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Abstract
Although Deep Reinforcement Learning (DRL)1

methods can learn effective policies for challenging2

problems such as Atari games and robotics tasks,3

algorithms are complex and training times are often4

long. This study investigates how evolution strate-5

gies (ES) perform compared to gradient-based deep6

reinforcement learning methods. We use ES to op-7

timize the weights of a neural network via neu-8

roevolution, performing direct policy search. We9

benchmark both regular networks and policy net-10

works consisting of a single linear layer from ob-11

servations to actions; for three classical ES methods12

and for three gradient-based methods such as PPO.13

Our results reveal that ES can find effective lin-14

ear policies for many RL benchmark tasks, in con-15

trast to DRL methods that can only find success-16

ful policies using much larger networks suggest-17

ing that current benchmarks are easier to solve than18

previously assumed. Interestingly, also for higher19

complexity tasks, ES achieves results comparable20

to gradient-based DRL algorithms. Furthermore,21

we find that by directly accessing the memory state22

of the game, ES are able to find successful poli-23

cies in Atari, outperforming DQN. While gradient-24

based methods have dominated the field in recent25

years, ES offers an alternative that is easy to imple-26

ment, parallelize, understand, and tune.27

1 Introduction28

Gradient-based deep reinforcement learning (DRL) has29

achieved remarkable success in various domains by en-30

abling agents to learn complex behaviors in challenging en-31

vironments based on their reward feedback, such as Star-32

Craft [Vinyals et al., 2019] and Go [Silver et al., 2016].33

However, new methods are often benchmarked on simpler34

control tasks from OpenAI Gym, including the locomotion35

tasks from MuJoCo [Haarnoja et al., 2018], or Atari games36

[Mnih et al., 2015]. While it simplifies the comparison be-37

tween different approaches, these benchmarks may lack suf-38

ficient complexity, and performance may not always transfer39

to more complicated tasks. Additionally, several studies have40

indicated that DRL results are often hard to reproduce [Islam41

et al., 2017], attributing these difficulties to the impact of the 42

random seeds [Henderson et al., 2018] and the choice of hy- 43

perparameters [Eimer et al., 2023]. 44

Evolution Strategies (ES) [Rechenberg, 1965; Bäck et al., 45

1991], a family of black-box optimization algorithms from 46

the field of Evolutionary Algorithms (EAs) [Bäck et al., 47

2023] have been studied as an alternative way to optimize 48

neural network weights, as opposed to conventional gradient- 49

based backpropagation [Salimans et al., 2017; Such et al., 50

2017]. An ES is used to learn a controller for an RL task 51

by directly optimizing the neural network’s weights, which 52

parameterize the RL policy. In this context, the ES is in- 53

trinsically an RL method that performs direct policy search, 54

through neuroevolution [Igel, 2003]. In supervised learning, 55

gradient-based methods are often much more efficient than 56

ES for training NN weights, though more likely to be trapped 57

in local optima [Mandischer, 2002]. For RL, the need to 58

balance exploration with exploitation in gradient-based ap- 59

proaches incurs more training steps to learn an optimal pol- 60

icy [Igel, 2003], making ES an interesting alternative. While 61

EAs are not necessarily more sample-efficient, ES can be 62

more easily parallelized and scaled, offering the possibility 63

for faster convergence in terms of wall-clock time, and, being 64

a global search method, are less likely to get stuck in a local 65

optimum [Morse and Stanley, 2016]. 66

We benchmark three ES and three gradient-based RL meth- 67

ods on well-known RL tasks to understand the circumstances 68

that favor ES over gradient-based methods. In particular, we 69

study the optimization of policy networks that consist of a 70

single linear layer, as they reduce the dimensionality of the 71

problem [Chrabąszcz et al., 2018; Rajeswaran et al., 2017]. 72

We compare these results to the larger networks that are used 73

by common gradient-based methods. Our main contributions 74

are as follows: 75

• ES can find effective linear policies for many RL bench- 76

mark tasks. In contrast, methods based on gradient de- 77

scent need vastly larger networks. 78

• Contrary to the prevailing view that ES are limited to 79

simpler tasks, they can address more complex challenges 80

in MuJoCo. Gradient-based DRL only performs superi- 81

orly in the most challenging MuJoCo environments with 82

more complex network architectures. This suggests that 83

common RL benchmarks may be too simple or that con- 84



Figure 1: This study investigates how evolution strategies compare to gradient-based reinforcement learning methods in optimizing the
weights of linear policies. We use both linear networks as the original DRL architectures to learn policies. We find that ES can learn linear
policies for numerous tasks where DRL cannot, and in many instances, even surpasses the performance of the original DRL networks, such
as in Swimmer.

ventional gradient-based solutions may be overly com-85

plicated.86

• Complex gradient-based approaches have dominated87

DRL. However, ES can be equally effective, are algo-88

rithmically simpler, allow smaller network architectures,89

and are thus easier to implement, understand, and tune90

(See Figure 1).91

• We find that advanced self-adaptation techniques in ES92

are often not required for (single-layer) neuroevolution.93

The rest of the paper is organized as follows: Section 2 dis-94

cusses the background and related work of ES and DRL, our95

algorithms are discussed in Section 3, the results are in Sec-96

tion 4, conclusions are in Section 5.97

2 Background and Related Work98

In RL, an agent learns from feedback through rewards and99

penalties from its environment [Sutton and Barto, 2018].100

RL problems are formulated as a Markov Decision Process101

〈S,A, P,R, γ〉, where S is the set of states in the environ-102

ment, A the set of actions available to the agent, P the prob-103

ability of subsequent state transitions, R the reward function,104

and γ ∈ [0, 1] the discount factor [Bellman, 1957]. A policy105

π can be computed of which action to take in each state. The106

policy in DRL is typically represented by a deep neural net-107

work to map states to actions (probabilities). RL aims to find108

the optimal policy π∗ that maximizes the expected cumula-109

tive reward of a state. RL algorithms approach this goal in110

different ways [Plaat, 2022]. The most common techniques111

include value-function estimation [Watkins and Dayan, 1992;112

Mnih et al., 2015], policy gradient methods [Williams, 1992],113

actor-critic methods [Konda and Tsitsiklis, 1999; Schulman114

et al., 2017; Haarnoja et al., 2018], and learning a model of115

the environment [Hafner et al., 2020; Plaat et al., 2023].116

ES are a distinct class of evolutionary algorithms that are 117

particularly suitable for optimization problems in continuous 118

domains. ES begin with a population of randomly initial- 119

ized candidate solutions in Rn, with solutions represented 120

as n-dimensional vectors denoted by x (like the policy) and 121

a given objective function f : Rn → R (like the reward). 122

Via perturbations using a parameterized multivariate normal 123

distribution, selection, and sometimes recombination, solu- 124

tions evolve towards better regions in the search space [Bäck 125

et al., 1991]. Evolving neural networks with EAs is called 126

neuroevolution and can include the optimization of the net- 127

work’s weights, topology, and hyperparameters [Stanley et 128

al., 2019]. Using ES to evolve a neural network’s weights is 129

similar to policy gradient methods in RL, where optimization 130

applies to the policy’s parameter space. 131

Gradient-based deep RL has successfully tackled high- 132

dimensional problems, such as playing video games 133

with deep neural networks encompassing millions parame- 134

ters [Mnih et al., 2015; Vinyals et al., 2019]. However, 135

state-of-the-art ES variants are limited to smaller numbers of 136

parameters due to the computational complexity of, for ex- 137

ample, the adaptation of the covariance matrix of the search 138

distribution. Covariance Matrix Adaptation Evolution Strat- 139

egy (CMA-ES) is often used for dimensionality lower than 140

n ≤ 100 [Müller and Glasmachers, 2018], and problems 141

with a dimensionality n ≥ 10.000 become nearly impos- 142

sible due to the memory requirements [Loshchilov, 2014]. 143

However, recent advancements have restricted the covari- 144

ance matrix, in its simplest form, to its diagonal, to re- 145

duce the computational complexity [Ros and Hansen, 2008; 146

Loshchilov, 2014; Nomura and Ono, 2022]. Others sample 147

from lower-dimensional subspaces [Maheswaranathan et al., 148

2019; Choromanski et al., 2019]. 149

In 2015, DRL reached a milestone by achieving superhu- 150

man performance in Atari games using raw pixel input [Mnih 151



et al., 2015]. This breakthrough marked a shift in RL to-152

wards more complicated, high-dimensional problems and a153

shift from tabular to deep, gradient-based methods. For sim-154

pler tasks, the CMA-ES has been used to evolve neural net-155

works for pole-balancing tasks, benefiting from covariance156

matrix to find parameter dependencies, enabling faster op-157

timization [Igel, 2003; Heidrich-Meisner and Igel, 2009].158

While the use of evolutionary methods for RL can be traced159

back to the early 90s [Whitley et al., 1993; Moriarty and160

Mikkulainen, 1996], the paper by [Salimans et al., 2017]161

rekindled interest in ES from the field of RL as an alterna-162

tive for gradient-based methods in more complicated tasks.163

Researchers showed that a natural evolution strategy (NES)164

can compete with deep RL in robot control in MuJoCo and165

Atari games due to its ability to scale over parallel workers.166

In contrast to deep methods where entire gradients are typi-167

cally shared, the workers only communicate the fitness score168

and the random seed to generate the stochastic perturbations169

of the policy parameters. Studies have subsequently demon-170

strated that simpler methodologies can yield results compara-171

ble to NES, such as a classical ES [Chrabąszcz et al., 2018]172

and Augmented Random Search [Mania et al., 2018], which173

closely resembles a global search heuristic from the 1990s174

[Salomon, 1998]. In addition, when separating the computer175

vision task from the actual policy in playing Atari, the size176

of the neural network can be drastically decreased [Cuccu177

et al., 2018], and policies with a single linear layer, map-178

ping states directly to actions, can effectively solve the con-179

tinuous control tasks [Chrabąszcz et al., 2018; Rajeswaran180

et al., 2017]. The development of dimension-lowering tech-181

niques, such as world models [Ha and Schmidhuber, 2018;182

Hafner et al., 2020] and autoencoders [Hinton and Salakhut-183

dinov, 2006], also opens up new possibilities for ES to effec-184

tively solve more complex problems by simplifying them into185

more manageable forms.186

3 Methods187

We implement three ES methods and benchmark them against188

three popular gradient-based DRL methods.189

3.1 Gradient-Based Algorithms190

We use three popular gradient-based DRL algorithms: Deep191

Q-learning [Mnih et al., 2015], Proximal Policy Optimiza-192

tion [Schulman et al., 2017], and Soft Actor-Critic [Haarnoja193

et al., 2018]. We summarize the main gradient-update ideas194

below.195

Deep Q-Learning196

Deep Q-learning (DQN) combines a deep neural network197

with Q-learning to learn the value function in a high-198

dimensional environment [Mnih et al., 2015]. Each experi-199

ence tuple (st, at, rt, st+1) is stored in a replay buffer. The200

agent randomly selects a batch of experiences to update the201

value function. The replay buffer breaks the correlation be-202

tween consecutive experiences, leading to lower variance.203

The primary Q-network weights θ are updated every training204

step by minimizing the expectation of the squared difference205

between the predicted Q-value of the current state-action pair206

Q(s, a; θ) and the target Q-value Q(s′, a′; θ−): 207

L(θ) = E
[(
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2]
The weights from the primary Q-network are copied every 208

N timesteps to a separate target network θ− ← θ to prevent 209

large oscillations in the loss function’s target values. 210

Proximal Policy Optimization 211

Proximal Policy Optimization (PPO) was introduced to 212

improve the complexity of earlier policy gradient meth- 213

ods [Schulman et al., 2017]. PPO introduces a simpler, 214

clipped objective function: 215

LCLIP (θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
where Êt denotes the empirical expectation over a finite batch 216

of samples, the probability ratio rt(θ) reflects the probability 217

of an action under the current policy compared to the previous 218

policy, Ât is the advantage estimate at timestep t, and ε is 219

a hyperparameter defining the clipping range. The clipping 220

mechanism clips the ratio rt(θ) within the range [1−ε, 1+ε]. 221

Soft Actor-Critic 222

SAC objective’s function maximizes the expected return and 223

entropy simultaneously to ensure a balanced trade-off be- 224

tween exploitation and exploration: 225

π∗ = argmax
π

∑
t

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] ,

where α is the temperature parameter that scales the impor-
tance of the entropyH(π(·|st)) of the policy π given the state
st. SAC updates its Q-value estimates using a soft Bellman
backup operation that includes an entropy term:
Qnew(st, at) = Est+1∼E [r(st, at)

+ γ (Qold(st+1, at+1)− α log π(at+1|st+1))] .

SAC employs twin Q-networks to mitigate overestimation 226

bias and stabilize policy updates by using the minimum of 227

their Q-value estimates. 228

3.2 Evolution Strategies 229

ES are designed for solving continuous optimization prob- 230

lems maximizexf(x), where f : Rn → R. The ES meth- 231

ods are used here to optimize the neural network parameters 232

for the policy function, i.e., the ES is used for neuroevolu- 233

tion of the weights of the neural network that represents the 234

policy. The methods are variants of derandomized ES and 235

use a parameterized normal distribution N (m(g), σ(g)C(g)) 236

to control the direction of the search. The algorithm adapts 237

the parameters of the search distribution to achieve fast con- 238

vergence (Algorithm 1). 239

The ES samples λ offspring from its mutation distribution
at each iteration. By selecting the µ ≤ λ most promising off-
spring to update its parameters, it moves to regions of higher
optimality. After sorting the µ offspring by fitness ranking,
the mean of the search distribution is updated via weighted
recombination:

m(g+1) = m(g) + cm

µ∑
i=1

wi(xi −m(g))



Algorithm 1 Generic ES

Require: Objective function f , number of offspring λ, num-
ber of parents µ, initial estimates for m(0) and σ(0)

C(0) ← In
for g in 1, 2, . . . do

Sample λ candidates xi ∼ N (m(g), σ(g)C(g))
Evaluate objective function fi ← f(xi)
Select and rank µ best candidates
Adapt m(g+1), σ(g+1),C(g+1)

end for

The ES variants adapt, with increasing complexity, the240

scale σ(g) and shape C(g) of the mutation distribution. The241

Cumulative Step-size Adaptation Evolution Strategy (CSA-242

ES) only adapts σ(g), producing exclusively isotropic (i.e.243

C(g) = In) mutations during optimization. The separa-244

ble Covariance Matrix Adaptation Evolution Strategy (sep-245

CMA-ES) additionally adapts the diagonal entries of the co-246

variance matrix C(g), producing mutation steps with arbitrary247

scaling parallel to each coordinate axis. Finally, the CMA-ES248

adapts the full covariance matrix, which allows the mutation249

distribution to scale to arbitrary rotations. Figure 2 illustrates250

the evolution of the mutation distribution for each of these251

three methods when optimizing a two-dimensional quadratic252

function. The figure shows that the mutation distribution253

guides the search, favoring selected mutation steps with high254

probability [Hansen and Ostermeier, 2001]. The CSA-ES255

uses a process called cumulation of historically selected mu-256

tation steps in order to update the value of the global step257

size parameter σ(g). We implemented the algorithm follow-258

ing [Chotard et al., 2012], using recommended hyperparame-259

ter settings. While several modifications of the CMA-ES have260

been developed over the years, we implemented a canonical261

version of the algorithm, as first introduced in [Hansen and262

Ostermeier, 2001]. The update of the full covariance ma-263

trix becomes computationally impractical for n > 100, but264

the sep-CMA-ES, which we implemented according to [Ros265

and Hansen, 2008], does not suffer from this restriction. As266

shown in Figure 2, this algorithm only computes variances267

for each coordinate axis, which makes it applicable to much268

higher dimensions, as the computational complexity for the269

update of the mutation distribution scales only linearly with270

n.271

3.3 Network Architecture272

We compare the performance of linear policies trained273

through neuroevolution by ES with gradient-based methods274

inspired by earlier studies demonstrating this approach’s fea-275

sibility [Mania et al., 2018; Rajeswaran et al., 2017]. For the276

ES, only linear policies are trained, defined as a linear map-277

ping from states to actions, activated by either an argmax278

or tanh function for discrete and continuous action spaces,279

respectively (no hidden layer: a fully connected shallow net-280

work). We use the gradient-based methods to train the same281

linear policies for each control task. Table 2 (Supplementary282

material) shows the number of trainable weights for each en-283

vironment for a linear policy. Additionally, a network archi-284

Figure 2: Adaptation of the mutation distribution for three dif-
ferent Evolution Strategies for the first ten generations of a two-
dimensional quadratic function. Function values are shown with
color; darker indicates lower (better). Top row: mutation distribu-
tion for CSA-ES; middle row: sep-CMA-ES; bottom row: CMA-ES

tecture based on the original studies for each of the gradient- 285

based methods is trained for comparison. We employ the ar- 286

chitecture from the original studies for PPO [Schulman et al., 287

2017] and SAC [Haarnoja et al., 2018]. For DQN, we use the 288

default architecture from CleanRL’s library, which has been 289

tested across multiple control environments and showed good 290

results [Huang et al., 2022]. Specifics for these architectures 291

and other hyperparameters can be found in the supplementary 292

material. We do not train these deep architectures using ES, 293

as they only serve as a benchmark to demonstrate the intended 294

usage of the gradient-based algorithms, and self-adaptation 295

mechanisms are increasingly less useful for such high dimen- 296

sions [Chrabąszcz et al., 2018]. 297

3.4 Experimental Setup 298

We conduct experiments on common control tasks of varying 299

complexity levels from the Gymnasium API [Towers et al., 300

2023]. For each of the considered environments, five runs 301

using different random seeds are conducted for each algo- 302

rithm/control task combination to test the stability of each ap- 303

proach. Value-based DQN is only used for environments with 304

discrete action spaces, SAC for continuous action spaces, and 305

PPO and ES are used for both action spaces. The RL algo- 306

rithms are implemented using the cleanRL library1 that has 307

been benchmarked across several environments; we removed 308

the hidden layers for the linear network. The specifics of 309

the Evolution Strategies (ES) implementations are detailed in 310

the repository, the link to which is provided in the footnote2. 311

Since the environments are stochastic, we report the median 312

episodic return, calculated over five test episodes. As was dis- 313

cussed in [Salimans et al., 2017], for ES, the wall-clock time 314

required to solve a given control task decreases linearly with 315

the number of parallel workers available. This allows us to 316

1https://github.com/vwxyzjn/cleanrl/tree/master
2anonymized for reviewing



Figure 3: Training curves for the CartPole, LunarLander, Swimmer, HalfCheetah, Boxing, and SpaceInvaders environments. Episodic return
(calculated using 5 test episodes) vs. the number of training timesteps is shown. Each curve represents the median of 5 trial runs conducted
with different random seeds; the shaded area denotes standard deviations. The results show that ES solve the classic control environments
Cartpole and LunarLander almost immediately, surpassing the gradient descent methods. Even for the more difficult Swimmer environment,
ES find a linear policy outperforming DRL in terms of timesteps and performance. While SAC outperforms all other methods in Cheetah,
linear ES outperforms classic PPO. For the Atari environments, Boxing and Space Invaders, ES is able to learn a linear policy from the RAM
input, while linear DQN fails to do so, and only for Boxing deep DQN finds a successful policy.

Algorithm CSA-ES CMA-ES sep-CMA Random Human DQN ES*
Atlantis 84690 87100 88580 12850 29028 85641 103500
B. Rider 2215 1967 2222 363.9 5775 6846 5072
Boxing 96.0 96.8 95.1 0.1 4.3 71.8 100

C. Climber 36170 29290 32940 10781 35411 114103 57600
Enduro 65.1 58.9 69.0 0 309.6 301.8 102
Pong 5.7 7.4 7.1 -20.7 9.3 18.9 21

Q*Bert 7355 5732 7385 163.9 13455 10596 14700
Seaquest 959 948 954 68.4 20182 5286 1470

S. Invaders 1640 1972 1488 148 1652 1976 2635

Table 1: Average maximum score per game across trials. The rightmost column shows the best-performing ES episode per game. For
comparison, the scores for DQN, a random agent, and a Human player taken from [Mnih et al., 2015] are shown. The highest scores are
shown in boldface. The results show that an ES outperforms the original DQN scores for Atlantis and Boxing. For the other games, the
highest score is attained by the DQN agent, although CMA-ES achieves a score almost identical to DQN on SpaceInvaders. Furthermore, the
best ES policy often matches the performance of DQN, demonstrating that a linear policy can be just as effective. Standard deviation values
are provided in Table 1 in the supplementary material.

do many more evaluations of the environment than is feasible317

with gradient-based RL. For fairness of comparison, we limit318

the difference in the number of training time steps allowed319

by a single order of magnitude. Specific hyper-parameters320

used for each environment can be found in the supplementary321

material, including hardware. For the ES, we initialize each322

experiment with m(0) = 0. We calculate a rolling mean and 323

variance of the observations of the environment during each 324

run. These values are then used to normalize each state ob- 325

servation to standard normal entries by subtracting this rolling 326

mean and dividing by the standard deviation. 327



Classic RL Environments328

The first set of experiments includes the classic control tasks329

Cartpole, Acrobot, and Pendulum. We include Bipedal-330

Walker and LunarLander from the Box2D simulations for331

slightly more complex dynamics. Each run uses a maximum332

of 500 000 timesteps for each environment. The exception to333

this is the BipedalWalker task, for which 2 · 106 timesteps are334

used.335

MuJoCo Simulated Robotics336

We evaluate the algorithms on the MuJoCo environments337

[Todorov et al., 2012] for higher complexity levels, includ-338

ing Hopper, Walker2D, HalfCheetah, Ant, Swimmer, and Hu-339

manoid. Table 3 (Supplementary material) provides training340

details. As was noted by [Mania et al., 2018], ES methods341

have exploration at the policy level, whereas gradient-based342

methods explore on the action level. In the locomotion tasks,343

a positive reward is provided for each time step where the344

agent does not fall over. This causes the ES method to stay345

in a local optimum when the agent stays upright but does not346

move forward (the gradient-based methods do not get stuck).347

Following [Mania et al., 2018], we modified the reward func-348

tion for these environments for ES, subtracting the positive349

stability bonus and only rewarding forward locomotion.350

Atari Learning Environment351

Finally, we benchmark DQN against the ES with linear poli-352

cies on games from the Atari suite. To demonstrate the effec-353

tiveness of linear policies for these high-dimensional tasks,354

we take inspiration from the approach by [Cuccu et al., 2018]355

and separate the computer vision task from the control task.356

We train the ES agents on the 128 bytes of the Random Ac-357

cess Memory (RAM) in the simulated Atari console. This358

drastically reduces the input dimensionality of the controller,359

allowing for the training of smaller policies. This assumes360

that the random access memory sufficiently encodes the state361

of each game without having to extract the state from the raw362

pixel images. It should be noted that not for all games is363

RAM information sufficient to train a controller and that for364

some games, DQN is easier to train on pixel images than on365

RAM input [Sygnowski and Michalewski, 2017]. Since we366

evaluate linear policies, we fix frame skipping to 4, with no367

sticky actions [Machado et al., 2018], similar to the settings368

used in [Mnih et al., 2015]. For each run, the ES were trained369

for 20 000 episodes, where the maximum episode length was370

capped at 270 000 timesteps. The gradient-based methods371

were trained for a maximum of 2 · 107 timesteps.372

4 Results373

In this section, we present the results of our experiments374

(more details, including training curves and tables with sum-375

mary statistics, can be found in the Supplementary material).376

Here, we focus on a selection of environments (Figure 3).377

4.1 Classics RL Environments378

The first column of Figure 3 shows the training curves for379

the gradient-based methods and for ES on the CartPole and380

LunarLander environments (the Supplementary material has381

more). For both environments, the ES policies outperform382

the deep gradient-based methods with just a simple linear 383

policy. For CartPole, the results are even more surprising, 384

as the ES policies are able to solve the environment in the 385

first few iterations of training through pure random sampling 386

from a standard normal distribution. The deep gradient-based 387

methods, on the other hand, require around 2 · 105 timesteps 388

in order to solve CartPole. The gradient-based methods are 389

unable to find a good linear policy for CartPole. This pat- 390

tern persists for LunarLander, where, even though the ES re- 391

quires around 2 · 105 timesteps to solve the environment, the 392

gradient-based methods cannot find a good linear policy at all. 393

While the deep gradient-based methods eventually seem to 394

catch up to the ES, it still requires more than 5 ·105 timesteps 395

to train a stable policy for LunarLander. For the Bipedal- 396

Walker task (see Supplementary material), DQN and PPO are 397

able to find good policies, with the gradient-based methods 398

requiring fewer timesteps. Only SAC is able to solve Pen- 399

dulum within 5 · 105 timesteps. For Acrobot, again, the ES 400

are able to solve the environment almost instantly, while the 401

gradient-based methods require a good number of environ- 402

ment interactions to do so. 403

4.2 MuJoCo Simulated Robotics 404

The center column of Figure 3 shows that the ES policies 405

are much better at finding a policy for the Swimmer environ- 406

ment, while for HalfCheetah, SAC greatly outperforms all 407

other methods. However, ES outperforms PPO. Moreover, 408

none of the gradient-based methods are able to find a good 409

linear policy for HalfCheetah and Swimmer. This pattern 410

holds for almost all MuJoCo experiments; only for the Ant 411

environment can PPO find a linear policy with decent per- 412

formance. Overall, as the number of weights increases, the 413

performance of the ES lags behind the deep gradient-based 414

methods (see Table 2 in the Supplementary material). Nev- 415

ertheless, even though ES generally require more timesteps, 416

they can still find good linear policies for most environments, 417

which are just as effective as policies found by vastly larger 418

networks (see Table 4 in the Supplementary material). Even 419

for the most complex of these environments, Humanoid, the 420

ES are able, in several trials, to find a linear policy that has a 421

higher episodic return,≈ 8000 (averaged over 5 test episodes 422

with different random seeds), than was found by the best deep 423

gradient-based method, SAC. Furthermore, ES timesteps are 424

quicker and easier to parallelize, meaning experiments are 425

much faster to run. 426

4.3 Atari Learning Environment 427

The last column of Figure 3 shows the training curves of 428

ES vs. DQN for the Atari games SpaceInvaders and Box- 429

ing. The figure shows that when training agents that use the 430

controller’s RAM state as observations, ES outperform linear 431

DQN in most cases. CrazyClimber (Supplementary material) 432

is the only exception, for which the performance of ES and 433

linear DQN is similar. Even comparing against deep DQN 434

trained on RAM memory, we find that for both the games in 435

Figure 3, the ES yield better policies and require fewer envi- 436

ronment interactions. In addition, Table 1 shows the average 437

highest score per trial for each of the tested games for the ES, 438

compared against the numerical results presented in [Mnih et 439



al., 2015] for a Human, Random and a DQN player that uses440

pixel input. The table additionally shows the highest score441

attained by any ES in any trial, averaged over 5 test episodes.442

For both Atlantis and Boxing, an ES achieves the highest443

score. For all the other games tested, the DQN agent earned444

a higher score than all RAM-trained ES, although CMA-ES445

achieved a score almost identical to DQN on SpaceInvaders.446

This score is attained by an agent that uses a linear policy con-447

sisting of only 768 weights, while the policy trained by DQN448

has ≈ 1.5·106 (pixel-based, deep policy network). Moreover,449

the best-found policy by any ES is often competitive with450

DQN. This indicates that a linear policy, which is competi-451

tive with pixel-based DQN, does exist.452

5 Discussion and Conclusion453

In this study, we have studied different ways to optimize rein-454

forcement learning policies with conventional deep learning455

gradient-based backpropagation methods as used in DQN,456

PPO, and SAC, and with three evolution strategy methods457

(ES). We have applied these methods to several classic re-458

inforcement learning benchmarks. For these methods, we459

trained the regular deep network as conventionally used, as460

well as a neural network with no hidden layers, i.e., a lin-461

ear mapping from states to actions, as a low-complexity con-462

troller for each environment. In many of the tested envi-463

ronments, the linear policies trained with the ES are on par464

or, in some cases, even better controllers than the deep pol-465

icy networks trained with the gradient-based methods. Ad-466

ditionally, the gradient-based methods are often ineffective467

at training these simple policies, requiring much deeper net-468

works. For our experiments on Atari, we find that by access-469

ing the RAM memory of the Atari controller, ES methods470

can find a linear policy that is competitive with "superhuman"471

DQN [Mnih et al., 2015]. It should be noted that there are cer-472

tain high-complexity environments where the deep gradient-473

based methods yield better policies, e.g. SAC for HalfChee-474

tah. However, even for these environments, linear policies475

exist that are competitive and much more easily interpretable.476

We conclude that conventional gradient-based methods477

might be overly complicated or that more complex bench-478

marks are required to properly evaluate algorithms. In fact,479

even for the most complex locomotion task included in our480

experiments, the Humanoid environment, the CMA-ES was481

able to find a linear policy that was competitive with state-482

of-the-art methods. As the ES are stochastic algorithms, they483

were not able to find these policies for every trial run, but our484

results show that such policies do exist. We expect the search485

landscapes for these environments to be deceptive and mul-486

timodal, and future work could help discover effective algo-487

rithms for more consistently training these linear policy net-488

works, for example, using niching methods [Shir and Bäck,489

2005]. We hypothesize that gradient-based methods may490

struggle to find linear policies due to the multimodal nature491

of the search landscape, a phenomenon also seen in super-492

vised learning [Kawaguchi, 2016]. Counterintuitively, with493

gradient-based methods, it seems more straightforward to494

train deeper architectures than shallower ones with far fewer495

weights, as was also shown by [Schwarzer et al., 2023]. We496

note that gradient-based methods are essentially local search 497

methods, requiring heuristically controlled exploration, while 498

ES, in the early phases of optimization, are performing global 499

search, producing more diverse solutions. This also becomes 500

evident in the more simple environments, such as CartPole, 501

where the ES are able to almost instantly sample the optimal 502

policy, while the gradient-based methods have a much harder 503

time. 504

Moreover, we find many counterexamples to the prevailing 505

view that ES are less sample efficient than the gradient-based 506

methods. For many of the low to medium-complexity envi- 507

ronments, the ES are actually more sample efficient and re- 508

quire fewer environment interactions than the deep gradient- 509

based methods. On the other hand, for the more complex 510

environments, and with increasing dimensionality, we find 511

that the ES can take more time steps to converge than the 512

deep gradient-based methods. This is to be expected, as the 513

self-adaptation mechanisms that are central to the ES become 514

increasingly ineffective for larger dimensions [Chrabąszcz et 515

al., 2018; Müller and Glasmachers, 2018]. We have com- 516

pared three ES, that, with increasing levels of complexity, 517

adapt the shape of the mutation distribution in order to con- 518

verge the search. Our results indicate that updates of the 519

covariance matrix are often not required and that perform- 520

ing step size adaptation is sufficient. While we expect the 521

search landscape to be multimodal, relative scaling and ro- 522

tation of search coordinates seem absent, allowing isotropic 523

mutations to be effective for these problems. This would 524

also explain the effectiveness of the approach demonstrated 525

in [Maheswaranathan et al., 2019], which would be heav- 526

ily impacted by conditioning on the search space. However, 527

this may be explained because optimizing a single linear layer 528

may exhibit less inherent variance and covariance than multi- 529

ple layers. 530

Overall, we have demonstrated the potential of linear poli- 531

cies on popular RL benchmarks. We showed that ES are 532

effective optimizers for these policies compared to gradient- 533

based methods. Additionally, we note that ES are simpler in 534

design, have fewer hyperparameters, and are trivially paral- 535

lelizable. Hence, ES can perform more environment inter- 536

actions within the same time frame [Salimans et al., 2017]. 537

Moreover, evaluating linear policies is faster than evaluat- 538

ing one or sometimes several deep architectures, making the 539

training much more expedient regarding wall-clock time. As 540

the need for energy-efficient policy networks increases, our 541

results warrant a closer look at ES for RL and training of sim- 542

pler policies for tasks currently considered complex. For fu- 543

ture work, we aim to extend our benchmark with more types 544

of classical ES and strategies for multimodal optimization 545

[Preuss, 2015]. Additionally, it would be interesting to study 546

the effect of the step-size adaptation methods in the presence 547

of one or more hidden layers. Next, we will explore the po- 548

tential of linear networks for other applications. Inspired by 549

works such as [Cuccu et al., 2018], we will look at more com- 550

plex Atari games to see if they can also be solved by simple, 551

energy-efficient means. 552
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