSoC design
variant implementing our architecture, which can be designed in full
using Xilinx library IP and Microblaze processor cores. The archi-
tecture minimizes shared logic, compartmentalizes tiles, and offers a
clearly defined access channel between tiles and the supervisor.

A. Supervision & Reconfiguration

Stage 1 can be implemented on a single chip, but we utilize an off-
chip supervisor to facilitate FPGA reconfiguration and transient fault
scrubbing in the running configuration. The outlined multi-stage FT
approach puts only minimal load on the supervisor, and it can thus be
again implemented using a traditional radiation hardened or tolerant
microcontroller. The FeRAM-based TI-MSP430FR family would be
a solid somewhat radiation-tolerant but non-FT substitute, which is
today widely used aboard a broad variety of CubeSats and low-
performance COTS products designed for nanosatellite use. The level
of performance offered by such microcontrollers is usually sufficient
only for educational CubeSats and federated systems. However, a
supervisor in our architecture only receives the majority voting results
from the coarse grain lockstep, controls the FPGA, and facilitates
reconfiguration indirectly through ICAP. Hence, the low level of per-
formance of an MSP430FR, for example, is sufficient, and allows an

ultra-low-cost implementation of our approach for academic CubeSat
projects and scientific instrumentation.

We deployed configuration error mitigation through Xilinx SEM
in combination with supervisor-side scrubbing to safeguard logic
integrity. However, SEM and scrubbing only detect faults in specific
components of the FPGA fabric (e.g. not in BRAM), leaving signifi-
cant parts of the design unprotected unless logic-side ECC is used.

These measures alone, thus, do not provide sufficient protection
for fine-feature size FPGAs. Thus, our software-FT functionality can
locate faults in the partition of a specific tile, allowing the supervisor
to resolve them using reconfiguration. We place tiles in separate
configuration partitions to enable partial reconfiguration of individual
tiles, without affecting the rest of the system.

As depicted in Fig. 1, the supervisor only reacts to disagreement
between tiles, otherwise remaining passive. It maintains a fault-
counter for each tile and acts as a watchdog. When resolving transient
faults within a tile, it increments the fault-counter and induces a state
update through a low-level debug interface. After repeated faults, the
supervisor will replace the tile by adjusting the thread-mapping of
a spare tile, activating it, and rebooting the faulty tile. In case a
system developer indicated threshold is exceeded, the disagreeing tile
is assumed permanently defunct and not re-used as a spare.

To allow supervisor access to a tile and its address space, each
tile is equipped with an AXI debug-bridge (Fig. 4). The supervisor
can trigger execution of self-test functionality within a tile to detect
faults in peripherals. It can also trigger an adjustment of a tile’s thread
allocation as part of Stages 1 and 3, making the MPSoC’s computa-
tional performance, robustness and energy consumption adjustable at
runtime.

Majority voting between tiles can be implemented as distributed
majority decision [36], then requiring no direct intervention of the
supervisor during regular operation. If this is not desired, or lockstep
through interrupt triggered checkpoints is implemented, then the su-
pervisor should also take care of receiving the voting results generated
on each tile. In that case, the supervisor can access each tile’s thread
mapping via each tile’s debug interface, and if necessary induce a
reset or otherwise manipulate a tile without requiring its cooperation.

B. Tile Architecture

Our MPSoC design implements multiple isolated SoC-
compartments accessing shared main memory and OS code.
Even though the purpose and function of these compartments is
different, the topology resembles a tiled architecture instead of a
conventional MPSoC design, in which cores share infrastructure
and peripherals. This topology allows to maximize Stage 1’s fault-
coverage capacity and allows task mapping for general-purpose
software. Each such tile contains a processor core, local interconnect,
and peripheral IP-cores and interfaces as depicted in Fig. 4, resides
in its own clock domain, and can be reset independently. Allocating a
clock domain to each tile improves timing, and reduces logic-overlap
and interdependence between tiles. Furthermore, we can then also
utilize partial reconfiguration and frequency scaling for each tile, as
well as clock gating.

A tile executes a set of thread replicas, and its loss can be
compensated by the rest of the system. To assure a failed tile can
not cause performance degradation in the rest of the system (e.g.,
by continuously accessing DDR or program memory), it can be
disconnected off from the global interconnect by the supervisor. Non-
masked faults (due to radiation, aging, and wear) disrupt the data or
control flow of the software running on a tile. Stage 1 builds upon
this capability at the thread-level, as state differences can be detected
by other tiles and often even by the malfunctioning tile itself [18].

5

All tiles are equipped with an identical set of peripheral interfaces,
with controllers being mapped to identical locations and address
ranges. The tile address space layout is uniform across the system
and tiles are indistinguishable for software. Hence, application code
and data structures are portable between tiles, simplifying thread
migration drastically. This allows us to reduce the computational cost
and complexity of software-lockstepping.

Thread allocation and information relevant to the coarse-grain
lockstep is stored in a dedicated dual-ported on-chip BRAM on
each tile. One port is accessible to the tile’s processor core, while
the other is read-only accessible to the system, allowing low-latency
information exchange between tiles without requiring inter-tile cache-
coherence or main memory access.

C. Interconnect Topology & Shared Memory

Figure 5 depicts the MPSoC’s high-level topology with clock
domains, reset lines and supervisor access facilities. Our MPSoC
design utilizes an AXI interconnect in crossbar mode to allow tiles
access to shared main and non-volatile memory controllers, though
we are currently reworking our MPSoC to instead use a NoC [17].

Main memory is shared between tiles, as SD- and DDR memory
controllers are too large and require too much I/O to instantiate for
each tile. Each tile has full access to a segment of main memory,
which is mapped to the same address range on all tiles (the MMU
component in the figures). All tiles can access the main memory read-
only to simplify state synchronization and IPC.

For nanosatellite missions to LEO, often only SECDED ECC
support is required and readily available in library IP already, while
basic error scrubbing can be facilitated in software. For critical, deep-
space, and long-term missions, block coding should be used instead to
compensate for the increased impact of SEEs and higher likelihood
of MBUs in high-density SDRAM. Reed-Solomon ECC as well as
error scrubbers are available commercially, or can be assembled from
open-source IP. The main memory scrubbers are controlled by the
supervisor to avoid potential interference by malfunctioning tiles.

To safeguard main memory, FeRAM [37], MRAM [38], and mass
memory from SEFIs, as well as permanent failure, these memories,
their controllers, and their AXI interconnects are implemented re-
dundantly to enable fail-over. This also enables further protective
measures [39], and allows load distribution for timing critical main
memory through segment interleaving. Thereby the available DDR
memory bandwidth is increased and the overall latency for memory
access can be reduced. This also enables us to recover an instance of
a memory controller on short notice without requiring the full system
to be halted2.

2Note that depending on the used OS, a reboot of a tile may be required.
Linux supports modifications to the memory layout and relocation, while
simpler OS, such as RTEMS, do not currently know such functionality.

Debug
Bridge

AXI +
MMU

AXI

BRAMMemory
Scrub

CPU
CoreIRQ

Inter
faces

Supervisor

C
lo

ck
G

en

C
ac

he

R
es

et
G

en

r/o

Tile off

clk

rst

Fig. 4: The logic-side architecture of a tile. Access to local IP
bypasses the cache, while access to global memory passes is cached
for performance reasons.

SPI CTRL MCTLR

MCTLR
Main

Memory

Memory
Scrubber

FeRAM
(OS & Code)

Tile

X

Tile

T1 Partition

. . .

MMU

MMU

MCTLR
NAND Flash

(Payload Data)

QSPI ctlr

SPI CTRL
DDR ctlr
+ ECC

BRAM

BRAM

Tn Partition

S
up

er
v
is

or

Fig. 5: The topology of our tiled MPSoC design. Each tile exists
in its own reconfiguration partition and therefore also clock domain,
simplifying routing.

Tiles compete for DDR memory access. As our architecture is
implemented on FPGA, the clock frequency of each tile’s processor
core is lower as on ASIC implemented MPSoCs. In consequence, the
global interconnect as well as DDR memory controllers offer abundant
throughput at drastically higher clock frequencies. Each processor
core caches access to shared memory, drastically reducing the strain
on the memory subsystem3. Hence, while in principle competing
for memory bandwidth, even an 8-tile system can not saturate the
two available DDR4 channels in our current MPSoC design. Ideally
however, our architecture should be implemented using a NoC instead
of a global AXI-interconnect crossbar, which would offer drastically
better scalability, more effective caching and buffering, and also a
degree of FT.

D. I/O Sanitation

A fault resolved in Stage 1 may cause incorrect data to be emitted
through I/O interfaces. This is an inherent limitation of coarse-grain
lockstep concepts, and can only be slightly alleviated through addi-
tional application-intrusive work-around as described, for example, in
[2]. Instead, this limitation is better solved at the logic level through
interface-level voting, which is possible with minimal extra logic. For
most CubeSats, most nanosatellites, and less critical microsatellite
missions, however, this is usually foregone.

Larger spacecraft already utilize interface replications or even
voting to assure full hardware TMR, usually requiring considerable
effort in hardware or logic to facilitate this replication. Our MPSoC
architecture inherently provides interface replications by design, re-
quiring no extra measures to be taken, as the individual tile-interfaces
can be directly used for TMRed architecture.

Further safeguards are necessary for very small CubeSats where
interface replication is undesirable, for example, due to PCB-space
constraints. Most embedded interfaces like I2C and SPI allow a simple
majority decision per I/O line. While hardware voting is challenging
for large arrays of voters running synchronized at very high frequen-
cies, the CubeSat-relevant interfaces are electrically simple, have a
very low pin count, and run at relatively low clock frequencies. Hence,
voting for these interfaces can efficiently be implemented on-chip
through simple voters assuming tiles signals interface activity. As our
coarse grain lockstep mechanics allow software to be executed with
slight timing variations, I/O on these interfaces should be buffered
and application threads should also indicate the use of an interface.

For packet-based interfaces such as Spacewire, AFDX, CAN, or
Ethernet, no hardware- or logic-side solution is necessary. There,
packet duplication and integrity checking can be managed efficiently

3Access to a tile’s state memory still bypasses the cache, but this is
implemented directly in high-speed, low-latency on-chip BRAM

6

at the data link, network and transport layers (OSI layers 2 - 4)
or above through frame switching or packet routing. Today, this is
common practice in relevant industrial applications such as AFDX
[40] and TTEthernet [41] used in related fields such as atmospheric
aerospace or safety critical automotive applications.

V. CONCEPT VALIDATION AND TEST CAMPAIGN

The fault-coverage capacity of our architecture is dependent on
the correct functioning and effectiveness of the coarse-grain lockstep
mechanics described in Section III. Before pursuing a hardware-
prototype unit for radiation testing, we must therefore validate the
software mechanics first. A proper validation of software has been
shown to require systematic testing [29], which is not feasible due
to beam/chamber time constraints and cost reasons. The method of
choice for validating software-FT therefore is fault-injection, which
can be facilitated at different levels and granularity [29], [42], [43].

A. Fault-Injection Technique Selection

Our approach is a hardware/software hybrid design, and the MPSoC
is an FPGA design synthesized from source. Thus, fault-injection
using netlist simulation [44] or injection into an MPSoC on an FPGA
[45], [46] could be facilitated with comparably limited development
effort (as compared to developing a new FPGA design from scratch),
as we already utilize a development-board based MPSoC design
implementation. Several partially [45]–[47] and fully automated test
frameworks [42], as well as commercial applications [44], have been
developed for this purpose. However, netlist simulation is computa-
tionally disproportionately expensive. In prior research, MPSoCs are
thus occasionally simulated using SystemC to demonstrate architec-
tural features. Though, implementing fault injection via SystemC for
an entire MPSoC running a full OS would still be excessively time
consuming, and only viable for fault injection into very simple designs
executing less complex software [48]. Both of these approaches
therefore prevent a meaningful level of test coverage from being
achieved, as testing our FT mechanics requires a full processor-system
running an OS.

Faults could also be injected via widely available standard debug
tools into software using a variety of academic tools (see also [26],
[49], [50]), offering excellent scalability even for very large code sizes
[51]. However, this is only viable for simple userland applications [2],
the effects of faults on an actual OS cannot be simulated properly [52],
unless the entire development toolchain and source code is adapted
and utilized [51]. The kind and type of faults which can be simulated
by injecting faults into a virtual machine by attaching a debugger are
significantly constrained [29] due to the limited means of interactions
of a debugger on the virtual machine itself [28].

Fault-injection using system emulation can combine the ease of
use of fault-injection into software and the power and flexibility of
netlist or SystemC-based techniques. ISA-level fault-injection utiliz-
ing system emulation has been shown to be powerful and efficient
for conducting black- and grey-box fault-injection [27]. Several test
frameworks implementing this approach have emerged in recent years,
but most are custom tailored for specific use-cases, or are closed-
source and unavailable for public use [26]. Notable exceptions here
are the two open source frameworks FAIL [53] and FIES [54], which
are freely available as open source software and comparably mature.
Hence, we use ISA-level fault-injection to systematically validate our
FT approach using an automated test toolchain.

FAIL utilizes a powerful C++ based test controller for thoroughly
analyzing small binaries in a fully automated test campaign. While
the execution of a single fault-injection run is fully automated, it
requires a test-specific controller application. To develop such an

application, deep knowledge of the victim application’s structures and
its compiled intrinsics are required, and must be obtained manually.
The development of FAIL is mainly focused on the Intel platform,
while ARM is available via GEM5 for a single virtual target SoC or
through (potentially destructive) fault-injection into silicon [55].

FIES [54] was developed specifically to validate ARM-based
COTS-based critical systems and builds upon the faster and more
mature QEMU virtual machine monitor, thereby supporting a broad
variety of SoCs and peripheral hardware4. Despite allowing slightly
less control over virtual hardware than FAIL, it can efficiently handle
testing a full OS, without requiring the developer to develop a
test monitor with knowledge about application intrinsics. The test
campaign described in the remainder of this paper is thus being carried
out using an automated test toolchain built around FIES.

B. The Test Pipeline

FIES implements fault-injection through full system emulation in
QEMU, and is licensed under GPLv2. In the process of developing our
automated test toolchain, we extended FIES’ functionality to better
support different tracing techniques and added functional improve-
ments, and released the necessary patches5 to the public. Specifically,
we reworked and improved the rule-driven fault-injection engine,
rebased FIES from QEMU 1.17 to 2.12 (QEMU-head in December
2017), and added support for the THUMB2 instruction set, as most
OS kernels use both ARM and THUMB2 assembly intermixed. We
would like to invite the interested reader to try out this extended and
reworked version of FIES for their own fault-injection experiments.
A detailed function-graph of our Stage 1 logic is available in [18].

While FIES does not support automated testing, it is capable of
scripted and systematic fault-injection into opaque binaries. Its fault-
injection engine is rule based utilizing an XML-based fault-library,
with rules lending themselves well to being generated in bulk based
on instruction and memory access traces. This enabled us to develop
an automated fault-injection toolchain around this framework, which
performs the following steps as set of python scripts:

1) We run the OS image without fault-injection and tracing, out-
putting the application and OS state for comparison during later
steps. We obtain the victim’s correct process state, results and
correct Stage 1 checksums for each protected payload application
upon each checkpoint. To do so, we add additional logging to the
test-implementation, therefore producing a different RTOS binary
than used in the subsequent fault-injection experiment steps.

2) Execute the test-subject’s unaltered binary (without debug code)
to generate traces of the process counter and executed opcodes,
register access and memory access (golden run).

3) Process the generated traces to constrain fault-injection to lock-
step relevant code and data (e.g., omitting platform bring-up and
shutdown code). We remove duplicates, and annotate each trace-
entry with the number of occurrence in the trace, and generate
the actual test-campaign input.

4) For each instruction address and occurrence, generate a fault
definition library and launch an instance of FIES, which performs
the actual fault-injection.

5) For each run, determine the result of the fault-injection (e.g.,
OS crash, incorrect checksum, etc.) based on a comparison to
the known-correct results obtained in the first step, and log the
result to a database.

Steps 1 to 3 are performed at the beginning of a test campaign,
whereas steps 4 and 5 are computationally comparably expensive,

4Source code publicly available at https://github.com/ahoeller/fies.git
5We made our changes in the form of the reworked FIESer fault injection

tool available at https://fieser.dependable.space rebased as QEMU-git fork.

7

and executed in parallel by splitting the processed traces. Besides
collecting and interpreting the results of a fault-injection run, we also
retain tile state information to enable manual analysis if necessary.
This includes a tile’s output, CPU and QEMU processor context
dumps, as well as the logs generated by FIES during the fault-
injection, and its exit code.

During development, fault-injection was also conducted manually
by targeting specific locations in the applications’ binary structure.
We chose interesting data and logic which could cause an incorrect
application state, alter the applications’ control flow, or would result
in a different run-time behavior in a tile. These experiments were
conducted to verify the functionality of our approach, the experiment
setup and injection toolchain.

C. Target Implementation and Payload

Our fault-injection campaign was conducted against an imple-
mentation of our approach in RTEMS 4.11.2, using the ARMv7a-
Zynq board-support-package, which closely resembles the tiles of
our MPSoC. RTEMS is a real-time OS used in a broad variety
of space applications, from platform control to instrumentation. We
cross-compiled the kernel image from Fedora 28 x86_64 with stan-
dard compile flags (-marm -mfpu=neon -mfloat-abi=hard
-O2) in RTEMS GCC 4.9.3. We chose not to utilize the Linux kernel
for our fault-injection experiments to maximize the level of control,
and reduce the time overhead due to kernel bootup, even though our
approach was designed with Linux-compatibility in mind.

As payload application, we utilized ESA’s Next Generation DSP
benchmark6 run as POSIX threads within RTEMS, which is an ESA
standard benchmark application used to measure and compare DSP
system performance. To re-confirm our results, we performed the
same experiments with the same application used to conduct the
performance estimation in [18], resembling the NASA/James Webb
Space Telescope’s Mid-Infrared Instrument’s readout software [56].

D. Test Space and Target Components

In practice, choosing the right test-space for a practical OS-scale
implementation is non-trivial, in contrast to what is described as ideal
in literature. Sufficient test coverage for such software can often be
unobtainable in practice, and even fault-injection using state-of-the-
art tools requires a compromise between realism and test-coverage
to avoid runaway test-times and extreme equipment. Besides test
coverage, our architecture has to cope with not merely transient faults,
but also radiation-induced permanent faults, as these are common in
modern memories and processor components flying in space.

When considering fault-injection into program code, a broad variety
of secondary faults may occur, and many of these can only be analyzed
by the actual developer of an application using source code [51].
However, for our architecture, we are interested in the practical effect
an injected fault induces in the system and on an application, and
if our coarse-grain lockstep can gracefully handle them. Our Stage
1 implementation exists as part of the OS’s scheduler and as a set
of application callbacks, and therefore faults will have the following
effects on software executed on a tile:

• Data corruption associated with access to main memory, caches,
registers and scratchpad memory due to non-correctable ECC
words, faults in read/write logic, and misdirected access in
control logic.

• Incorrect or non-execution of instructions in the processor
pipeline during the Instruction Fetch, decode, execute and write-
back stages.

6Source code publicly available at https://essr.esa.int

• Control-flow deviations and data corruption due to failure of
interfaces and tile peripherals, and faults in controller logic or
the FPGA’s I/O components.

We developed a set of template fault definitions which our fault-
injection toolchain utilizes to generate suitable fault definitions to
reproduce faults in these components based on the aforementioned
program traces. Our toolchain utilizes these templates to generate a
FIES fault library for each instruction and memory address, allowing
scripted fault-injection.

Transient Fault-Injection: Transients are being injected as bit-flips
into registers and the processor pipeline using the program counter
as trigger. Time triggered injection (also supported by FIES) would
be insufficient, as it would prevent exact predictability faults. For
instructions which are visited more than once, we can trigger faults
after the n-th occurrence enabled by extending the FIES framework’s
fault definition mechanics. In the same manner, faults were injected
into memory access operations based on the read or written physical
address, thereby simulating non-correctable upsets in ECC protected
words in caches and main memory, as well as general faults in address
logic or buffers. To better simulate ECC-errors and faults in the
address logic, we can also directly replace accessed data or the address
of the operation, instead of just injecting bit-flips.

Permanent Fault-Injection: Permanent faults are injected into
every access to the interconnect by the system, including access to
main memory and devices address space. They were not injected into
general purpose registers, special registers, and the CPU pipeline,
however, as the effects of faults in these components are fatal at the
latest after a brief time period. In our MPSoC architecture, such faults
will result in crash of the RTOS and can then be detected at the next
checkpoint by other tiles. While it is important to not ignore parts
of our fault model, testing for faults with a known outcome would
needlessly inflate the test space.

Functional Interrupts: FIES allows injecting periodic and inter-
mittent faults (the effects of which persist for a short period of time
and are resolved afterwards). This functionality was used to simulate
SEFIs. We chose 100ns as fault-duration for SEFIs, the period-
equivalent to 10 clock cycles at 100MHz, the clock speed emulated
by QEMU for the Zync MPSoC, with approximately 20 instructions
executed by a Cortex-A CPU per guest-second. We believe this
represents reasonably well the interruption effect and the reset-induced
outage of specific circuit groups due to SEFIs. However, we are not
aware of research further analyzing the actual timing and interruption
behavior SEFIs in different components of a SoC and parts of the
FPGA fabric.

Fault Placement during Execution: After executing bring-up code
and OS initialization, our victim binary processes payload software for
3 lockstep cycles, and then terminates the RTOS. We chose a time
interval of 2 seconds as checkpoint frequency, which is reasonable
for operation in LEO when passing through increased radiation zones
such as the South Atlantic Anomaly, based on radiation-testing data
for Ultrascale [8], [57] with preliminary information obtained from
Ultrascale+ FPGAs [58]. In our current victim binary implementation,
execution during the golden run takes approximately 7 seconds
of guest-virtual time, which on our test system is equivalent to
approximately 30 seconds of host-time. In case the experiment does
not terminate in time, for example, due to control flow corruption or
infinite loops, the experiment is terminated externally. We terminate
the FIES/QEMU process after 45 seconds, and configured FIES to end
an injection run after executing given number of instructions (e.g., 10
times the number of instructions executed in the golden run).

Faults are injected after the first and until after the second check-
point. This allows faults to propagate within the system, corrupt the
OS and application state, potentially causing deviations in the program

8

Fault Detectable by Recovery Observed Effect per Fault Type

Impact Detectable victim tile other tiles through Transient Permanent Intermittent

Corrupted State yes yes yes state-update 49% 44% 53%

Thread Crash yes yes no state-update 8% 17% 10%

Lockstep Failure yes no yes reboot 1% 2% 1%

OS Crash yes no yes reboot 10% 18% 15%

Masked (no effect) (some*) (yes*) (no*) (reboot*) 32% 19% 21%

TABLE I: Fault injection experiment results for our RTOS implementation divided into transient, permanent, and intermittent faults. Notice
that our setup does not enable us to detect data corruption that does not impact on the thread state. Masked faults affecting OS data structures
could be detected through OS-level EDAC, while memory protection and virtual memory would allow us to detect a majority of these faults
through access violations. Neither of these measures are in place in our current RTEMS proof-of-concept implementation, but would improve
system robustness during a mission.

flow, without requiring excessive experiment time. Subsequently, we
can analyze if our coarse-grain lockstep approach could detect the
effects of a fault on the system (if any), and if they were resolved
through a state update from another compartment. Upon reaching
the third checkpoint, the application state should have recovered and
thereby generated checksums, and the CPU state should match the
golden run’s results. This allows us to verify the full FDIR cycle
from fault injection to recovery. To reduce the test space, we decided
to limit fault injection and exclude the OS’s platform bring-up and
shutdown code. The actual bootup and shutdown sequences of a tile
are not relevant to validating our implementation, and therefore fault-
injection in these parts would yield little insight into its performance.

Limitations: We chose the duration of fault-injection run to allow
our victim binary to exhibit the entire FDIR circle, while assuring
a reasonably short test-run to still allow systematic testing and test
coverage. However, this does not allow detection and observation of
dormant or latent faults, for example, affecting OS data structures
and logic resulting time-delayed regressions. The time allotted to each
fault-injection run therefore is a direct trade-off between test-coverage
and the ability to observe more long-term effects (e.g., after 10 to 20
checkpoints) in a system.

It would be feasible to inject faults in QEMU’s virtual hardware
directly as well. However, this is not supported in FIES in a scripted
manner at the time of writing, requiring instead source-code modifi-
cation for each device in QEMU. We can elevate this limitation, we
simulate the effects of such faults on the program flow through data
corruption, we inject faults during access to device address space.
This allows us to represent certain effects of faults on control logic,
such as incorrect addressing, and upsets in the peripheral’s buffers.

E. Results & Comparison to Related Work

Table I contains results of our fault-injection experiments. We
grouped the observed effects into different categories indicating their
outcome for simplicity. In payload-application code, a majority of
the injected transient faults resulted in a corruption to the payload
applications’ state. With less than 20% of all faults, the application
of the entire OS crashed or terminated prematurely (tile-resets were
treated as early termination). Faults affecting the lockstep mechanics
themselves (e.g., resulting in false comparison or incorrectly generated
checksums from correct data) were observed as well, but were rare due
to the minimal code and data footprint of the lockstep implementation.

During permanent fault injection, a comparable share of bit-flips
resulted in a corrupted thread state and thus checksum-comparison
mismatch. However, this number by itself is misleading, as the amount
of masked upsets without noticeable effects plummeted to just 19%,
while the share of thread- or OS-crashes increased. Therefore, we can
deduct that a number of faults which due to transient faults would
have resulted in just thread state corruption, now instead result in

crashes. The amount of detected faults in turn was increased again
by faults which were previously masked. Intermittent faults have a
similar effects to permanent ones, though with slightly fewer crashes
and more faults affecting only the payload application.

To provide context, we compare our results to literature. Unfor-
tunately, few published coarse-grain lockstep concepts have been
implemented at all and most of these were tested using statistical
projections only. At the time of writing, we are aware of only a
single realistic, publicly-released validation report by Dobel et al. [2]
considering practical fault-injection instead of statistical estimation.
Therefore, we compare our results to Dobel et al. in order to provide
a second point of reference for verification.

When directly comparing our results to Dobel et al.’s transient-only
fault-injection report, the share of faults causing application and OS
crashes measured with our approach is increased. For transient faults,
this can at least in part be explained with the different capabilities
of Dobel et al.’s proposed lockstep mechanics, which is facilitated
through application intrusive function call hooking. Thereby, they can
offer more fine-grained protection than our approach, but introduce
considerable code overhead and constrain the concept’s application to
one specific OS. The encountered differences are consistent across all
categories of fault-effects. We measure a higher amount of masked
faults, a decreased amount of detected state deviations, and an
increased amount of crashes with our approach.

Dobel et al. consider their fault-injection measurements overly opti-
mistic, as they utilized only payload “applications of little complexity
(leading to few potential candidates for fault injection)” [2]. Their
validation and FT concept is constrained to handling transient faults,
while SEFIs or permanent effects are not covered as these faults
were injected into a user-land application of their approach through
a debugger. Dobel et al. assume the OS to be guaranteed fault-free,
we instead inject faults into a full OS including POSIX libraries with
payload application threads. In light of this bias, the reduced detection
rates of our approach can be considered reasonable.

VI. LESSONS LEARNED

Comparing our results to Dobel et al.’s fault-injection results, we
conclude that our approach performs comparable to related work
(considering the different underlying fault detection and coverage
mechanics). It is important to note that a major share of faults resulting
in no observable effect may indeed be masked and require no measures
to be taken, as they have no impact on the application state [59]. This
is a limitation of our current fault injection toolchain, as faults are
also injected into registers and memory which may be overwritten by
subsequent instructions, or faults that cause self-masking control flow
deviations. Such situations occur, for example, due to faults in branch
or comparison instructions triggering the same iteration of a loop more
than once. These have no practical impact on the application state

9

while, and also do not cause timing deviations significant enough to
produce a difference in work conducted to the next checkpoint.

Our coarse-grain lockstep implementation can detect faults resulting
in a crash or in corruption of the thread state, but is currently oblivious
to silent data corruption in kernel data structures. Velasco et al.
propose in [60] to apply erasure coding for critical OS data structures,
while code signing is today widely used for tamper-proving embedded
devices. Such functionality would allow us to also detect silent data
corruption in rarely accessed OS structures and device drivers code
and data. In absence of such functionality, a tile’s checkpoint handler
could directly generate checksums for certain critical kernel data
structures, though the extent to which this is possible is limited.

Based on our experiments, we find comparably few faults inducing
crash and lockstep-failures, even when specifically relevant code
sections were targeted. This is important, as our architecture depends
on reaching a majority decision using 3+ thread-replicas in lock step,
and a roughly 10% ratio of tile-OS crashes is sufficient to provide the
necessary degree of voter stability, making synchronization rare, and
thread reassignments an exception. Too low voter stability could have
caused constant fluctuations in thread-assignments, requiring frequent
state synchronization, putting a high strain on the system as a whole.

When experimenting with different compiler flags, we found that
faults injected in equivalent code segments of differently compiled
binaries could result in different observed effects. We determined
through introspection of the relevant target binary parts, that the
changed behavior was caused by specific compiler flags. Loop un-
rolling (GCC’s -funroll-loops flag) had a particularly positive
effect when injecting permanent and intermittent faults. This is due
to the fact that this feature in practice introduces a certain level of
code redundancy instead of performing the loops conditional jump
and re-running the same instructions. Serrano Cases et al. in [61],
[62] as well as Lins et al. in [63] have begun to explore this issue
in regards to finding ways to exploit these features for improving
reliability, but otherwise industry and literature today seem oblivious
on this issue. Designers of software-FT measures must therefore also
consider the impact of a broad variety of behavior-altering flags and
toolchain settings supported by modern compiler suites, as these have
a direct impact on the utilized FT mechanics as well as validation.

FIES originally offered no support for the THUMB instruction set.
However, most OS kernels, many device drivers, and even standard
library functions tend to mix THUMB and ARM instructions even
within code segments, requiring special compiler interwork to support
jumps and function calls between the two instruction sets. Jumps
from ARM instructions to THUMB instructions without interwork
yields an undefined instruction exception, as the opcode-encoding for
ARM and THUMB instructions is different. This effectively prevents
undetected, incorrect jumps in ARM/THUMB interwoven code seg-
ments. Therefore, we added support for the THUMB and THUMB2
instruction sets to FIES, to assure consistent tracing and fault-injection
results. Due to the observed concept implementation behavior during
fault-injection before solving this limitation, we argue instruction set
mixing could be exploited to improve fault detection. Critical code
segments could intentionally be assembled with strong instruction-set
interweaving to assure that an incorrect jump immediately results in an
exception instead of silent data corruption or control-flow deviations.
For C-code, this can be achieved per function using target attributes
and prefixes, or more fine-grained using preprocessor definitions and
pragma.

When designing our coarse grain lockstep approach, we were aware
of two ways of inducing checkpoints: timer driven and interrupt
induced checkpoints. If timers are used on each tile to trigger
a periodic checkpoint at a later time, checkpoint initialization on
each tile is effectively decoupled and independent. Interrupt induced

checkpoints are however centrally triggered by the off-chip supervisor,
creating a potential single point of failure. At design time we therefore
considered timer driven lockstep to be a better choice under the view-
point of fault potential than an interrupt driven approach. However, our
fault injection campaign showed us that interrupt induced checkpoints
can have significant advantages. When preparing the victim binary, a
certain level of determinism is required to assure that the known-
correct application state obtained from the golden run still correlates
with the fault-injection runs. This showed that the timer-handling
related logic is comparably fragile, not due to the timer and alarm
triggering functionality itself, but rather due to the vulnerability of
the code related to and the setup of timer-handling code used during
checkpoints. Instead, the same RTOS implementation using interrupt-
triggering can be facilitated with considerably less code and therefore
offers better resilience.

VII. APPLICATIONS

The MPSoC architecture described in this contribution was de-
veloped for miniaturized satellite use, as an ideal platform for the
software-FT approach described in [18]. It was implemented on
a Xilinx XCKU5P FPGA with modest resource utilization (28%
LUTs, 33% BRAMs, 16% FFs, 5% DSPs) and 1.92W total power
consumption with four Microblaze-equipped tiles. In this design, tiles
were equipped each with one peripheral I2C master controller, one
SPI master, as well as a dual-channel GPIO controller, which is rather
typical for CubeSat applications, while CAN or Spacewire are today
not widely used aboard CubeSats. However, in [18] we also showed
that a tile’s logic footprint is relatively small in comparison to the
large area occupied by globally shared resources such as the global
AXI interconnects and the DDR memory controllers.

This architecture is not specifically dependent on utilizing
ARM processor cores, but can be implemented with any FPGA-
implementable core. Our choice of the ARM platform was taken in
part to allow thread migration between soft- and hard-cores (e.g., on
Zynq Ultrascale+), maximum comparability to COTS mobile-market
and embedded MPSoCs with secondary use aboard a major share
of CubeSats. Especially for low-budget CubeSat users in research
or university projects, standard vendor library cores such as Xilinx
Microblaze may be an excellent alternative to our Cortex-A choice,
as these are readily available to and often even free of charge.

The relaxed cost, energy, and size constraints aboard microsatel-
lites and larger spacecraft allow an implementation of our MPSoC
spanning multiple FPGAs. A multi-FPGA MPSoC variant offers
better scalability due to easier routing, can tolerate chip-level defects,
and SEFIs to the globally shared memory controllers, these can
be distributed to different FPGAs. Thread replicas can then be
distributed across FPGAs, allowing non-stop operation even during
full reconfiguration.

This approach and architecture could very well be implemented on
ASIC without reconfiguration and Stage 2, and we see this as a “big-
space” variant of our approach. An ASIC implementation offers lower
energy consumption, and allows higher clock rates due to reduced
timing and shorter paths. If manufactured in an inherently radiation
hard technology such as FD-SoI [64], it would be less susceptible to
transients and more robust to permanent faults. Due to the drastically
increased development cost and required manpower, the resulting
OBC would not be viable for most miniaturized satellite applications
(not anymore “on a budget”).

VIII. CONCLUSIONS

The 3-stage FT approach combined with its MPSoC host system
presented in this paper is the first practical, non-proprietary, afford-
able architecture suitable for FT general-purpose computing aboard

10

nanosatellites. It utilizes FT measures across the embedded stack,
and combines topological with software functionality, utilizing only
extensively validated standard parts. Thereby, we enable the use of
nanosatellites in critical space missions, while the architecture allows
trading processing capacity for reduced energy consumption or fault-
coverage.

An OBC relying upon this architecture can be facilitated with
the minimal manpower and financial resources. The MPSoC can be
implemented using only COTS hardware and extensively validated,
and widely available library IP, requiring no proprietary logic or
costly, custom space-grade processor cores. It offers a high level of
resource isolation for each processor, utilizing architectural features
originally conceived for ManyCore systems to achieve FT. Each tile
functions as a stand-alone processing compartment with dedicated
I/O, existing in its own clock domain and reconfiguration partition,
thereby minimizing shared resources and reducing routing complexity.
Compartments were purposefully designed to best support thread-level
coarse-grain lockstep of weakly coupled cores, while allowing partial
reconfiguration without stalling the rest of the system. The architecture
was implemented successfully, and tested on current generation Xilinx
Zynq/Kintex and Virtex FPGAs with 4, 6 and 8 tiles, and validated
through fault-injection into RTEMS.

Having developed a proof-of-concept implementation, our architec-
ture must now undergo radiation testing to validate it for on-orbit use
as soon as possible. Before this is possible, each individual component
of our architecture first had to be validated separately. This has been
achieved or proven by fellow researchers for all individual components
comprising our architecture except for our software-FT mechanics.
To validate this component, we therefore conducted a fault-injection
campaign, to deliver the high level of test-coverage required to assure
the effectiveness of our concept implemented in RTEMS. In this
paper, we present the results of this campaign, demonstrating that
the approach is indeed effective and efficient.

As the other parts of our architecture have been verified separately
in related work, the test campaigns outlined in this contribution
represent the final step in validating our current development-board
based proof-of-concept architecture. In the process of preparing and
conducting the fault-injection campaign, we not only validated these
mechanics, but also gained a deeper understanding of its behavior
under stress and could increase the maturity of our approach from
TRL2 to TRL3. The positive outcome of the fault-injection campaign
now enables us to develop a hardware prototype OBC to test the
resilience of our architecture at the system-level using laser fault-
injection and radiation testing to achieve TRL4.

ACKNOWLEDGMENT

We would like to thank Gianluca Furano, Giorgio Magistrati,
Antonios Tavoularis and Kostas Marinis at ESTEC/TEC-EDD and
Melanie Berg at the NASA Goddard Space Flight Center for their
support and invaluable feedback. We thank ARM Ltd. for making
available the relevant processor and infrastructure IP.

REFERENCES

[1] M. Langer and J. Bouwmeester, “Reliability of cubesats-statistical data, developers’
beliefs and the way forward,” in AIAA SmallSat, 2016.

[2] B. Döbel, “Operating system support for redundant multithreading,” Ph.D. dissertation,
Dresden University, 2014.

[3] F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures for Aerospace Applica-
tions: Soft Errors and Fault-Tolerant Design. Springer, 2016.

[4] R. Carlson, K. Hand, and E. Ozer, “On the use of system-on-chip technology in next-
generation instruments avionics for space exploration,” in IEEE VLSI-SoC, revised
paper. Springer, 2016.

[5] S. Gupta et al., “SHAKTI-F: A fault tolerant microprocessor architecture,” in IEEE
ATS, 2015.

[6] M. Pigno et al., “A testbench for validation of DST fault-tolerant architectures on
PowerPC G4 COTS microprocessors,” in Eurospace DASIA, 2011.

[7] A. S. Jackson, “Implementation of the configurable fault tolerant system experiment on
NPSAT-1,” Ph.D. dissertation, Naval Postgraduate School Monterey, 2016.

[8] M. D. Berg, K. A. LaBel, and J. Pellish, “Single event effects in FPGA devices 2014-
2015,” in NASA NEPP/ETW, 2015.

[9] L. A. Tambara et al., “Heavy ions induced single event upsets testing of the 28 nm
Xilinx Zynq-7000 all programmable SoC,” in IEEE REDW, 2015.

[10] M. Wirthlin, “High-reliability FPGA-based systems: space, high-energy physics, and
beyond,” Proceedings of the IEEE, vol. 103, no. 3, 2015.

[11] A. Stoddard et al., “A hybrid approach to FPGA configuration scrubbing,” IEEE
Transactions on Nuclear Science, 2017.

[12] L. Bozzoli and L. Sterpone, “Self rerouting of dynamically reconfigurable SRAM-based
FPGAs,” in NASA/ESA AHS. IEEE, 2017.

[13] M. Ebrahimi et al., “Low-cost multiple bit upset correction in SRAM-based FPGA
configuration frames,” IEEE Transactions on VLSI Systems, 2016.

[14] F. Rittner et al., “Automated test procedure to detect permanent faults inside SRAM-
based FPGAs,” in NASA/ESA AHS. IEEE, 2017.

[15] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on multi/many-core
systems: survey of current and emerging trends,” in DAC. ACM, 2013.

[16] P. Meloni et al., “System adaptivity and fault-tolerance in NoC-based MPSoCs: the
MADNESS project approach,” in IEEE DSD, 2012.

[17] N. K. R. Beechu et al., “Hardware implementation of fault tolerance NoC core
mapping,” Springer Telecommunication Systems, 2017.

[18] C. M. Fuchs et al., “Bringing fault-tolerant gigahertz-computing to space,” in IEEE
ATS, 2017.

[19] U. Martinez-Corral and K. Basterretxea, “A fully configurable and scalable neural
coprocessor ip for soc implementations of machine learning applications,” in NASA/ESA
AHS. IEEE, 2017.

[20] A. Höller et al., “Software-based fault recovery via adaptive diversity for COTS multi-
core processors,” 2015, arXiv:1511.03528.

[21] P. Munk et al., “Toward a fault-tolerance framework for COTS many-core systems,” in
IEEE EDCC, 2015.

[22] A. D. Santangelo, “An open source space hypervisor for small satellites,” in AIAA
SPACE, 2013.

[23] E. Missimer, R. West, and Y. Li, “Distributed real-time fault tolerance on a virtualized
multi-core system,” Euromicro ECRTS, OSPERT, 2014.

[24] Z. Al-bayati et al., “Fault-tolerant scheduling of multicore mixed-criticality systems
under permanent failures,” in IEEE DFT, 2016.

[25] U. Kretzschmar et al., “Synchronization of faulty processors in coarse-grained TMR
protected partially reconfigurable FPGAs,” Elsevier RESS, 2016.

[26] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability with software
fault injection: A survey,” ACM Computing Surveys, 2016.

[27] B. Sangchoolie et al., “Light-weight techniques for improving the controllability and
efficiency of isa-level fault injection tools,” in PRDC. IEEE, 2017.

[28] D. Cotroneo et al., “Experimental analysis of binary-level software fault injection
in complex software,” in 2012 Ninth European Dependable Computing Conference.
IEEE, 2012, pp. 162–172.

[29] R. Natella et al., “On fault representativeness of software fault injection,” IEEE
Transactions on Software Engineering, vol. 39, no. 1, pp. 80–96, 2013.

[30] S. Malik and F. Huet, “Adaptive fault tolerance in real time cloud computing,” in IEEE
World Congress on Services, 2011.

[31] K. Smiri et al., “Fault-tolerant in embedded systems (MPSoC): Performance estimation
and dynamic migration tasks,” in IEEE IDT, 2016.

[32] Z. Al-bayati et al., “A four-mode model for efficient fault-tolerant mixed-criticality
systems,” in IEEE DATE, 2016.

[33] N. T. H. Nguyen, “Repairing FPGA configuration memory errors using dynamic partial
reconfiguration,” Ph.D. dissertation, The University of New South Wales, 2017.

[34] C. M. Fuchs et al., “Enhancing nanosatellite dependability through autonomous chip-
level debug capabilities,” in Springer ARCS, 2016.

[35] ——, “Dynamic fault tolerance through resource pooling,” in NASA/ESA AHS. IEEE,
2018.

[36] N. Katta et al., “Ravana: Controller fault-tolerance in software-defined networking,” in
ACM SIGCOMM. ACM, 2015.

[37] Z. Zhang et al., “Single event effects in COTS ferroelectric RAM technologies,” in
REDW. IEEE, 2015.

[38] G. Tsiligiannis et al., “Testing a commercial MRAM under neutron and alpha radiation
in dynamic mode,” IEEE Transactions on Nuclear Science, 2013.

[39] C. M. Fuchs et al., “A fault-tolerant radiation-robust mass storage concept for highly
scaled flash memory,” in Eurospace DASIA, 2015.

[40] Aeronautical Radio, INC, ARINC Specification 664: Avionics Full Duplex Switched
Ethernet (AFDX), 2005.

[41] V. Gavrilut et al., “Fault-tolerant topology and routing synthesis for ieee time-sensitive
networking,” in RTNS. ACM, 2017.

[42] W. Mansour and R. Velazco, “An automated seu fault-injection method and tool for
hdl-based designs,” IEEE Transactions on Nuclear Science, 2013.

[43] A. Da Silva and S. Sanchez, “LEON3 ViP: A virtual platform with fault injection
capabilities,” in DSD. IEEE, 2010.

[44] K. Suresh et al., “Debug environment for a multi user hardware assisted verification
system,” Feb. 1 2018, US Patent App. 15/646,003.

[45] J. L. Nunes et al., “Fired–fault injector for reconfigurable embedded devices,” in PRDC.
IEEE, 2015.

[46] D. Cozzi, “Run-time reconfigurable, fault-tolerant FPGA systems for space applica-
tions,” Ph.D. dissertation, Universität Bielefeld, 2016.

[47] M. Alderighi et al., “Evaluation of single event upset mitigation schemes for sram based
fpgas using the flipper fault injection platform,” in DFT. IEEE, 2007.

[48] P. Lisherness and K.-T. T. Cheng, “SCEMIT: A SystemC error and mutation injection
tool,” in DAC. ACM, 2010.

11

[49] S. Winter et al., “The impact of fault models on software robustness evaluations,” in
ICSE. IEEE, 2011.

[50] A. Johansson, “Robustness evaluation of operating systems,” Ph.D. dissertation, TU
Darmstadt, 2008.

[51] E. van der Kouwe and A. S. Tanenbaum, “HSFI: accurate fault injection scalable to
large code bases,” in DSN. IEEE, 2016.

[52] D. Cotroneo and R. Natella, “Software fault injection for software certification,” IEEE
Security & Privacy, 2013.

[53] H. Schirmeier et al., “FAIL: An open and versatile fault-injection framework for the
assessment of software-implemented hardware fault tolerance,” in EDCC. IEEE, 2015.

[54] A. Höller et al., “FIES: a fault injection framework for the evaluation of self-tests for
COTS-based safety-critical systems,” in MTV. IEEE, 2014.

[55] J. Isaza-González et al., “Dependability evaluation of cots microprocessors via on-chip
debugging facilities,” in IEEE LATS, 2016.

[56] M. Ressler et al., “The Mid-Infrared instrument for the James Webb Space Telescope,”
Astronomical Society of the Pacific, 2015.

[57] D. S. Lee et al., “Single-event characterization of the 20 nm xilinx kintex ultrascale
field-programmable gate array under heavy ion irradiation,” in REDW. IEEE, 2015.

[58] T. Lange et al., “Single event characterization of a Xilinx UltraScale+ MP-SoC FPGA,”
in SpacE FPGA Users Workshop, 2018, preliminary.

[59] X. Li and D. Yeung, “Application-level correctness and its impact on fault tolerance,”
in HPCA. IEEE, 2007.

[60] A. o. Velasco, “A hardening approach for the scheduler’s kernel data structures,” in
CompSpace at ARCS2017, 2017.

[61] A. Serrano Cases et al., “Automatic compiler-guided reliability improvement of embed-
ded processors under proton irradiation,” in RADECS. IEEE, 2018.

[62] A. Serrano-Cases et al., “On the influence of compiler optimizations in the fault
tolerance of embedded systems,” in IOLTS. IEEE, 2016.

[63] F. M. Lins et al., “Register file criticality and compiler optimization effects on embed-
ded microprocessor reliability,” IEEE Transactions on Nuclear Science, 2017.

[64] M. Kochiyama et al., “Radiation effects in silicon-on-insulator transistors with back-
gate control method fabricated with OKI semiconductor 0.20 µm FD-SOI technology,”
Elsevier Nuclear Instruments and Methods in Physics Research, 2011.

Christian M. Fuchs has been active as consul-
tant in computer reliability and security since 2001,
pursue academic studies starting 2009. He received
his B.Sc.E. from Hagenberg University of Applied
Sciences, Austria, specializing on operating system
security and his M.Sc. in computer science with
minor on space engineering from Technical Uni-
versity Munich (TUM), Germany. There he joined
the MOVE CubeSat project, working on the Cube-
Sat FirstMOVE, launching into LEO in 2014 and
conducting operations and later post-mortem, subse-

quently also developing the successor satellite MOVE-II (launch in Q4/2018).
His research since the FirstMOVE post-mortem analysis has been the devel-
opment a software-FT based fault tolerant OBC architecture for miniaturized
spacecraft using COTS technology, and since 2016 he is continuing this
research at Leiden University as Ph.D. researcher through an ESA project
grant.

Nadia M. Murillo received her B.Sc. degree in
Physics in 2011 and a M.Sc. in Astrophysics in
2012 from National Tsing Hua University (NTHU),
Taiwan. She received her Ph.D. in Astrophysics from
Leiden University in 2017 and is currently a postdoc-
toral researcher in the James Webb Space Telescope’s
(JWST) Mid-Infrared Instrument (MIRI) team at Lei-
den University. Besides her involvement in MIRI, her
research interests include the early stages of multiple
star formation, and chemical characterization of the
envelopes of young embedded protostars. Her current

research is focused on combining observation with ground-based and space
telescopes, together with chemical and physical models in order to understand
the formation of stars.

Aske Plaat studied at University of Alberta, Edmon-
ton, Canada, and received his M.Sc. in Information
Management from Erasmus University Rotterdam,
the Netherlands, on distributed systems and compiler
optimization. In 1996 he received his Ph.D. in arti-
ficial intelligence for research on search algorithms,
and developed the MTD(f) algorithm, which now is
part of Intel’s parallel compiler suite. After receiv-
ing his Ph.D., he held post-doc and professorship
positions at Vrije Universiteit Amsterdam, Tilburg
University, NHTV Breda, the University of Alberta,

and the Massachusetts Institute of Technology (MIT), working on distributed
algorithms, artificial intelligence, and trajectory optimization for space mis-
sions. Since 2014, he is professor at Leiden University, where he is currently
serving as the director of Leiden Universities computer science department
(LIACS). Today, his research interests are in reinforcement learning.

Erik van der Kouwe received B.Sc. degrees in com-
puter science and mathematics at the Vrije Univer-
siteit Amsterdam, followed by an M.Sc. in computer
science. He received his Ph.D. in Computer Science
in 2015 for his research in operating system reliabil-
ity, virtualization, and software fault injection with
Andrew S. Tanenbaum. He is currently an assistant
professor at Leiden University. His research interests
in computer systems are centered around security
and reliability, specifically software fault injection,
software defenses based on compiler instrumentation,

and benchmarking practices in systems security. His current research aims to
protect legacy software against attacks.

Daniel Harsono received his B.Sc. degree in Astro-
physics in 2008 from University of California Los
Angeles (UCLA). He received his M.Sc. degree in
Astronomy from Leiden University in 2010, and
his Ph.D. in 2014. He is currently a postdoctoral
researcher working in the Atacama Large Millime-
ter/submillimeter Array (ALMA) support group. His
astrochemistry research focuses on the formation of
low-mass protostars, early Solar System, and forma-
tion of complex molecules. He combines astronomi-
cal observations from X-ray to submm with the de-

velopment in simulations and massively parallel radiative transfer applications.

Todor P. Stefanov received Dipl.Ing. and M.S. de-
grees in computer engineering from the Technical
University of Sofia, Bulgaria, in 1998 and the Ph.D.
degree in computer science from Leiden University,
The Netherlands, in 2004. From 1998 until May
2000, he was a Research and Development Engineer
with Innovative Micro Systems, Ltd., Sofia., design-
ing ASIC IP and a reconfigurable MicroSystems-on-
Silicon In-Circuit Emulator based on FPGAs. After
holding Post-Doc positions at Leiden University and
TU-Delft, he received a professorship at Leiden Uni-

versity in 2008. His research is focused on system-level design automation for
FPGAs, MPSoC design, and parallel computing, and real-time scheduling.

