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Abstract. In many Real-Time Strategy (RTS) games, players develop
an army in real time, then attempt to take out one or more opponents.
Despite the existence of basic similarities among the many different RTS
games, engines of these games are often built ad hoc, and code re-use
among different titles is minimal. We identify a design pattern called
“Resource Entity Action” (REA) that abstracts the basic interactions
that entities have with each other in most RTS games. This paper dis-
cusses the REA pattern and its language abstraction. We also discuss
the implementation in the Casanova game programming language. Our
analysis shows that the pattern forms a solid basis for a playable RTS
game, and also that it achieves considerable gains in terms of lines of code
and runtime efficiency. We conclude that the REA pattern is a suitable
approach for the implementation of many RTS games.

1 Introduction

Real-time strategy (RTS) games have been highly popular for decades. As out-
lined by the ESA[1], RTS games are registering strong sales and a large number
of play hours. Commercial RTS games are written by game developers of differ-
ent backgrounds: from large studios to smaller independent developers of indie
games. Indie developers [7] typically consist of small teams and their games are
known for innovation [8], creativity [10] and artistic experimentation [3]. RTS
games are also built as “serious games” [2], used for training and education, and
as “research games” [4].

In general, the building of games is an expensive venture [5]. This is chal-
lenging in particular for indie developers and developers of serious and research
games, who usually have access to few resources. They would benefit of cost-
effective development methodologies for games, through the identification and
automation/reuse of common patterns in games. Surprisingly, from a survey
of game development research and literature, we noticed a lack of studies of



abstract patterns which characterize games, in particular RTS games. This mo-
tivates our research question: to what extent can we capture the commonalities
of RTS games in a re-usable design pattern?

Section 2 discusses the essential elements of an RTS game. Section 3 spec-
ifies the Resource Entity Action (REA) design pattern [6] that captures these
essential elements. Section 4 describes how the pattern is implemented as a lan-
guage extension of the Casanova game programming language [9]. The language
extension is purely declarative, using semantics that resemble SQL, providing
an intuitive adoption for most programmers. We implemented the extension in
a full-fledged RTS, which we discuss and analyze in Section 5.

2 Essential elements of RTS games

RTS are a variation of strategy games where two or more players achieve spe-
cific (often conflicting) objectives by performing actions simultaneously in real
time. The typical elements which arise from this genre are units (characters,
armies), buildings, resources and battle statistics. Players command units to per-
form different types of actions. These actions can affect several entities in the
game world.

Units and buildings are the entities that players control to achieve their
objectives. Units usually fight or harvest resources, while buildings may be used
to create new units or research upgrades. Resources are gathered from the playing
field and fuel the economy of the game entities. Battle statistics determine the
offensive and defensive abilities of units in a fight. This taxonomy of the elements
of an RTS game can be applied successfully to multiple games: Starcraft, C&C,
and Age of Empires all feature units, buildings, resources, and battle statistics,
amongst other elements.

In order to arrive at our design pattern we will now apply a simplification.
Battle statistics can be interpreted as resources, as for instance: “the life of a unit
is the cost for killing it, payable in attack power.” We can also merge units and
buildings together into a new category called entities. This leads us to a simpler
view of an RTS as a game that is based on Resources, Entities and Actions:

1. Resources: numerical values in the battle and economic system of the game.
In this group we find the attack, defense, and life patterns of entities. Re-
sources also cover building materials and costs of production, deployment of
units, development of new weapons, etc. (Resources are scalars.)

2. Entities: container for resources. They have physical properties and, as for
the game logic, the difference among them is only the interactions. These
interactions take place with resource exchanges through the actions. (Entities
are vectors.)

3. Actions: resource flow among entities. Our model can be viewed as a directed
weighted graph where the nodes are the entities, the weights are the amounts
of exchanged resources, and the edges are the actions, that is, the elements
which connect entities to one another. (Actions are transformation matrices.)

Next, we discuss how we model Resources, Entities and Actions.



3 The REA design pattern

In this section we will define a model for an algebra to show that the REA (Re-
source Entity Action) model can be reduced to a problem of linear algebra. We
then show how games that use this model can be further simplified by linguistic
constructs.

3.1 Action algebra

An action consists of a transfer of resources from a source entity to one or more
target entities. We require that each entity has a resource vector, which contains
the current amount of resources of the entity. The resource vector is sparse,
since most actions involve only few resource types. An action is expressed by a
transformation matrix A.

Consider a set of target entities T = {t1, t2, ..., tn}, which are the targets
of the action, and a source entity e. Each entity ti (including the source entity
type) has a resource vector ri = (ri1 , ri2 , ..., rim). The source entity also has a
transformation matrix A of size m×m, which defines the interactions between
all the resources of the source entity and all the resources of the target entities.
We also consider an integrator dt which contains the time difference between the
current frame and the previous one. We then computewe = (we1 , we2 , ..., wem) =
rs × A · dt. From the definition of matrix multiplication, it immediately follows
that each component ofwe represents how a resource will change by applying the
effect of all the other resources to it. We compute the vector r′i = ri+we ∀ei ∈ E
which replaces the resource vector in each target entity.

For instance, consider the action of a spaceship entity using laser to damage
(resource) an enemy spaceship (entity). This involves a vector resource of two
elements: laser and life points. The action must transfer laser points to subtract
from the enemy life points. Suppose that the vector resource of the targeting ship
is rs = (20, 500) and the vector resource of the targeted ship is rt = (15, 1000).

Let the transformation matrix be A =

[
0 −1
0 0

]
which means that the source

entity will affect the life of the target with a negative number of laser points.
Thus we = rs×A · dt = (20, 500)×A · dt = (0,−20) · dt. At this point, assuming
dt = 1 second, we have r′t = rt + we = (20, 1000) + (0,−20) · dt = (20, 980).

3.2 A declarative language extension

We now describe a language extension that implements the REA design pat-
tern and its associated algebra for the Casanova game programming language
[9]. The language extension is purely declarative. Its semantics are described
using the SQL query language, which has the advantage of familiarity to most
programmers.

Implementing the action algebra is done using an abstract class which con-
tains an abstract method which performs the action. Each action is a class which
extends the previous abstract class and implements the abstract method. This



method will fetch the world looking for the information needed to find what
entities are affected by the action execution. Each entity of the game will have
a collection of actions it can perform, automatically run by Casanova.

To identify the set of target entities T given a source entity and its action, we
create a new type definition called action. An action is a declarative construct
which is used to describe not only the resource exchange between entities, but
also what kinds of entities participate in the exchange. The resource exchange
is based on transfers (Add, Subtract, and Set), while the target determination
is based on predicates: we filter the game world entities depending on their
types,attributes and radius (specifying the distance beyond which the action
is not applied). Some actions, called threshold actions, are not continuous and
make use of special predicates to delay the execution (Output) until certain
conditions are met.

Using actions it is possible to specify an exchange of resources in a fully
declarative manner, so that the developer does not have to rewrite similar pieces
of code ad hoc for each action.

4 Action syntax and semantics

We now give the syntax and semantics of actions in Casanova. The grammar
allows the definition of actions, which make up the body of spacial Casanova
entities which act as placeholders for actions. When an entity contains such an
action, the Casanova runtime will apply it to all appropriate targets.

4.1 Action Grammar Definition

We first provide a taxonomy for actions. We divide the actions into three kinds:
(1) constant transfer actions, (2) mutable transfer actions, and (3) threshold
actions.

Constant Transfer actions update the target fields with a constant value
or a value taken from one of the source fields. The source field is not affected
by the resource transfer. An example of a constant transfer action is a defense
tower with infinite ammunition shooting an arrow at an infantry unit.

TARGET Infantry; RESTRICTION Owner <> Owner; RADIUS 1000.0;
TRANSFER CONSTANT Life - ArrowDamage;

Mutable Transfer actions are used when the resource exchange transfers
resources from the source entity to the target entity, or vice versa. An example
of a mutable transfer action is a spaceship transferring minerals from its holds
to a shipyard.

TARGET Shipyard; RESTRICTION Owner = Owner; RADIUS 150.0;
TRANSFER MineralStash + Minerals;

Threshold actions follow the same transfer semantics as the previous two
types of actions. In addition, they have a collection of threshold values and output



operations. The output operations are executed once when all the threshold
values are reached. The threshold values are on fields belonging to the source
entity. The output operations modify only fields of the source entity following
the semantics of the transfer operations. An example for a threshold action is a
worker building a town hall. When the integrity of the town hall reaches 100,
a flag completed is set (which is one of its fields) which warns the system to
replace the partially constructed building with the complete building.

TARGET ConstructionTownHall; RESTRICTION Owner = Owner;
RADIUS 10.0; TRANSFER CONSTANT Integrity + 1.0; THRESHOLD
Integrity = 100.0; OUTPUT Completed := true

Below we give a formal definition for the grammar instances presented in the
examples above, using the extended Backus-Naur form. A Casanova Entity is
an entity in the game world represented as a record; the special keyword Self
is used to refer to the entity owning the action as one of its fields.

<Action > ::= TARGET <TARGET LIST > <RESTRICTION LIST > [<RADIUS
CLAUSE >] <TRANSFER LIST >

<INSERT LIST > [<THRESHOLD BLOCK >]
<TARGET LIST > ::= <ACTION ELEMENT >+
<ACTION ELEMENT > ::= Casanova Entity | Self
<RESTRICTION LIST > ::= {<RESTRICTION CLAUSE >}
<RESTRICTION CLAUSE > ::= RESTRICTION Boolean Expression of <

SIMPLE PRED >
<SIMPLE PRED > ::= Self Casanova Entity Field (= | <>) Target

Casanova Entity Field
<TRANSFER LIST > ::= {<TRANSFER CLAUSE >}
<TRANSFER CLAUSE > ::= (TRANSFER | TRANSFER CONSTANT)
(Target Casanova Entity Field) <Operator > ((Self Casanova

Entity Field) | (Field Val)) [* Float Val]
<Operator > ::= + | - | :=
<RADIUS CLAUSE > ::= RADIUS (Float Val)
<INSERT LIST > ::= {<INSERT CLAUSE >}
<INSERT CLAUSE > ::= INSERT (Target Casanova Entity Field) ->

(Self Casanova Entity Field List)
<THRESHOLD BLOCK > ::= <THRESHOLD CLAUSE >+
<OUTPUT CLAUSE >+
<THRESHOLD CLAUSE > ::= THRESHOLD
(Self Casanova Entity Field) Field Val
<OUTPUT CLAUSE > ::= OUTPUT
(Self Casanova Entity Field) <Operator > ((Self Casanova

Entity Field) | (Field Val)) [* Float Val]

4.2 Formal semantic definition

Given the fact that actions resemble queries on entities, we specify their se-
mantics as translation semantics to SQL. This allows us to leverage existing
discussions on SQL correctness [12].



In defining our translation rules formally, we consider a set T = {t1, t2, ..., tn}
of target types and a source entity type s. In all actions we select a subset of
targets in each ti on which to apply the action, using restriction conditions if
any exist. After that we apply the resource transfer.

We assume that each entity type is represented by an SQL relation and that
there exists a key attribute called Id for each relation. We now consider each of
the three translation cases. In the translation rules we use notations inside the
SQL code taken from the Backus-Naur form for grammar definitions. We also
extend the SQL grammar with a global variable dt which is the time difference
between the current and the last game frame. In this way the increment of the
entity attribute values are proportional to the elapsed time. All types of actions
evaluate the predicates in the restriction conditions and apply a filter to their
targets. All targets further than the radius are automatically discarded when
executing the action. The transfer predicates are executed immediately on all
filtered targets.

For a CONSTANT TRANSFER we must update each target with the
value in the source fields or constant values specified in the transfer clause. For
simplicity, we assume that constant values are stored as attributes of the source
entity.

Consider a set of resource attributes A = {aj1 , aj2 , ..., ajm} of the source
entity used to update the target ti. To compute the contribution of all sources of
the same type on the target ti, we specify a relation of which the tuples represent
the target id, followed by the total amount of resource ajr to transfer, called Σr:

Transfer
ID Σ1 Σ2 · · · Σm

The following SQL instruction implements the relation definition above:

SELECT ti.id , SUM(s.aj1} AS Σ1,
SUM(s.aj2} AS Σ2 ,...,
SUM(s.ajm} AS Σm

FROM Target ti, Source s
WHERE <RESTRICTION LIST > [AND <RADIUS CLAUSE >]
GROUP BY ti.id

∀ti ∈ T we update the target attributes A′ = {at1 , at2 , ..., atm} using one
of the target operators defined in the grammar (Set, Add, Subtract) with the
attributes of the previous relation scheme.

WITH Transfer AS(
SELECT ti.id , SUM(s.aj1} AS Σ1,

SUM(s.aj2} AS Σ2 ,...,
SUM(s.ajm} AS Σm)

FROM Target ti, Source s
WHERE [<RESTRICTION LIST >] [AND <RADIUS CLAUSE >]



GROUP BY ti.id)
UPDATE Target ti
SET ti.at1 = u.Σ1 | ti.at1 = ti.at1 + u.Σ1 * dt | ti.at1 =
ti.at1 - u.Σ1 * dt\
· · ·
FROM Transfer u
WHERE u.id = ti.id

For a MUTABLE TRANSFER the field of the source involved in the
resource transfer is updated depending on the applied transfer operator. The
resource is subtracted from the source field and added to the target field pro-
portionally to dt, or vice versa.

To translate this semantic rule we must first determine how many targets (if
any) are affected by each source entity, in order to obtain the following relation
scheme:

TotalTargets
Source ID TargetCount

The SQL code implementing the previous scheme is the following:

TotalTargets =
SELECT s.id ,COUNT (*) AS TargetCount
FROM Source s, Target t1, Target t2 ,...,Target tn
WHERE <RESTRICTION LIST > [AND <RADIUS CLAUSE >]
GROUP BY s.id
HAVING COUNT (*) > 0

∀ti ∈ T we need to obtain a relation storing what target each of the source
entities is affecting, including a count of affected targets, using the following
relation scheme:

OutputSharing
Source ID Target ID Output Sharing

This scheme is implemented by the following SQL code:

OutputSharing =
SELECT *
FROM TotalTargets c, SourceOutput c1
WHERE c.s_id = c1.s_id

AND SourceOutput =
SELECT s.id AS s_id ,ti.id AS t_id
FROM Source s, Target ti
WHERE <RESTRICTION LIST > [AND <RADIUS

CLAUSE >]
AND TotalTargets = [...]

Each target attribute receives an amount of resources equal to the total
transferred resources divided by the number of targets. The complete SQL code
to update the target ti is the following:



WITH Transfer AS(
SELECT ti.id , SUM(s.aj1 / o.TargetCount) AS Σ0,SUM(s.aj2

/ o.TargetCount) AS Σ2 ,...,SUM(s.ajm / o.
TargetCount) AS Σm

FROM Source s, Target ti,OutputSharing o
WHERE OutputSharing = [...] AND s.id = o.s_id AND t

.id = o.t_id)
GROUP BY ti.id

UPDATE Target ti
SET ti.at1 = u.Σ1 |ti.at1 = ti.at1 + u.Σ1 * dt |ti.at1 = ti.at1 - u.

Σ1 * dt
· · ·
FROM Transfer u
WHERE ti.id = u.id

To update the Source relation we use a relation similar to the one use to
update the target, but this time there is no need to save the count of the affected
targets.

WITH TotalTransfer AS(
SELECT s.id ,s.aj1 ,s.aj2 ,...,s.ajm
FROM Source s, Target t1 ,...,Target tn
WHERE <RESTRICTION LIST >

[AND <RADIUS CLAUSE >]
GROUP BY s.id,s.aj1 ,s.aj2 ,...,s.ajm
HAVING COUNT (*) > 0)

UPDATE Source s
SET s.aj1 = s.aj1 - s.aj1 ∗ dt|s.aj1 = s.aj1 + s.aj1 ∗ dt
· · ·
FROM TotalTansfer u
WHERE s.id = u.id

The THRESHOLD action is defined as the previous two types, i.e., it has a
resource transfer definition which is always executed, and a set of threshold con-
ditions that, if met, activate the Output operations, which are always towards
the source entity. The attributes of the source entity affected by Output oper-
ations are updated with constant values, or with values from other attributes
in the source entity. In the latter case the transfer is treated as for the mutable
transfer case.

Consider a set of updating attributes U = {ak1 , ak2 , ..., akl
} and a set of

attributes to be updated U ′ = {as1 , as2 , ..., asl} in the output operation. We
first check that all the conditions in the threshold clauses are met, then we
update the attributes in the source entity appropriately.

WITH TotalOutput AS(
SELECT s.id ,s.ak1 ,s.ak2 ,...,s.akl

FROM Source s
WHERE <THRESHOLD CLAUSE 1>



[AND <THRESHOLD CLAUSE 2>]
.
.
.
[AND <THRESHOLD CLAUSE l>])

UPDATE Source s
SET s.as1 = o.ak1 |s.as1 = (s.as1 + o.ak1) ∗ dt; o.ak1 = o.ak1 -

o.ak1 ∗ dt|s.as1 = (s.as1 - o.ak1) ∗ dt; o.ak1 = o.ak1 + o.ak1 ∗ dt
· · ·
FROM TotalOutput o
WHERE s.id = o.id

5 Case study

We now present an RTS game we used as a case study, created with Casanova,
and the benchmarks that test the action implementation. In the game players
must conquer a star system made up of various planets. Each planet builds
fleets which are used to fight the fleets of the other players and to conquer more
planets. A planet is conquered when a fleet of a player is near it and no other
enemy fleet is defending it.

5.1 Case study

Three actions are required in this game: The first action, called Fight Action,
defines how a fleet fights enemy fleets in range. The fight action subtracts 0.5 ·dt
life points from the in-range enemy fleet during every frame (action tick).

Fleet = {Position: Rule Vector2;FightAction: FightAction;
Owner: Ref Player;Life: Var float32;Fight: FightAction }

The Fight Action is defined as follows:

FightAction = TARGET Fleet; RESTRICTION Owner <> Owner;
RADIUS 150.0; TRANSFER CONSTANT Life - 0.5;

The target is an entity of which the type is Fleet. The condition to execute
the action is that the fleet must be an enemy (i.e., not the player). The attack
range is 150 units of distance. 0.5 life points are subtracted for every attack.

The second action is called BuildAction. It allows a planet to create a ship.
In order to build a ship, a planet must gather 10 mineral units. Each planet
has a field called GatherSpeed which determines how fast it gathers minerals.
Every tick the planet’s mineral stash is increased by this amount. This action
is a threshold action where the threshold value is the minerals of the planet.
As soon as the threshold value is reached, we set the field NewFleet to TRUE
(it is used by the engine to create a new fleet), and Minerals to 0 to reset the
counter. The planet and its actions are:



Planet = {Position: Vector2;Owner: Rule Ref Player;NewFleet:
Rule bool;BuildAction:BuildAction;
EnemyOrbitingFleetsAction : EnemyOrbitingFleetsAction;
GatherSpeed: float32;Minerals: Var float32 }

BuildAction =
TARGET Self; TRANSFER CONSTANT Minerals + GatherSpeed;

THRESHOLD Minerals 10.0; OUTPUT NewFleet := true; OUTPUT
Minerals := 0.0

A Casanova rule is appointed to read the value of NewFleet and, if it is true,
it spawns a new fleet.

The third action is required to check if a planet can be conquered by a fleet. A
fleet can conquer a planet if there is no enemy fleet near it and if it is sufficiently
close. Thus the action definition is the following:

EnemyOrbitingFleetsAction =
TARGET Fleet; RESTRICTION Owner Not Eq Owner; RADIUS 25.0;

INSERT Owner -> EnemyOrbitingFleets

The action will add an enemy fleet close enough to change the owner of the
planet.

5.2 Evaluation

We evaluated the performance of our approach with the case study, and two extra
examples: an asteroid shooter, and an expanded version of the case study with
more complex rules. All were implemented in casanova. Table 1 shows a code
length comparison between the REA implementation and standard Casanova
rules for all three.

We note that in games with basic dynamics the code saving is low, due to
the fact that there are few repeated patterns. The advantage of using REA
becomes evident in a game with actions involving many types of targets, such
as the expanded case study. Furthermore, we managed to drastically increase
the performance of the game logic: as Figure 1 shows, using REA (labeled “with
actions”) results in a speedup factor of 6 to 25, due to automated optimizations
in the query evaluation. We also note that our implementation is flexible and
general since it is possible to use actions to express a behavior, such as a projectile
collision.

6 Conclusions

In this paper we propose the Resource Entity Action (REA) pattern to define
RTS games. Use of this pattern should protect developers from writing and
rewriting large amounts of boilerplate code. The paper presents:



Table 1: CS (case study),Asteroid Shooter and Epanded CS code length.
Game Entities Rules Actions Total

CS with REA 41 71 19 131
CS without REA 40 90 0 130
Asteroid shooter with REA 33 33 6 72
Asteroid Shooter without REA 34 44 0 78
Extended CS with REA 135 138 40 313
Extended CS without REA 135 328 0 463

Fig. 1: Frame rate as a function of numbers of entities



– the REA design pattern for making RTS games which reduces the inter-
action among entities to a dynamic exchange of resources;

– an expressive, declarative, high performance language extension to Casanova,
with an appropriate grammar with new syntax and semantics resembling
SQL;

– an evaluation with three examples which provides evidence for an increase
in programming efficiency using REA; and

– an evaluation that shows an increase in run time efficiency of 6 to 25 times
for the Casanova language, using a native code compiler/opimizer.

In future work, we estimate that even better results can be obtained with an
actual access plan optimizer that increases the performance when exploring the
structure of both the action query and the entity structure. Given the significant
results on position indexing, the chance of defining multi-attribute indexes would
increase the performance. Moreover, a system like F# quotations [11] may be
used to increase the expressiveness of the actions.
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