
Machine Learning

Subspace Adaptation Prior for Few-Shot Learning
--Manuscript Draft--

Manuscript Number:

Full Title: Subspace Adaptation Prior for Few-Shot Learning

Article Type: S.I.: ECML PKDD 2023

Keywords: Meta-Learning; Few-Shot Learning; Neural Networks

Corresponding Author: Mike Huisman
Universiteit Leiden
Leiden, Zuid-Holland NETHERLANDS

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Universiteit Leiden

Corresponding Author's Secondary
Institution:

First Author: Mike Huisman

First Author Secondary Information:

Order of Authors: Mike Huisman

Aske Plaat

Jan N. van Rijn

Order of Authors Secondary Information:

Funding Information:

Abstract: Gradient-based meta-learning techniques aim to distill useful prior knowledge from a
set of training tasks such that new tasks can be learned more efficiently with gradient
descent. While these methods have achieved successes in various scenarios, they
commonly adapt all parameters of trainable layers when learning new tasks. This
neglects potentially more efficient learning strategies for a given task distribution and
may be susceptible to overfitting, especially in few-shot learning where tasks must be
learned from a limited number of examples. To address these issues, we propose
Subspace Adaptation Prior (SAP), a novel gradient-based meta-learning algorithm that
jointly learns good initialization parameters (prior knowledge) and layer-wise parameter
subspaces in the form of operation subsets that should be adaptable. In this way, SAP
can learn which operation subsets to adjust with gradient descent based on the
underlying task distribution, simultaneously decreasing the risk of overfitting when
learning new tasks. We demonstrate that this ability is helpful as SAP yields superior or
competitive performance in few-shot image classification settings (gains between 0.1%
and 3.9% in accuracy). Analysis of the learned subspaces demonstrates that low-
dimensional operations often yield high activation strengths, indicating that they may
be important for achieving good few-shot learning performance. For reproducibility
purposes, we publish all our research code publicly.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

MLJ Contribution Information Sheet

What is the main claim of the paper? Why is this an important contribution to the machine learning
literature?

We propose a new meta-learning method called Subspace Adaptation Prior (SAP) that learns a good
set of initialization parameters, as well as which subsets of parameters to adjust when learning new
tasks to make the learning process as efficient as possible. The latter is done by combining neural
architecture search with gradient-based meta-learning. Our main claim is that it is beneficial to learn
which parameter subsets to adjust (instead of adjusting all of them) to improve the learning
efficiency of neural networks and that SAP is capable of doing this successfully, that is, it improves
the few-shot learning performance on regression and image classification problems.

This is an important contribution as deep neural networks are notoriously data-hungry, limiting their
applicability to domains where large datasets and compute resources are available. Improving the
learning efficiency of these networks can widen the applicability of these powerful methods.

What is the evidence you provide to support your claims?

We conducted extensive experiments comparing the few-shot learning performance on various
few-shot learning problems. We demonstrate the advantage of learning parameter subspaces as
SAP outperforms existing methods by at least 18% on few-shot sine wave regression and yields
competitive or superior performance on popular few-shot image classification benchmarks
(improvements in classification accuracy scores range from 0.1% to 3.9%)

What papers by other authors make the most closely related contributions and how is your paper
related to them?

Lian et al. (2019) and Elsken et al. (2020) combined a gradient-based neural architecture search
method called DARTS (Liu et al., 2019) with gradient-based meta-learning in order to learn a
base-learner architecture that can be quickly adapted to new tasks. We also exploit DARTS in order
to learn which subsets of parameters to adjust in SAP, but do not adjust the network architecture
when learning new tasks.

Other works that make related contributions are T-Net (Lee et al., 2018) and Warp-MAML
(Flennerhag et al., 2020). Both methods are gradient-based meta-learning methods that insert
transformation layers between the layers of the base-learner network, we do in SAP. However, both
T-Net and Warp-MAML adjust all parameters of trainable layers when learning new tasks, as is
common in gradient-based meta-learning. However, this may be suboptimal for a given task
distribution and lead to overfitting due to the large degree of freedom to fit the noise in the data. In
SAP, we learn which subsets of parameters to adjust of the inserted layers, which can improve
robustness against overfitting on tasks for which only a few examples are available.

Manuscript Click here to access/download;Manuscript;SAP - MLJ info .pdf

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/mach/download.aspx?id=460069&guid=aac4f927-2d01-484a-b4c4-77cce9da190b&scheme=1
https://www.editorialmanager.com/mach/download.aspx?id=460069&guid=aac4f927-2d01-484a-b4c4-77cce9da190b&scheme=1
https://www.editorialmanager.com/mach/viewRCResults.aspx?pdf=1&docID=16209&rev=0&fileID=460069&msid=b88795af-cde0-4d18-a143-fb2b7cca9bfb

[1] Elsken, T., Staffler, B., Metzen, J. H., & Hutter, F. (2020). Meta-learning of neural architectures for few-shot
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12365-12375).

[2] Flennerhag, S., Rusu, A. A., Pascanu, R., Visin, F., Yin, H., & Hadsell, R. (2019). Meta-learning with warped
gradient descent. arXiv preprint arXiv:1909.00025.

[3] Lee, Y., & Choi, S. (2018, July). Gradient-based meta-learning with learned layerwise metric and subspace. In
International Conference on Machine Learning (pp. 2927-2936). PMLR.

[4] Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055.

[5] Lian, D., Zheng, Y., Xu, Y., Lu, Y., Lin, L., Zhao, P., ... & Gao, S. (2020, April). Towards fast adaptation of neural
architectures with meta learning. In International Conference on Learning Representations.

Have you published parts of your paper before, for instance in a conference?

No, the work has not appeared elsewhere.

Recommended reviewers:
1) Hanxiao Liu for their work on DARTS
2) Thomas Elsken for their for on MetaNAS
3) Eunbyung Park for their work on Meta-Curvature (explicit gradient modulation)
4) Dongze Lian for their work on combining architecture search and meta-learning

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot
Learning

Mike Huisman*, Aske Plaat and Jan N. van Rijn

Leiden Institute of Advanced Computer Science,
Leiden University, Niels Bohrweg 1, 2333CA, Leiden,

The Netherlands.

*Corresponding author(s). E-mail(s):
m.huisman@liacs.leidenuniv.nl;

Contributing authors: a.plaat@liacs.leidenuniv.nl;
j.n.van.rijn@liacs.leidenuniv.nl;

Abstract
Gradient-based meta-learning techniques aim to distill useful prior
knowledge from a set of training tasks such that new tasks can be
learned more efficiently with gradient descent. While these methods have
achieved successes in various scenarios, they commonly adapt all parame-
ters of trainable layers when learning new tasks. This neglects potentially
more efficient learning strategies for a given task distribution and may
be susceptible to overfitting, especially in few-shot learning where tasks
must be learned from a limited number of examples. To address these
issues, we propose Subspace Adaptation Prior (SAP), a novel gradient-
based meta-learning algorithm that jointly learns good initialization
parameters (prior knowledge) and layer-wise parameter subspaces in the
form of operation subsets that should be adaptable. In this way, SAP
can learn which operation subsets to adjust with gradient descent based
on the underlying task distribution, simultaneously decreasing the risk
of overfitting when learning new tasks. We demonstrate that this ability
is helpful as SAP yields superior or competitive performance in few-shot
image classification settings (gains between 0.1% and 3.9% in accuracy).
Analysis of the learned subspaces demonstrates that low-dimensional
operations often yield high activation strengths, indicating that they
may be important for achieving good few-shot learning performance.
For reproducibility purposes, we publish all our research code publicly.

Keywords: Meta-Learning, Few-Shot Learning, Neural Networks

1

MLJ information sheet

Springer Nature 2021 LATEX template

2 Subspace Adaptation Prior for Few-Shot Learning

1 Introduction
Humans are characterized by their ability to quickly learn new tasks and skills
from only a limited amount of examples or experience. While deep neural net-
works are able to achieve great performance on various tasks (Krizhevsky et al,
2012; Mnih et al, 2013; Silver et al, 2016; Wurman et al, 2022), they require
large amounts of data and compute resources to learn new tasks, restricting
their success to domains where such resources are available. One explana-
tion for this gap in learning efficiency is that humans can efficiently draw
on a large pool of prior knowledge and learning experience (Jankowski et al,
2011), whereas deep neural networks are often trained from scratch or lack the
appropriate prior.

Meta-learning (Schmidhuber, 1987; Thrun, 1998; Naik and Mammone,
1992; Brazdil et al, 2022) is one potential solution to this problem as it can
distill a good prior from a set of past learning experiences that facilitates effi-
ciently learning new tasks. Model-agnostic meta-learning (MAML) (Finn et al,
2017) is a popular gradient-based meta-learning algorithm that learns a prior
in the form of the initialization parameters of the network. Learning a new task
is then done by performing gradient descent starting from this meta-learned
initialization. This approach, which is also widely used by techniques that are
based on MAML (Lee and Choi, 2018; Flennerhag et al, 2020; Park and Oliva,
2019; Yoon et al, 2018; Nichol et al, 2018), updates all of the parameters of
every trainable layer with gradient descent when learning new tasks, which
may be suboptimal for a given task distribution and may lead to overfitting
since there are more degrees of freedom to fit the noise in the data. Especially
in few-shot learning, where tasks are noisy due to the fact that only limited
examples are available, these issues could hinder performance.

To address these issues, we propose a new gradient-based meta-learning
technique called Subspace Adaptation Prior (SAP) that jointly learns good
initialization parameters as well as layer-wise subspaces in which to perform
gradient descent when learning new tasks. More specifically, SAP is given
access to a candidate pool of operations for every layer that transforms the
hidden representations, and it learns which of these subsets to adjust in order
to learn new tasks quickly, similar to DARTS (Liu et al, 2019). Here, every
operation corresponds to a parameter subspace. Note that this method serves
as a form of regularization and allows SAP to find more efficient adaptation
strategies than adjusting all parameters of trainable layers. In addition, it
utilizes implicit gradient modulation to warp (Lee and Choi, 2018; Flennerhag
et al, 2020) these subspaces per layer such that gradient descent can quickly
adapt to new tasks, if they share a common structure.

We empirically demonstrate that SAP is able to find efficient parameter
subspaces, or operation subsets, that match the underlying task structure in
simple synthetic settings and yield good few-shot learning. Moreover, SAP
outperforms gradient-based meta-learning techniques—that do not have the
ability to learn in which structured subspaces to perform gradient descent—on

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 3

few-shot sine wave regression and performs on-par or favorably in various few-
shot image classification settings. In short, our contributions are the following:

• We propose SAP, a new meta-learning algorithm for few-shot learning that
jointly learns good initialization parameters and parameter subspaces in the
form of operation subsets in which to perform gradient descent.

• We demonstrate the advantage of learning parameter subspaces as SAP out-
performs existing methods by at least 18% on few-shot sine wave regression
and yields competitive or superior performance on popular few-shot image
classification benchmarks (improvements in classification accuracy scores
range from 0.1% to 3.9%).

• We investigate the learned layer-wise parameter subspaces on synthetic
few-shot sine wave regression and image classification problems and find
that small subsets of adjustable parameters (simple parameter subspaces),
including feature transformations such as element-wise scaling and shifting
are assigned large weights, suggesting that they play an important role in
achieving good performance with SAP.

• For reproducibility and verifyability purposes, we make all our research code
publicly available.1

2 Related work
Optimization-based meta-learning
Our proposed technique belongs to the category of optimization-based meta-
learning (Vinyals, 2017; Huisman et al, 2021b), which employs optimization
methods to learn new tasks (Yoon et al, 2018; Bertinetto et al, 2019; Lee et al,
2019). These methods aim to meta-learn good settings for various hyperpa-
rameters, such as the initialization parameters, such that new tasks can be
learned quickly using optimization methods. These methods vary from regular
stochastic gradient descent, as used in MAML (Finn et al, 2017) and Reptile
(Nichol et al, 2018), to meta-learned procedures where a network updates the
weights of a base-learner (Ravi and Larochelle, 2017; Andrychowicz et al, 2016;
Li et al, 2017; Rusu et al, 2019; Li and Malik, 2018; Huisman et al, 2022).
SAP aims to learn good initialization parameters such that new tasks can be
learned quickly with regular gradient descent, similar to MAML.

Neural architecture search (NAS) for meta-learning
The techniques mentioned above assume a pre-specified network architec-
ture. Recently, there has been some work on combining meta-learning with
neural architecture search, where the architecture can also be learned. Kim
et al (2018) performs meta-learning as a subroutine to NAS, meaning that
meta-training is performed for every candidate architecture, which can be
computationally expensive. This problem can be overcome by combining
gradient-based meta-learning with gradient-based neural architecture search

1See: https://github.com/mikehuisman/subspace-adaptation-prior

https://github.com/mikehuisman/subspace-adaptation-prior

Springer Nature 2021 LATEX template

4 Subspace Adaptation Prior for Few-Shot Learning

such that the architecture and initialization parameters can be optimized
jointly instead of separately. A popular gradient-based meta-learning algorithm
is DARTS (Liu et al, 2019) which starts with a candidate pool of operations
(as in SAP) and learns which of them to use, thereby learning an appropri-
ate architecture. Learning which subspaces or subsets of operations to use per
layer, as done in SAP, can be seen as applying DARTS over the candidate
operation sets. A difference between DARTS and SAP is that we fix the base-
learner parameters when adapting to new tasks, which can then serve to warp,
or transform, the gradients such that gradient descent can quickly move to a
good solution for new tasks (see below). Moreover, SAP updates the initial-
ization parameters of all meta-trainable parameters with a MAML-like update
(to maximize post-adaptation performance), while DARTS uses a Reptile-like
update (to maximize multi-step performance). We describe DARTS in full
detail in Section 3.3.

Lian et al (2019) were the first to combine DARTS (Liu et al, 2019)
with gradient-based meta-learning in order to learn a base-learner architecture
that can be quickly adapted to new tasks. They perform hard-pruning, which
requires re-running the meta-training phase for every new task, which is com-
putationally expensive. In parallel to this work, Elsken et al (2020) proposed
a similar approach (MetaNAS) that does not perform hard-pruning and thus
side-steps these expensive re-running procedures. In contrast to these works,
which learn and adapt the base-learner network architecture as well as all of
the parameters to every new task, SAP assumes a fixed base-learner architec-
ture as a starting point and aims to learn a set of operations that are inserted
per layer (see Section 4) that are responsible for quickly adapting to new tasks.
In SAP, the architecture of the network is frozen at test time, in contrast to,
for example, the architecture of the networks learned by MetaNAS (Elsken
et al, 2020).

Gradient modulation in gradient-based meta-learning
Recent works that build upon MAML have shown that gradient modulation
can improve the generalization of optimization-based techniques (Sun et al,
2019). Explicit gradient modulation techniques directly transform the gradi-
ent updates when learning new tasks (Simon et al, 2020) through, for example,
diagonal matrix multiplication (Li et al, 2017), or block-diagonal precondition-
ing (Park and Oliva, 2019). Implicit gradient modulation techniques do not
directly operate on the gradients but rely on indirect transformations. CAVIA
(Zintgraf et al, 2019) separates shared parameters from context parameters.
The latter serve as additional inputs to one or more layers of the neural net-
work and are adjusted when learning a new task, whilst the shared parameters
are kept fixed. Other examples of implicit gradient modulation methods are
T-Net (Lee and Choi, 2018) and Warp-MAML (Flennerhag et al, 2020). SAP
also performs implicit gradient modulation in a similar fashion to these two
techniques.

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 5

T-Net inserts linear projection transformations directly after every matrix
multiplication in the base-learner. The weights of these transformations are
frozen when learning new tasks, and only the base-learner weights are adjusted.
The goal is to meta-learn good initialization parameters of the base-learner
weights as well as the transformation weights, such that new tasks can be
learned more quickly. These transformation layers serve to implicitly mod-
ulate the gradients of the base-learner parameters so that gradient descent
can quickly move to good solutions for new tasks. MT-Net is an extension
to T-Net, which also learns to mask certain features, preventing them from
being adapted when learning new tasks. We also investigated whether feature
masking was useful for SAP, but found that it decreased performance. Warp-
MAML is a generalization of T-Net as it does not require that the inserted
transformation layers are linear, that is, the theoretical framework allows these
transformation layers to be non-linear and consist of multiple layers (arbitrary
neural networks).

Both T-Net and Warp-MAML adjust all parameters of trainable layers, as
is common in gradient-based meta-learning. However, this may be suboptimal
for a given task distribution and lead to overfitting due to the large degree
of freedom to fit the noise in the data. MT-Net, on the other hand, freezes
certain features, which, in turn, also requires certain weights to be frozen but
this is rather inflexible as that does not allow us to perform simple operations
such as element-wise scaling of all features, which may be helpful for a given
task distribution. To overcome these issues, we propose SAP, which learns
per trainable layer which operations from a pre-defined candidate pool to use
and adapt when learning new tasks, instead of resorting to regular matrix
multiplications in which all weights are adjusted when learning new tasks (as
done by other methods). While the expressivity of SAP is equivalent to T-
Net and Warp-MAML (when using linear warp layers), the candidate pool of
operations allows SAP to learn which operations are important for the given
task distribution, thereby structuring the weight updates.

SAP is similar to T-Net and Warp-MAML in the sense that the linear
base layers Wℓ (see Section 4) of the network in SAP can be seen as the
warp layers or transformation layers that are used in T-Net and Warp-MAML,
which act as implicit preconditioning layers that warp the loss surface to aid
gradient descent in finding a good solution. Due to the similarities between T-
Net, Warp-MAML, and SAP, they serve as excellent baselines to investigate
whether the ability of SAP to learn which operation subsets to adapt when
learning new tasks is helpful for few-shot learning. Concurrently to our work,
Jiang et al (2022) have proposed a subspace meta-learning algorithm. Whilst
the title is similar, they explicitly meta-learn the bases for K subspaces. Then,
when learning a new task, they aim to find linear combinations of the basis
vectors of each of the subspaces that give rise to the best parameters for
the given task in the subspaces. The subset containing the parameters with
the lowest training loss is then used to obtain predictions for the query/test
set. Note that their work is different in that we do not learn basis vectors

Springer Nature 2021 LATEX template

6 Subspace Adaptation Prior for Few-Shot Learning

for different subspaces, but instead insert candidate operations that act to
transform intermediate representations in the base-learner network to allow
for faster learning and modulating the gradients.

3 Preliminaries
In this section, we introduce the problem setup and notation that we will use
throughout the paper.

3.1 Few-shot meta-learning
In few-shot learning (Lu et al, 2020; Wang et al, 2020; Bendre et al, 2020), the
goal is to learn a new task Tj from a limited number of examples. Every task
Tj = {Dtr

Tj
, Dte

Tj
} consists of a support set Dtr

Tj
that is used for learning the

new task and a query set Dte
Tj

for evaluating how well the task was learned.
Learning new tasks with deep neural networks from limited amounts of data is
challenging. Meta-learning aims to overcome this challenge by learning how to
learn on a distribution of training tasks ptrain(T) in the hope that new tasks
(not seen during training) from a similar distribution can be learned more
efficiently.

Meta-learning is often done in three stages. In the meta-training stage, the
meta-learner is presented with training tasks and uses them to adjust the prior,
such as the initialization parameters. After every pre-determined number of
training tasks, the meta-validation stage takes place, where the learner is vali-
dated on unseen meta-validation tasks. Finally, after the training is completed,
the learner with the best validation performance is evaluated in the meta-
test phase, where the learner is confronted with new tasks that have not been
seen during training and validation. Importantly, the tasks between the meta-
training, meta-validation, and meta-test phases are disjoint. For example, in
image classification, the classes in the meta-training tasks are not allowed to
occur in meta-test tasks as we are interested in measuring the learning ability
instead of memorization ability.

In N -way k-shot classification (Finn et al, 2017; Vinyals et al, 2016; Snell
et al, 2017), the support set Dtr

Tj
of every task Tj contains N classes and exactly

k shots, or equivalently, examples, per class, thus |Dtr
Tj
| = k ·N . Moreover, the

query set Dte
Tj

contains unseen examples from the same N classes, so that it
can be evaluated how well the concepts in the support set have been learned.
For regression problems, there is no notion of classes, but the same setup can
be used, i.e., support sets consist of k shots of one regression function and the
query sets of unseen examples of that same regression function.

3.2 Model-agnostic meta-learning (MAML)
A popular gradient-based meta-learning technique is model-agnostic meta-
learning, or MAML (Finn et al, 2017), which we briefly review here. MAML

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 7

aims to learn good initialization parameters θ of a neural network fθ such that
new tasks can be learned in a few gradient update steps from that initialization.

This initialization is obtained by interleaving inner- and outer-update steps
during the meta-training phase. At the inner-level, the model fθ is presented
with a task Tj , which it aims to learn by making T gradient update steps on
the support set of that task Dtr

Tj
, that is,

θ
(t+1)
j = θ(t) − α∇θ(t)LDtr

Tj
(θ(t)), (1)

where α is the inner learning rate and LDtr
Tj
(θ(t)) the loss of the network

with parameters θ(t) on the support set of task Tj at time step t. Before
learning a task, θ(0) is initialized as θ. These task-specific parameters θ

(t)
j

are then used to evaluate how well the task was learned. This loss signal is
then propagated backward to the initialization parameters θ to compute the
update direction. The latter corresponds to outer-level learning: adjusting the
initialization parameters over a single task, or more generally, a batch of tasks
B on which the inner-level update steps were made

θ = θ − β∇θ

∑
Tj∈B

LDte
Tj
(θ

(T)
j), (2)

where β is outer learning rate. This update requires the computation of second-
order gradients as we have to compute a gradient of a gradient, which is
expensive as it has a complexity quadratic in the number of parameters. This
can be sidestepped by using a first-order approximation. Importantly, note
that the inner-level updates are based on the loss on the support set while
the outer-level updates are based on the loss on the query set after adapta-
tion, stimulating generalization. For simplicity, the gradient update rules are
shown in the case that a single update is made per task, even though the idea
generalizes to the case of multiple updates per task.

MAML has been proven to be effective at learning new tasks from limited
amounts of data (Finn et al, 2017) as well as capable of approximating any
learning algorithm (Finn and Levine, 2018) by means of selecting a proper
initialization θ, under the assumption that the used network is “sufficiently”
deep.

3.3 Differentiable neural architecture search (DARTS)
DARTS (Liu et al, 2019) is a gradient-based neural architecture search method,
where the goal is to find a suitable neural architecture for a given problem.
To do this, DARTS assumes a set of candidate operations that can be used to
transform an input into an output. These candidate operations form a weighted
graph as shown in Figure 1. In the figure, every node oi(x) corresponds to
a candidate operation and the weights of the edges correspond to the activa-
tion strengths of the different operations. These weights are initially unknown

Springer Nature 2021 LATEX template

8 Subspace Adaptation Prior for Few-Shot Learning

...

?
? ?

Fig. 1 Intuitive visualization of DARTS. It is given a set of candidate operations O and
aims to learn the weights of the edges (indicated as ?), corresponding to the strengths of the
different operations oi(x). The output of the weighted graph is a convex combination of the
different operations O(x) =

∑n
i=1 wioi(x).

and DARTS aims to learn them jointly with the initial parameters of every
operation. The output of the layer in the figure is given by

O(x) =
n∑

i=1

wioi(x), (3)

where wi is the weight of operation i and
∑n

i=1 wi = 1 (e.g., by using a soft-
max). For our purposes, we only consider DARTS for searching over operations
for a single layer, but it can be used for multi-layer architectures as well.

In addition to learning the weights wi, DARTS simultaneously learns good
parameters for every operation oi. We denote the group of all activation weights
as λ = {w1, w2, . . . , wn} and all operation parameters as θ. DARTS adopts a
method similar to MAML for learning λ and θ. That is, given a training task
Tj = (Dtr

Tj
, Dte

Tj
), DARTS performs a gradient update step on the operation

weights θ as follows

θ′j = θ − α∇θ,λLDtr
Tj
(θ, λ). (4)

Note that this is similar to Equation 1 with the exception that we now have
activation strength parameters λ, which are kept constant during this inner-
loop adaptation step. After updating the operation parameters θ, DARTS
computes the loss of the new model on the query set, i.e., LDte

Tj
(θ′j , λ) and

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 9

updates the activation strengths using gradient descent on this loss

λ = λ− β∇λLDte
Tj
(θ′j , λ). (5)

Similarly to MAML, this update also contains second-order gradients, but first-
order approximations can be made. In DARTS, the weights of the operations θ
are simply updated to their new values, that is, θ = θ′j , i.e., after every task in
the meta-train set, we update the initialization parameters θ to the parameters
that were obtained after training on task Tj .

x

y

(a) Sine wave tasks

sin
Shift

Scale

Shift

Scale

(b) Learned subspaces

Fig. 2 SAP can learn the activation strengths of candidate operations Oℓ (corresponding to
parameter subspaces) that match the problem structure. Suppose we are given a sine wave
task distribution, where every task Tj is a sine wave gj(x) = Aj · sin(x−pj), where pj is the
phase and Aj the amplitude. Instead of adapting all parameters of the network on a new
task, SAP can learn to keep the sine network parameters (sin) frozen and that the input shift
(shift in O1) and output scale (scale in OL+1) are the most important operations to adjust
(bold and dark-colored arrows), matching the role of the phase and amplitude, respectively.

4 Subspace Adaptation Prior
In this section, we motivate and present our proposed technique called Subspace
Adaptation Prior (SAP).

4.1 Intuition and operations
Our method (SAP) builds on MAML as we also aim to learn good initial-
ization parameters such that good performance can be achieved after a small
number of gradient updates. However, MAML adapts all of its network param-
eters when presented with a new task, which may be suboptimal for the given
task distribution and lead to overfitting. Our method, SAP, is given a pool of
candidate operations per layer (described below) and it learns per layer which
subset of operations should be adjusted to adapt to a new task. Since all of
the operations that SAP can choose from per layer are subsumed in terms of
expressivity by a full-rank matrix multiplication (or convolution in the case of
image data), this can be understood as learning in which parameter subspaces
to perform gradient descent so that new tasks can be learned more efficiently.

Springer Nature 2021 LATEX template

10 Subspace Adaptation Prior for Few-Shot Learning

This is a form of regularization and can help the network to exploit struc-
tures in problems. For example, take the distribution of tasks Tj corresponding
to different sine waves gj(x) = Aj · sin(x− pj), where Aj is the amplitude and
pj the phase. There exists a common structure amongst these tasks: a given
sine wave can be transformed into any other sine wave by simply shifting the
input and scaling the output. This has been visualized in Figure 2. Techniques
that adapt all parameters may overwrite the sine function and overfit to the
noise, whereas theoretically, SAP could learn to keep these parameters fixed
and that shifting the input and scaling the output are the most important
operations and consequently, that gradient descent should be performed in
the parameter subspaces corresponding to these operations. Sine waves form a
simplistic example to demonstrate the idea of SAP, however, we note that also
for image classification tasks, simple operations such as scaling and shifting
feature maps can be useful too (Sun et al, 2019; Perez et al, 2018; Requeima
et al, 2019). SAP can discover such underlying structures and use them to
enhance its few-shot learning abilities.

Candidate operations
The candidate operations that SAP uses are specified by hand before meta-
training. In order to preserve the original expressivity of the base-learner
network, the operations are elementary linear algebra operations that are sub-
sumed by full-rank matrix multiplication. Table 1 displays all the operations
that we use for both fully-connected and convolutional layers. The MTL scale
operation was proposed by Sun et al (2019). By construction, we require that
the output of an operation set must have the same dimensionality as the input.
Recall that in the case of fully-connected layers, all candidate operations can be
expressed by a single matrix multiplication where only a subset of the entries
is used. For example, an element-wise scale can be performed by multiplying
the input with a diagonal matrix where the diagonal entries correspond to the
element-wise scalars, and the non-diagonal entries are zero. In this way, every
candidate operation occupies a part of the full operation set matrix. This also
holds for convolutions, which can be seen as a stack of matrices.

We also include singular value (SVD) decomposition operations, where
three v-rank matrices A = UΣV T are multiplied to obtain a transformation
matrix A ∈ ⋗×⋉ with the same dimensionality as a full-rank transform
T ∈ Rm×n (although with a lower rank). Here, U ∈ Rm×v, Σ ∈ Rv×v, and
V T ∈ Rv×n. The obtained transformation A is then applied to the input.

Below, we describe how these operations are interleaved with the base-
learner network and how SAP learns which subsets to adjust.

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 11

Fully-connected Convolutional

Operation Dimensionality Operation Dimensionality

Identity N.A. Identity N.A.
Matrix multiplication d× d Convolution C × C × k × k
SVD-matrix multiplication d× v SVD convolution C × C × k × v
Element-wise scale d 1x1 convolution C × C
Scalar scale 1 MTL scale C × C
Vector shift d Channel-wise scale C
Scalar shift 1 Channel-wise shift C

Scalar shift 1

Table 1 The candidate operations for fully-connected and convolutional network layers
and the corresponding dimensionality of the subspace in which gradient will be performed.
Here, d is the dimensionality of the input in the case of a fully-connected layer and C is
the number of input and output dimensions of candidate operations in the case of
convolutional layers. k is the kernel size of convolutions and v < k is a variable dimension
for SVD matrices.

4.2 The algorithm
Architecture
Let fθ be a neural network with parameters θ, where the output, or prediction,
is given by

fθ(x) = WLσ(. . . σ(W2σ(W1x))). (6)

Here, L is the number of layers of the network, σ is a non-linear activation
function, and Wℓ is the weight matrix for layer ℓ ∈ {1, 2, . . . , L} (which can
also include the bias by concatenating a 1 at the top of the input vector).
Note that θ = {W1,W2, . . . ,WL} is the set of all base-learner weight matrix
parameters. In SAP, we insert sets of candidate operations Oℓ = {oℓ1, . . . , oℓnℓ

}
before the application of weight matrices Wℓ and after computing the final
output, as shown in Figure 3. Here, nℓ is the number of operations in the
candidate set Oℓ in layer ℓ. Each of these operations oℓi ∈ Oℓ act on the input,

Fig. 3 A diagram of a feed-forward pass in SAP. Sets of operations Oℓ are interleaved with
base-learner weights Wℓ. The operation sets perform a convex combination of a number
of operations {oℓ1, . . . , oℓnℓ

}. SAP learns the strengths of each of the candidate operations
and thereby learns in which parameter subspaces gradient descent can effectively adapt the
network to learn new tasks. The operation strengths and the weight matrices Wℓ are frozen
when adapting to new tasks. Only the operation parameters are adjusted at test time.

Springer Nature 2021 LATEX template

12 Subspace Adaptation Prior for Few-Shot Learning

giving rise to partial outputs oℓi(z
ℓ) of the same dimensionality of the inputs,

where zℓ is the input to the ℓ-th operation layer. The final output of applying
the candidate operations is a convex combination of the partial outputs, that
is,

Oℓzℓ =

nℓ∑
i=1

wℓ
io

ℓ
i(z

ℓ), (7)

where z1 = x and wℓ
i is the activation strength of operation oℓi . We require

that
∑nℓ

i=1 w
ℓ
i = 1 and 0 ≤ wi ≤ 1. Learning these activation strengths can be

seen as neural architecture search. Thus, the output of the neural network in
SAP is given by

fΘ(x) = OL+1WLOLσ(. . . σ(W2O2σ(W1O1x))), (8)

where Θ = {θ, ϕ, λ} is the set of the initial hyperparameter values for the
base-learner weights (θ), the operation weights (ϕ), and the activation weights
(λ). Note that ϕ = {O1,O2, . . . ,OL+1} are the parameters corresponding to
the operations in all layers (see Section 4.1), and λ is the set containing all wℓ

i

for all layers ℓ ∈ {1, 2, . . . , L+ 1}.
Importantly, each of these candidate operations oℓi are subsumed or equiva-

lent in terms of expressivity with full-rank matrix multiplication. For example,
candidate operations can include element-wise shifting or multiplication of the
input by a fixed scalar or by a vector, which can also be done by weight
matrix multiplication. Since the application of a set of operations Oℓ of such
expressivity can be seen as a single matrix multiplication (hence the sugges-
tive notation), the expressivity of an SAP network is equivalent to that of the
original network. To see this, note that the application of two weight matri-
ces to an input can be written as the application of a single weight matrix
to the input x, that is, W(Ox) = (WO)x = W′x, where W and O are
weight matrices, and W′ = WO. For the sake of another example, suppose
that we have a set of two operations in O: scalar multiplication s · z and
matrix multiplication Mz (preserving the dimensionality of z). Furthermore,
suppose that the two operations are applied with activation strengths w1 and
w2, granting us the output z′ = w1s · z + w2Mz. We can rewrite this as
z′ = w1sIz+ w2Mz = (w1sI + w2M)z = Oz, where O = (w1sI + w2M) and
I is the identity matrix.

Crucially, this insight that we can write the weighted combination of dif-
ferent operations as a single weight matrix multiplication Ox, where O is a
weighted combination of different structured matrices, reveals that SAP effec-
tively learns what subset of parameters of this weight matrix O and thus of
WO to adjust by learning the activation strengths λ. In this work, we use the
expressions “learning which subsets of parameters to adjust” and “learning in
what subspaces to perform gradient descent” synonymously.

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 13

Meta-learning
The activation strengths wℓ

i are meta-learned by SAP in addition to the initial-
ization parameters of the operations Oℓ and the base-learner weights Wℓ. Note
that learning the wℓ

i corresponds to learning in which parameter subspaces
gradient descent is performed when learning new tasks, which can be done
through the layer-wise application of the gradient-based neural architecture
search technique DARTS (Liu et al, 2019). Let θ denote the initial parameters
of the weight matrices Wℓ, ϕ the parameters of all candidate operations Oℓ,
and λ the activation strengths wℓ

i of all individual candidate operation. Recall
that Θ = {θ, ϕ, λ}.

When presented with a new task Tj , the candidate operation activation
strengths λ and the base-learner parameters θ are frozen, and only the can-
didate operation parameters ϕ are updated using gradient descent for T
steps

ϕ
(t+1)
j ← ϕ(t) − α∇ϕ(t)LTj (θ, ϕ

(t), λ), (9)

where ϕ(0) is initialized with ϕ. At the meta-level, the goal is to find good
initial parameter settings for all involved parameters such that the task-specific
performance is maximized. Thus, we wish to find

argmin
Θ={θ,ϕ,λ}

E
Tj∽p(T)

LTj
(θ, ϕ

(T)
j , λ), (10)

where ϕ
(T)
j denotes the task-specific parameters obtained through one or more

gradient update steps on task Tj . In other words, we wish to find good initial
values for the parameters θ, ϕ, and λ such that new tasks can be learned
quickly by updating the operation parameters ϕ. This meta-objective can also
be optimized through gradient descent by updating

Θ← Θ− β∇Θ

∑
Tj∈B

LTj (θ, ϕ
(T)
j , λ). (11)

The full algorithm for application to few-shot learning is shown in Algo-
rithm 1. At the start (line 1), we initialize the parameters of the base-learner
θ randomly. The candidate operation parameters ϕ are initialized to leave the
input unaffected (for example, scalars are initialized to 1 and biases to 0). The
layer-wise activation strengths wℓ

i of the candidate operations are initialized to
the uniform distribution. After this initialization, we repeat the following steps
until a stopping criterion is met, such as having sampled a certain number
of task batches, or observing decreasing performance on held-out validation
tasks. We randomly sample batches of tasks (line 3), initialize the task-specific
parameters ϕ(0) = ϕ, and make T gradient update steps on the support set of
every task (lines 6–8), and perform meta-updates to the initialization param-
eters Θ (line 11) using the query sets of the tasks. Note that the meta-update

Springer Nature 2021 LATEX template

14 Subspace Adaptation Prior for Few-Shot Learning

requires the computation of second-order gradients as we have to compute the
gradient of the inner-level gradients. The complexity of this is quadratic in the
number of parameters, but can be avoided by using the first-order assumption
∇ϕϕ

(T)
j = I.

Algorithm 1 Subspace Adaptation Prior (SAP)

Require: p(T)
Require: α, β

1: initialize θ, ϕ, λ
2: while not converged do
3: sample batch of tasks B = {Tj = (Dtr

Tj
, Dte

Tj
) ∽ p(T)}Mj=1

4: for task Tj = (Dtr
Tj
, Dte

Tj
) ∈ B do

5: initialize task-specific parameters ϕ
(0)
j = ϕ

6: for t = 0, . . . , T − 1 do
7: compute gradient update ϕ

(t+1)
j using Equation 9 on Dtr

Tj

8: end for
9: end for

10: update initial parameters Θ = {θ, ϕ, λ} using Equation 11
11: end while

Pruning
The scores wℓ

i represent the activation strengths of the different candidate oper-
ations/subspaces, and can also be used for pruning the operations, for example,
in a layer-wise or regular top-K fashion. By default, we do not hard-prune oper-
ations and maintain a convex combination of different candidate operations
unless explicitly mentioned otherwise. Note that we cannot simply drop low
activation strength operations from the network as that changes the composite
features and layerwise activation statistics. Hard-pruning requires re-training
the network with only the selected (non-pruned) subspaces/operations.

4.3 Analysis
One may wonder what the role is of inserting operation sets Oℓ in the base-
learner network since they have the same expressivity as weight matrices. In
other words, why do we have two consecutive matrix multiplications WℓOℓx if
that is equivalent to having one matrix multiplication Ux, where U = WℓOℓ.
There are two reasons for maintaining two separate matrices, which we describe
below.

Regularization
First, having a set of operations Oℓ allows SAP to learn which sets, corre-
sponding to weight subspaces of a full-rank matrix, are relevant for a given task

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 15

distribution. Choosing lower-dimensional subspaces is a form of regularization,
as fewer parameters can be adjusted to fit the noise in the data.

Gradient modulation
Second, when computing gradient updates for the operation parameters ϕℓ of
a given layer ℓ, the frozen base-layers Wℓ implicitly modulate the gradients
since the error signal traverses backward through Wℓ to Oℓ. This method of
gradient modulation was proposed by Lee and Choi (2018). Below, we borrow
the analysis performed in that paper to illustrate the modulation.

Suppose we are presented with a task Tj and that the output for a given
layer in the network is given v = WOx, where x is the input to the layer.
Moreover, assume that the loss of the network on task Tj is given by LTj

Then,
the parameters of the operations O are updated using a gradient update step,
and we obtain the new output

vnew = W(O − α∇OLTj
)x (12)

= v − α(W∇OLTj
)x. (13)

Note that we slightly abuse notation here since the parameters of the oper-
ations are denoted as ϕ. As we can see, the change in the layer’s output
∆(vnew ,v) is negatively proportional to the (W∇OLTj

). Here, W warps the
gradients with respect to the operation parameters. The warping of these gra-
dients is meta-learned across tasks such that within a few gradient updates in
warped space, a good performance can be achieved (Flennerhag et al, 2020;
Lee and Choi, 2018; Park and Oliva, 2019).

As a consequence, SAP can learn both in which parameter subspaces to
perform gradient descent by learning appropriate subsets of operations, as well
as learn how to warp these subspaces so that few gradient updates yield good
performance.

5 Experiments
In this section, we aim to answer the following research questions:

• Does learning suitable layer-wise operations/subspaces improve meta-
learning performance on sine wave regression? (Section 5.1)

• Do the learned strengths of subspaces/operations match the task structure
in a simple synthetic setting? (Section 5.2, Section 5.3)

• How well does SAP perform at few-shot image classification? (Section 5.4)
• How well does SAP perform at cross-domain few-shot image classification?

(Section 5.5)
• Is hard subspace pruning beneficial for the performance of SAP?

(Section 5.6)
• What is the influence of second-order gradients on the performance of SAP?

(Section 5.7)

Springer Nature 2021 LATEX template

16 Subspace Adaptation Prior for Few-Shot Learning

• What operations are important for few-shot image classification?
(Section 5.8)

• How does SAP compare in terms of the running time and and number of
trainable parameters compared to the baselines? (Section 5.9)

5.1 Sine wave regression
First, we study the few-shot learning performance of SAP on few-shot sine
wave regression, which is commonly used in the meta-learning community
(Finn et al, 2017; Li et al, 2017; Park and Oliva, 2019). Here, the goal is
to learn sine wave regression tasks Tj corresponding to sine curves gj(x) =
Aj · sin(x − pj) from a limited set of k examples. The amplitudes Aj and
phases pj of these sine curves are randomly sampled from the intervals [0.1, 5.0]
and [0, π], respectively. While the results on sine-wave regression are not our
main contribution, the structure of these problems were a motivation for the
development of this method, and therefore this is a good test-case on which we
expect SAP to perform well. Of course, SAP can only be considered a valuable
contribution when it also works on more relevant problem types, which we
explore in the following sections.

We use the same base-learner architecture, a fully-connected neural net-
work with 2 hidden ReLU layers of 40 nodes each, as in (Finn et al, 2017). For
the SVD operations (see candidate operations in Section 4.2), we use ranks 5,
10, and 15 in the candidate pools. All candidate operations were initialized to
have no effect on the network predictions at the start (transformation matri-
ces were initialized to identity matrices, biases to 0, and scale operations to
1). All techniques are meta-trained on 70 000 tasks using one update step per
task and a meta-batch size of 4. We perform validation every 2 500 tasks to
select the best performing model, which will be tested after 1 and 10 gradient
update steps on 2 000 meta-test tasks consisting of k support examples and 50
query data points.

5-shot 10-shot

params T=1 T=10 T=1 T=10

MAML 1 761 0.73 ± 0.016 0.42 ± 0.011 0.49 ± 0.011 0.15 ± 0.005
T-Net 4 962 0.53 ± 0.014 0.24 ± 0.009 0.33 ± 0.009 0.09 ± 0.004

MT-Net 5 043 0.55 ± 0.013 0.19 ± 0.005 0.34 ± 0.008 0.06 ± 0.002

SAP (ours) 10 013 0.47 ± 0.012 0.10 ± 0.003 0.28 ± 0.008 0.04 ± 0.001
Table 2 The mean MSE meta-test loss on 5- and 10-shot sine wave regression after T = 1
and T = 10 update steps. The results are averaged over 5 runs with different random seeds
and the 95% confidence intervals are displayed as ± x. The number of parameters is shown
in the column “params”, even though the used backbones are equally expressive.

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 17

As baselines, we compare against MAML, T-Net, and MT-Net (Lee and
Choi, 2018) as well as Warp-MAML (Flennerhag et al, 2020) as are highly sim-
ilar to SAP, which allows us to investigate the advantage of SAP’s ability to
learn which subsets of operations to adjust. We refrain from comparing against
MetaNAS (Elsken et al, 2020), as this technique also adjusts the architecture
at meta-test time and is orthogonal to SAP and the methods we compare
against. We use the same hyperparameters as reported in (Finn et al, 2017; Lee
and Choi, 2018). In this case, however, Warp-MAML is equivalent to T-Net
as both use insert linear “transformation” or “warp” layers in the base-learner
network. The results of the experiments are displayed in Table 2. In this table,
we can see that SAP consistently outperforms all tested baselines, support-
ing the hypothesis that it is indeed beneficial to learn in which subspaces to
perform gradient descent. We have also performed experiments with SAP and
the feature masking method used in MT-Net, where some features are frozen
based on learned feature masking probabilities, but found that it decreases
the performance, which may be due to the low-dimensional operations present
in the architecture, which are more susceptible to being completely frozen as
soon as a single feature is masked.

5.2 The learned subspaces for sine regression
Next, we investigate (in the same setting as above) the importance of the
different candidate operations for quick adaptation to new tasks to see whether
the operations match the task structure. We hypothesize that shifting the
input and scaling the output are important operations as they are inherent
in the definition of a sine wave gj(x) = Aj · sin(x − pj). To investigate this,
we inspect the activation strengths wℓ

i of the operations of the best models
across 5 different runs with different random seeds. The operations that were
used are were introduced in Table 1 (left side). The results for SAP with
T = 1 are displayed in Figure 4 (similar results are obtained when making
T = 10 updates and therefore omitted for brevity). As we can see, the most
important transformations on the input and output are a scalar shift and
multiplication, respectively. In other words, SAP has learned that shifting the
input and scaling the output are effective operations to learn new tasks. Note
that these operations match the structure of sine waves. While this confirms
our hypothesis, SAP also assigns relatively large importance to operations that
are not directly observable in the mathematical definition of sine curves such
as an output shift and intermediate shifts.

5.3 Matching the problem structure
To further investigate the ability of SAP to match the learned candidate opera-
tion strengths to the structure of the problem, we investigate whether changes
in the problem structure amount to changes in the learned activation strengths
by SAP for the different operations. For this, we consider a synthetic sine wave
regression problem that generalizes the settings studied by Finn et al (2017)

Springer Nature 2021 LATEX template

18 Subspace Adaptation Prior for Few-Shot Learning

original

scalar m
ult

vector m
ult

matrix
 mult

SVD mult r=
5

SVD mult r=
10

SVD mult r=
15

scalar sh
ift

vector sh
ift

input

layer 1

layer 2

output

0.16
±0.01

0.20
±0.01 NA NA NA NA NA 0.64

±0.02 NA

0.03
±0.01

0.03
±0.01

0.03
±0.01

0.03
±0.00

0.03
±0.01

0.03
±0.01

0.04
±0.01

0.57
±0.04

0.20
±0.02

0.04
±0.00

0.04
±0.00

0.04
±0.00

0.08
±0.01

0.03
±0.00

0.04
±0.00

0.04
±0.00

0.31
±0.02

0.37
±0.03

0.21
±0.05

0.46
±0.05 NA NA NA NA NA 0.34

±0.03 NA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 4 The importance of the different operations in SAP for 5-shot sine wave regression.
The results are averaged across 5 runs with different random seeds and the standard devia-
tions are shown as ±x. NA entries indicate that these operations were not in the candidate
pool for that layer, and “mul” means multiplication. The y-axis indicates the layer on which
the operations act, and the x-axis displays the different candidate operations. Simple scalar
multiplication and shifting, and vector shifts obtain high activation strengths in all layers.
The input shift and output scale (inherently present in the definition of a sine wave) obtain
high activation strengths.

and Li et al (2017). In this setting, we create different task families (task dis-
tributions) that are characterized by the mathematical operations inherent in
the ground-truth function. All task families share the following template for
the ground-truth function g(x) = A·sin(f ·x−p)+β, where A is the amplitude,
f the frequency, p the phase, and β the output offset. What distinguishes task
families is which of these parameters they include in the functional descrip-
tion. For example, task family A may fix the amplitude and vary the frequency,
phase, and output offset, whereas task family A may vary the amplitude and
fix the rest. Each task family is thus defined by which of these parameters are
varied among tasks from that family and which are kept constant. If a given
parameter is not varied, we fix it to a value that leaves the function unaltered
(i.e., A, f, p = 1 and β = 0). In total, there are 24 = 16 task families that can
be constructed by varying or fixing these parameters.

We perform meta-training on each of these task families separately and
investigate whether SAP discovers the operations that are inherently present
in the task structure. The experimental details follow those used in Section 5.1
with the exception that only operations were included that could be present in
the task families to be able to measure whether SAP correctly detects and uses
them. We use 20-shots per task and set the number of inner updates to T = 1.
The results of this experiment are displayed in Figure 5. As we can see, SAP
assigns higher activation strengths to operations that are inherently present
in the task families in three out of four cases, i.e., input scale (frequency),
input shift (phase), and output shift. A statistical T-test shows that these

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 19

Hyperparameter Range

Inner learning rate LogUniform(1e-3, 6e-1)
Inner update steps (training) Uniform(1,10)
Inner update steps (testing) Uniform(inner steps training, 15)
Meta-batch size Uniform(1,10)
Gradient masking Uniform({False,True})

Table 3 The ranges and sampling types for the hyperparameters, which were tuned with
random search. The bounds are inclusive.

differences in mean activation strengths are statistically significant, using a
threshold of 0.05. For the input scale, however, we observe that SAP assigns
similar activation strength to the input scale activation, regardless of whether
such an operation was present in the task family. This may indicate that SAP
uses other operations to compensate for this, such as vector multiplications
or matrix multiplications in later layers. Overall, these results suggest in this
simple synthetic setting, SAP is capable of learning to use operations that
appear in the problem structure in 75% of the scenarios.

Input scale Input shift Output scale Output shift
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ct

iv
at

io
n

st
re

ng
th

Not present in task family
Present in task family

Fig. 5 The mean activation strengths of the different operations corresponding to the
intrinsic parameters that were varied within task families. The vertical bars display 95%
confidence intervals over 5 runs with different random seeds. Each task family has the fol-
lowing template g(x) = A · sin(f · x − p) + β and differs in which of these operations are
varied among tasks. If operations are inherently present in a task family, SAP assigns higher
activation strengths to them than if they are not present in 3 out of 4 cases, indicating that
the operations often match the problem structure.

5.4 Few-shot image classification
Next, we investigate the performance of SAP in few-shot image classification
settings, where the goal is to learn new image classification tasks from a few

Springer Nature 2021 LATEX template

20 Subspace Adaptation Prior for Few-Shot Learning

examples. For this, we use the popular N -way k-shot classification setup (see
Section 3.1) on miniImageNet (Vinyals et al, 2016; Ravi and Larochelle, 2017)
and tieredImageNet (Ren et al, 2018). We use the frequently used Conv-4
backbone (Finn et al, 2017; Lee and Choi, 2018; Flennerhag et al, 2020), con-
sisting of four blocks, where each block contains 3 × 3 convolutions, a max
pooling layer, 2D BatchNorm, and a ReLU nonlinearity. In the literature, this
backbone has been used with 64 channels for every convolutional block (Snell
et al, 2017; Vinyals et al, 2016) as well as 32 channels (Finn et al, 2017; Nichol
et al, 2018). For this reason, we present the results for SAP on both variants.
The final feature representations are flattened and fed into a softmax output
layer. All techniques were trained for 60 000 episodes and were validated after
every 2 500 tasks and we use the best-reported hyperparameters by the original
authors.

We tuned a subset of the hyperparameters for SAP on the meta-validation
tasks using random search with a function evaluation budget of 30 runs. Each
run was restricted to finish within 7 days on a single PNY GeForce RTX 2080TI
GPU. Runs that took longer (e.g., because of a large meta-batch size) were
discarded from the hyperparameter search. The used hyperparameter ranges
and sampling types that were used for the random search are displayed in
Table 3.

1-shot 5-shot

32 channels 64 channels 32 channels 64 channels

MAML 48.0 ± 0.8 46.7 ± 0.8 64.4 ± 0.4 63.6 ± 0.4
T-Net 48.9 ± 0.8 48.7 ± 0.8 65.3 ± 0.4 -
MT-Net 48.5 ± 0.8 49.3 ± 0.8 63.0 ± 0.4 -
Warp-MAML 49.5 ± 0.8 49.8 ± 0.8 63.9 ± 0.4 64.6 ± 0.4

SAP (ours) 51.6 ± 0.8 52.8 ± 0.8 65.9 ± 0.4 67.4 ± 0.4
Table 4 Meta-test accuracy scores on 5-way miniImageNet classification over 5 runs with
two variants of the Conv-4 backbone, that is, with 32 or 64 channels per block. The 95%
confidence intervals are displayed as ± x. “-” indicates that the experiments required more
GPU VRAM than available.

The results for the experiments on 5-way miniImageNet and tieredIma-
geNet classification are displayed in Table 4 and Table 5. Note that the results
for 5-shot T-Net and MT-Net are missing as they were unable to run on our
GPU with 12GB of VRAM. As we can see, the performance of the techniques
improves when using 64 channels compared with 32, with the exception of
MAML on miniImageNet and T-Net in the 1-shot setting on miniImageNet.
As we can see, SAP consistently outperforms all tested baselines in all tested
settings (with gains between 1.1% to 3.3% accuracy), indicating that it is ben-
eficial to learn subsets of operations on which gradient descent is performed in
the case of few-shot image classification.

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 21

1-shot 5-shot

32 channels 64 channels 32 channels 64 channels

MAML 50.7 ± 0.8 51.5 ± 0.8 65.2 ± 0.4 66.6 ± 0.4
T-Net 49.4 ± 0.8 51.7 ± 0.8 64.6 ± 0.4 -
MT-Net 49.8 ± 0.9 51.5 ± 0.8 64.6 ± 0.4 -
Warp-MAML 51.8 ± 0.8 53.3 ± 0.8 66.0 ± 0.4 68.2 ± 0.4

SAP (ours) 52.9 ± 0.8 54.5 ± 0.8 69.3 ± 0.3 71.3 ± 0.4
Table 5 Meta-test accuracy scores on 5-way tieredImageNet classification over 5 runs
with two variants of the Conv-4 backbone, that is, with 32 or 64 channels per block. The
95% confidence intervals are displayed as ± x. “-” indicates that the experiments required
more GPU VRAM than available.

5.5 Cross-domain few-shot image classification
Next, we study the performance of SAP in a more challenging cross-domain
few-shot image classification setting. In this setting, techniques are trained
on tasks from dataset A and evaluated on tasks from another dataset B, in
contrast to the setting used above, where the techniques were evaluated on
unseen tasks from the same dataset used for training. We use the same setting
as Chen et al (2019), in which we train on miniImageNet and evaluate on CUB
(Wah et al, 2011). In addition, we also train on tieredImageNet (Ren et al,
2018) and test on CUB. All other experimental details are the same as above.

The results of this experiment are shown in Table 6. As we can see, SAP
performs on par with Warp-MAML in the 1-shot setting for MIN → CUB.
Both outperform the other tested baselines in that scenario. In other cases,
however, SAP yields performance improvements ranging from 0.5% to 3.9%
accuracy. This supports the hypothesis that it is beneficial to learn which
subsets of operations to adjust when learning new tasks.

MIN → CUB Tiered → CUB

1-shot 5-shot 1-shot 5-shot

MAML 37.3 ± 0.3 54.7 ± 0.3 38.1 ± 0.3 55.1 ± 0.3
T-Net 38.0 ± 0.3 55.6 ± 0.3 37.5 ± 0.3 54.8 ± 0.3
MT-Net 37.1 ± 0.3 53.1 ± 0.3 38.0 ± 0.3 55.5 ± 0.3
Warp-MAML 41.0 ± 0.3 55.3 ± 0.3 40.9 ± 0.3 56.8 ± 0.3

SAP (ours) 40.9 ± 0.3 55.8 ± 0.3 41.1 ± 0.3 60.7 ± 0.3
Table 6 Average cross-domain meta-test accuracy scores over 5 runs a 32-channel Conv-4
backbone. Techniques trained on tasks from one data set were evaluated on tasks from
another data set. The 95% confidence intervals are displayed as ± x.

Springer Nature 2021 LATEX template

22 Subspace Adaptation Prior for Few-Shot Learning

5.6 Effect of hard pruning
Next, we investigate the effect of hard pruning the number of operations per
layer, which is a common feature of DARTS (Liu et al, 2019), and therefore
also inherited by SAP. For this, we compare the performance of SAP without
hard pruning and SAP where we only retain the top-K operations as indicated
by their strength scores. The hard-pruned SAP is re-trained using only the
candidate operations which were not pruned. The results of this experiment
with a 32-channel Conv-4 backbone are displayed in Table 7 (for the 64-channel
variant, please see Table A2 in the appendix). As we can see, hard pruning can
have a mild positive effect on the meta-learning performance, whilst reducing
computational costs due to the fact that fewer parameters have to be trained.
This also implies that some operations may indeed be suboptimal for a given
task distribution, which soft-pruning is not able to completely filter out, and
that a model which fully excludes these, can achieve better performance. We
note, however, that the 95% confidence intervals are overlapping, suggesting
that these performance increases are not significant.

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

No pruning 51.6 ± 0.8 65.9 ± 0.4 52.9 ± 0.8 69.3 ± 0.3

Top-1 51.4 ± 0.8 65.8 ± 0.4 52.8 ± 0.8 69.4 ± 0.4
Top-2 51.8 ± 0.8 66.3 ± 0.4 53.4 ± 0.8 69.4 ± 0.4
Top-3 51.8 ± 0.8 66.3 ± 0.4 53.0 ± 0.9 69.9 ± 0.4

Table 7 Mean meta-test accuracy scores on miniImageNet and tieredImageNet with 95%
confidence intervals over 5 different runs. We used a Conv-4 backbone with 32 channels for
these results.

5.7 The effect of the gradient order
All tested techniques require the computation of second-order gradients by
default. Here, we investigate how the performance of SAP is affected by mak-
ing a first-order approximation. We compare this first-order variant with the
regular second-order variant, using the same experimental settings as used in
Section 5.4. The results of this experiment are shown in Table 8. As we can
see, the first-order approximation is consistently outperformed by the regu-
lar variant, with differences between 0.2% and 7.3 % accuracy, indicating that
second-order gradients play an important role in achieving good performance.

5.8 The learned subspaces for image classification
In order to gain insight into what operations are important for achieving
good few-shot learning performance in SAP, we investigate the learned acti-
vation strengths for the different candidate operations. The operations that

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 23

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

SAP (first-order) 51.4 ± 0.8 63.7 ± 0.4 47.2 ± 0.8 62.0 ± 0.4
SAP (second-order) 51.6 ± 0.8 65.9 ± 0.4 52.9 ± 0.8 69.3 ± 0.3

Table 8 Meta-test accuracy scores on miniImageNet and tieredImageNet classification
over 5 runs using the Conv-4 backbone with 32 channels. The 95% confidence intervals are
displayed as ± x.

were used are were introduced in Table 1 (right side). In Figure 6, we can
see these learned strengths in SAP on 1-shot 5-way miniImageNet using the
Conv-4 backbone with 32 channels (similar patterns are seen for the backbone
with 64 channels as can be seen in Figure A1 in the appendix). As we can
see, high-dimensional convolutional operations (conv1x1, conv3x3, convSVD)
obtain low activation strengths, while lower-dimensional subspaces/operations
such as shifts (scalar and vector) and MTL scale yield larger strengths. The
greatest strength is assigned to the former throughout all layers. This may
indicate that the higher-dimensional operations lead to overfitting, while the
lower-dimensional operations are more suited for adapting to tasks when only
limited data is available. Consequently, this implies that it is indeed beneficial
to adapt subsets of operations when learning new tasks.

original
conv1x1

conv3x3

convSVD

MTL scale

Simple scale

scalar sh
ift

vector sh
ift

linear tra
nsform

input

block 1

block 2

block 3

block 4

output

0.05
±0.01

0.04
±0.01

0.06
±0.01

0.06
±0.01 NA NA 0.37

±0.04
0.42

±0.02 NA

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.01
±0.00

0.08
±0.01

0.02
±0.00

0.58
±0.11

0.29
±0.11 NA

0.01
±0.00

0.01
±0.00

0.00
±0.00

0.01
±0.00

0.10
±0.01

0.02
±0.01

0.29
±0.15

0.57
±0.16 NA

0.02
±0.00

0.01
±0.00

0.01
±0.00

0.01
±0.00

0.21
±0.03

0.05
±0.01

0.32
±0.04

0.37
±0.05 NA

0.01
±0.00

0.01
±0.00

0.02
±0.00

0.01
±0.00

0.10
±0.01

0.04
±0.01

0.20
±0.02

0.62
±0.04 NA

0.65
±0.01 NA NA NA NA NA NA NA 0.35

±0.01
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 6 The importance of the different subspaces/operations in SAP on 5-way 1-shot mini-
ImageNet using Conv-4 with 32 channels. The results are averaged across 5 runs with
different random seeds and the standard deviations are shown as ±x. NA entries indicate
that these operations were not in the candidate pool for that layer. Simple scalar shift and
vector shift operations obtain the highest activation strengths throughout the convolutional
network.

Springer Nature 2021 LATEX template

24 Subspace Adaptation Prior for Few-Shot Learning

5.9 Number of parameters and running time
Lastly, we compare the running times and the number of parameters used by
the different methods on few-shot image classification. These statistics were
measured whilst performing the experiments in Section 5.4 and the results are
displayed in Table 9. As we can see, SAP has the largest number of parameters,
even though the backbone is equally expressive as that used by others. The
running time of SAP, however, is often less than that of the baselines. This
is caused by the fact that all methods use different hyperparameter settings
in order to optimize the performance, which relates to the running time. For
example, a larger meta-batch size or number of updates per task leads to an
increase in running time. SAP uses the smallest meta-batch size and number
of updates and hence yields the quickest running time.

miniImageNet tieredImageNet

params 1-shot 5-shot 1-shot 5-shot

MAML 32 901 11h36min ± 7min 8h20min ± 1min 11h34min ± 5min 8h25min ± 4min
T-Net 37 022 33h05min ± 19min 30h20min ± 7min 33h25min ± 23min 30h30min ± 17min
MT-Net 37 150 33h33min ± 8min 30h22min ± 14min 33h49min ± 40min 30h47min ± 18min
Warp-MAML 60 645 7h19min ± 6min 7h17min ± 8min 7h35min ± 13min 7h19min ± 5min
SAP (first-order) 106 196 1h26min ± 2min 1h4min ± 0min 1h51min ± 6min 2h12min ± 4min
SAP 106 196 3h59min ± 0min 6h09min ± 0min 1h51min ± 6min 9h24min ± 19min

Table 9 The number of trainable parameters (“params”) and mean running times on
miniImageNet and tieredImageNet classification over 5 runs using the Conv-4 backbone
with 32 channels. The standard deviations are displayed as ± x min. In spite of the
differences in the number of parameters, the backbones are equally expressive. SAP was
found to work best with a small meta-batch size and number of updates per task compared
with the other approaches and hence yields the quickest running time.

6 Conclusions
In this work, we introduced, Subspace Adaptation Prior (SAP), a novel meta-
learning algorithm that jointly learns a good neural network initialization and
good parameter subspaces (or subsets of operations) in which new tasks can
be learned within a few gradient descent updates from a few data. SAP over-
comes the limitations of current state-of-the-art gradient-based meta-learning
techniques which perform gradient descent in full parameter space as they
adjust all parameters (Finn et al, 2017; Lee and Choi, 2018; Flennerhag et al,
2020), which may be suboptimal, and may lead to overfitting during few-shot
learning.

Our experiments show that SAP outperforms similar existing gradient-
based meta-learners in few-shot sine wave regression, yields better performance
in single-domain few-shot image classification settings, and yields competitive
or superior performance in cross-domain few-shot image classification. This
highlights the advantage of learning suitable subspaces in which to perform
gradient descent when learning new tasks. This could be due to the regulariza-
tion effect of not having to adjust all parameters as well as due to the ability

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 25

to match structures inherently present in task families. Our experiments in
Section 5.3 on synthetic task families demonstrate that the SAP is able to
learn operations that match the task structure in simple settings in 75% of the
cases. In other cases, it may compensate by using other operations that are
not inherently present in the task structure.

Inspection of the subspace activation strengths in few-shot image classi-
fication reveals that simple and low-dimensional operations, such as shifting
features by a single scalar or element-wise by a vector, are important. This
is in line with recent work and findings (Triantafillou et al, 2021; Requeima
et al, 2019; Bateni et al, 2020) which show that adapting pre-trained embed-
dings by means of such low-dimensional transformations, such as FiLM layers
(Perez et al, 2018), can yield excellent performance. Furthermore, we found
that hard-pruning the subspaces in SAP, or operations, such that only a dis-
crete subset is used instead of a convex combination, was slightly beneficial,
although no statistically significant differences were found.

Future work
One limitation of SAP is that it requires the computation of second-order gra-
dients by default during meta-training in order to update the initialization
parameters, in a similar fashion as other gradient-based meta-learners such as
MAML (Finn et al, 2017), (M)T-Net (Lee and Choi, 2018), and Warp-MAML
(Flennerhag et al, 2020). These second-order gradients require O(N2) storage,
where N is the number of total network parameters, which is prohibitive for
deep networks. This limitation can be bypassed by using a first-order approxi-
mation, which comes at the cost of a performance penalty (between 0.2% and
7.3% accuracy in our experiments).

Gradient-based meta-learning methods struggle to scale well to deep net-
works as recent work suggests that simple pre-training and fine-tuning of the
output layer (Tian et al, 2020; Chen et al, 2021; Huisman et al, 2021a) can
yield superior performance on common few-shot image classification bench-
marks. This is also the reason, besides searching for energy-efficient few-shot
learners, that in our experiments we focus on relatively shallow backbones that
adapt all layers when learning new tasks, instead of only the output layer.

Other limitations are that SAP introduces more parameters and that the
candidate pools of operations are selected by hand, despite the fact that these
operations are general. One direction for future work could be to design a
method to discover such subspaces from scratch, instead of relying on a can-
didate set of operations, perhaps using an auto-encoder that generates the
weights of a layer based on latent codes as used by Rusu et al (2019). Mask-
ing the adaptation of these latent codes using Gumbel-softmax (Jang et al,
2017; Maddison et al, 2017) as done by MT-Net (Lee and Choi, 2018) would
amount to adjusting only a subset of the parameters when performing gradi-
ent descent. This can reduce the number of parameters and may also help to
scale gradient-based meta-learners, including SAP, to deep networks and make

Springer Nature 2021 LATEX template

26 Subspace Adaptation Prior for Few-Shot Learning

them competitive with approaches relying on pre-trained features, which is an
open challenge.

Finally, orthogonal work has proposed a method that can also adjust the
architecture during the meta-test phase (Elsken et al, 2020). Since this showed
great potential, it would be worthwhile to combine this with SAP. We leave this
for future work, which has the potential to further advance the state-of-the-art.

Acknowledgments. This work was performed using the compute resources
from the Academic Leiden Interdisciplinary Cluster Environment (ALICE)
provided by Leiden University.

Declarations

Funding
Not applicable: no funding was received for this work.

Conflict of interest
All authors certify that they have no affiliations with or involvement in any
organization or entity with any financial interest or non-financial interest in
the subject matter or materials discussed in this manuscript.

Ethics approval
Not applicable.

Consent to participate
Not applicable.

Consent for publication
Not applicable: this research does not involve personal data, and publishing of
this manuscript will not result in the disruption of any individual’s privacy.

Availability of data and material
All data that was used in this research have been published as benchmarks
by Deng et al (2009); Vinyals et al (2016) (miniImageNet), Ren et al (2018)
(tieredImageNet) and Wah et al (2011) (CUB), and is publicly available.
The data generator for sine wave regression experiments can be found in the
provided code (see below).

Code availability
All code that was used for this research is made publicly available at https:
//github.com/mikehuisman/subspace-adaptation-prior.

https://github.com/mikehuisman/subspace-adaptation-prior
https://github.com/mikehuisman/subspace-adaptation-prior

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 27

Authors’ contributions
MH has conducted the research presented in this manuscript. AP and JvR
have regularly provided feedback on the work, contributed towards the
interpretation of results, and have critically revised the whole.

All authors approve the current version to be published and agree to be
accountable for all aspects of the work in ensuring that questions related to
the accuracy or integrity of any part of the work are appropriately investigated
and resolved.

Employment
All authors declare that there is no recent, present, or anticipated employment
by any organization that may gain or lose financially through the publication
of this manuscript.

Appendix A Additional experimental results
In this appendix, we show additional experimental results on few-shot image
classification.

A.1 Validation of re-implementation

1-shot 5-shot

Reported Local Repr Reported Local repr

MAML 48.7 ± 1.8 48.0 ± 0.8 63.2 ± 0.9 64.4 ± 0.4
T-Net 50.9 ± 1.8 48.9 ± 0.8 - 65.3 ± 0.4
MT-Net 51.7 ± 1.8 48.5 ± 0.8 - 63.0 ± 0.4
Warp-MAML∗ - 49.5 ± 0.8 - 63.9 ± 0.4

SAP (ours) - 51.6 ± 0.8 - 65.9 ± 0.4
Table A1 Mean meta-test accuracy scores on 5-way miniImageNet classification over 5
runs using a Conv-4 backbone with 32 channels. The 95% confidence intervals are
displayed as ± x. ∗ Flennerhag et al (2020) only reported the performance of Warp-MAML
with 128 feature maps per convolutional block instead of 32, as displayed in the table.

We re-implemented the baselines to ensure a fair comparison in the used
setting, and because the code of Warp-MAML has not been made available for
other researchers. To verify our re-implementations of the baselines (T-Net,
MT-Net, and Warp-MAML), we compare the reported performances to the
ones that we obtain. The results of the image classification experiments are
displayed in Table A1. As we can see, there are minor differences between the
reported performances and our local reproduction of their results. Also with
the original code of T-Net and MT-Net, we were unable to reproduce their

Springer Nature 2021 LATEX template

28 Subspace Adaptation Prior for Few-Shot Learning

results. Other people have encountered similar issues reproducing the reported
numbers of meta-learning techniques, including MAML, T-Net, and MT-Net.2

A.2 Cross-domain few-shot image classification
In Table A2, we show the cross-domain few-shot learning classification results
when using 64 channels with the Conv-4 backbone. Also in this case, SAP
outperforms other tested baselines. We also note that the performance of SAP
is improved when using 64 channels compared with 32 (see Section 5.5).

MIN → CUB Tiered → CUB

1-shot 5-shot 1-shot 5-shot

MAML 37.1 ± 0.3 53.7 ± 0.3 38.8 ± 0.3 56.8 ± 0.3
T-Net 38.3 ± 0.3 OOM 39.9 ± 0.3 OOM
MT-Net 37.3 ± 0.3 OOM 39.1 ± 0.3 OOM
Warp-MAML 40.7 ± 0.3 56.2 ± 0.3 42.5 ± 0.3 58.9 ± 0.3

SAP (ours) 41.6 ± 0.3 57.8 ± 0.3 43.3 ± 0.3 64.3 ± 0.3
Table A2 Average cross-domain meta-test accuracy scores over 5 runs using a 64-channel
Conv-4 backbone. Techniques trained on tasks from one data set were evaluated on tasks
from another data set. The 95% confidence intervals are displayed as ± x.

A.3 The effect of hard pruning
Table A3 displays the effect of hard pruning when using 64 channels instead
of 32. As we can see, hard pruning is slightly beneficial, but again, not
significantly.

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

No pruning 52.8 ± 0.8 67.4 ± 0.4 54.5 ± 0.8 71.3 ± 0.4

Top-1 52.8 ± 0.8 67.6 ± 0.4 55.1 ± 0.8 72.7 ± 0.4
Top-2 52.9 ± 0.8 67.6 ± 0.4 54.1 ± 0.8 72.7 ± 0.4
Top-3 52.6 ± 0.8 67.4 ± 0.4 55.0 ± 0.8 72.4 ± 0.4

Table A3 Mean meta-test accuracy scores on 5-way miniImageNet and tieredImageNet
classification with 95% confidence intervals computed over 5 different runs. We used a
Conv-4 backbone with 64 channels for these results.

2There is an open issue on the GitHub repository of MT-Net about the inability to reproduce
their reported results on miniImageNet. See https://github.com/yoonholee/MT-net/issues/5.
Other researchers such as Antoniou et al (2019) have also reported issues reproducing MAML.

https://github.com/yoonholee/MT-net/issues/5

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 29

original
conv1x1

conv3x3

convSVD

MTL scale

Simple scale

scalar sh
ift

vector sh
ift

linear tra
nsform

input

block 1

block 2

block 3

block 4

output

0.04
±0.00

0.04
±0.00

0.06
±0.01

0.06
±0.01 NA NA 0.37

±0.02
0.42

±0.02 NA

0.01
±0.00

0.00
±0.00

0.00
±0.00

0.01
±0.00

0.08
±0.00

0.02
±0.01

0.64
±0.02

0.24
±0.03 NA

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.11
±0.02

0.01
±0.00

0.25
±0.06

0.62
±0.08 NA

0.02
±0.00

0.01
±0.00

0.01
±0.00

0.02
±0.00

0.28
±0.02

0.05
±0.00

0.32
±0.01

0.30
±0.02 NA

0.01
±0.00

0.01
±0.00

0.01
±0.00

0.01
±0.00

0.17
±0.01

0.03
±0.00

0.27
±0.01

0.49
±0.02 NA

0.70
±0.04 NA NA NA NA NA NA NA 0.30

±0.04
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. A1 The importance of the different subspaces/operations in SAP on 5-way 1-shot
miniImageNet using Conv-4 with 64 channels. The results are averaged across 5 runs with
different random seeds and the standard deviations are shown as ±x. NA entries indicate
that these operations were not in the candidate pool for that layer. Simple scalar shift and
vector shift operations obtain the highest activation strengths throughout the convolutional
network.

A.4 The learned subspaces for image classification
Figure A1 displays the learned activation strengths of SAP on 5-way 1-shot
miniImageNet using Conv-4 with 64 channels. Similar patterns are observed
for the 32-channel case.

References
Andrychowicz M, Denil M, Colmenarejo SG, et al (2016) Learning to learn by

gradient descent by gradient descent. In: Advances in Neural Information
Processing Systems 29. Curran Associates Inc., pp 3988–3996

Antoniou A, Edwards H, Storkey A (2019) How to train your MAML. In:
International Conference on Learning Representations (ICLR’19)

Bateni P, Goyal R, Masrani V, et al (2020) Improved few-shot visual classifi-
cation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp 14,493–14,502

Bendre N, Marín HT, Najafirad P (2020) Learning from few samples: A survey.
arXiv preprint arXiv:200715484

Bertinetto L, Henriques JF, Torr P, et al (2019) Meta-learning with dif-
ferentiable closed-form solvers. In: International Conference on Learning
Representations (ICLR’19)

Springer Nature 2021 LATEX template

30 Subspace Adaptation Prior for Few-Shot Learning

Brazdil P, van Rijn JN, Soares C, et al (2022) Metalearning: Applications to
Automated Machine Learning and Data Mining, 2nd edn. Springer

Chen WY, Liu YC, Kira Z, et al (2019) A closer look at few-shot classification.
In: International Conference on Learning Representations (ICLR’19)

Chen Y, Liu Z, Xu H, et al (2021) Meta-baseline: Exploring simple meta-
learning for few-shot learning. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp 9062–9071

Deng J, Dong W, Socher R, et al (2009) ImageNet: A Large-Scale Hierarchi-
cal Image Database. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, pp 248–255

Elsken T, Staffler B, Metzen JH, et al (2020) Meta-learning of neural architec-
tures for few-shot learning. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR’20), pp 12,365–12,375

Finn C, Levine S (2018) Meta-learning and universality: Deep representa-
tions and gradient descent can approximate any learning algorithm. In:
International Conference on Learning Representations (ICLR’18)

Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adap-
tation of deep networks. In: Proceedings of the 34th International Conference
on Machine Learning (ICML’17). PMLR, p 1126–1135

Flennerhag S, Rusu AA, Pascanu R, et al (2020) Meta-learning with warped
gradient descent. In: International Conference on Learning Representations
(ICLR’20)

Huisman M, van Rijn JN, Plaat A (2021a) A preliminary study on the feature
representations of transfer learning and gradient-based meta-learning tech-
niques. In: Fifth Workshop on Meta-Learning at the Conference on Neural
Information Processing Systems

Huisman M, van Rijn JN, Plaat A (2021b) A survey of deep meta-learning.
Artificial Intelligence Review 54(6):4483–4541

Huisman M, Plaat A, van Rijn JN (2022) Stateless neural meta-learning using
second-order gradients. Machine Learning 111(9):3227–3244

Jang E, Gu S, Poole B (2017) Categorical reparameterization with gumbel-
softmax. In: 5th International Conference on Learning Representations,
(ICLR’17)

Jankowski N, Duch W, Grąbczewski K (2011) Meta-Learning in Computa-
tional Intelligence, vol 358. Springer-Verlag Berlin Heidelberg

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 31

Jiang W, Kwok J, Zhang Y (2022) Subspace learning for effective meta-
learning. In: Proceedings of the 39th International Conference on Machine
Learning, PMLR, pp 10,177–10,194

Kim J, Lee S, Kim S, et al (2018) Auto-meta: Automated gradient based meta
learner search. arXiv preprint arXiv:180606927

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet Classification with
Deep Convolutional Neural Networks. In: Advances in Neural Information
Processing Systems 25, pp 1097–1105

Lee K, Maji S, Ravichandran A, et al (2019) Meta-learning with differentiable
convex optimization. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp 10,657–10,665

Lee Y, Choi S (2018) Gradient-based meta-learning with learned layerwise
metric and subspace. In: Proceedings of the 35th International Conference
on Machine Learning (ICML’18), PMLR, pp 2927–2936

Li K, Malik J (2018) Learning to Optimize Neural Nets. arXiv preprint
arXiv:170300441

Li Z, Zhou F, Chen F, et al (2017) Meta-SGD: Learning to Learn Quickly for
Few-Shot Learning. arXiv preprint arXiv:170709835

Lian D, Zheng Y, Xu Y, et al (2019) Towards fast adaptation of neural
architectures with meta learning. In: International Conference on Learning
Representations (ICLR’19)

Liu H, Simonyan K, Yang Y (2019) DARTS: Differentiable architecture search.
In: International Conference on Learning Representations (ICLR’19)

Lu J, Gong P, Ye J, et al (2020) Learning from very few samples: A survey.
arXiv preprint arXiv:200902653

Maddison CJ, Mnih A, Teh YW (2017) The concrete distribution: A continu-
ous relaxation of discrete random variables. In: 5th International Conference
on Learning Representations, (ICLR’17)

Mnih V, Kavukcuoglu K, Silver D, et al (2013) Playing atari with deep
reinforcement learning. arXiv preprint arXiv:13125602

Naik DK, Mammone RJ (1992) Meta-neural networks that learn by learning.
In: International Joint Conference on Neural Networks (IJCNN’92), IEEE,
pp 437–442

Nichol A, Achiam J, Schulman J (2018) On First-Order Meta-Learning
Algorithms. arXiv preprint arXiv:180302999

Springer Nature 2021 LATEX template

32 Subspace Adaptation Prior for Few-Shot Learning

Park E, Oliva JB (2019) Meta-curvature. In: Advances in Neural Information
Processing Systems 32, pp 3309–3319

Perez E, Strub F, De Vries H, et al (2018) Film: Visual reasoning with a general
conditioning layer. In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18). AAAI Press, pp 3942–3951

Ravi S, Larochelle H (2017) Optimization as a Model for Few-Shot Learning.
In: International Conference on Learning Representations (ICLR’17)

Ren M, Ravi S, Triantafillou E, et al (2018) Meta-learning for semi-supervised
few-shot classification. In: International Conference on Learning Represen-
tations (ICLR’18)

Requeima J, Gordon J, Bronskill J, et al (2019) Fast and flexible multi-task
classification using conditional neural adaptive processes. In: Advances in
Neural Information Processing Systems 32, pp 7957–7968

Rusu AA, Rao D, Sygnowski J, et al (2019) Meta-learning with latent embed-
ding optimization. In: International Conference on Learning Representations
(ICLR’19)

Schmidhuber J (1987) Evolutionary principles in self-referential learning, or on
learning how to learn: the meta-meta-... hook. Master’s thesis, Technische
Universität München

Silver D, Huang A, Maddison CJ, et al (2016) Mastering the game of go with
deep neural networks and tree search. Nature 529(7587):484–489

Simon C, Koniusz P, Nock R, et al (2020) On modulating the gradient for
meta-learning. In: European Conference on Computer Vision, Springer, pp
556–572

Snell J, Swersky K, Zemel R (2017) Prototypical Networks for Few-shot Learn-
ing. In: Advances in Neural Information Processing Systems 30. Curran
Associates Inc., pp 4077–4087

Sun Q, Liu Y, Chua TS, et al (2019) Meta-transfer learning for few-shot learn-
ing. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 403–412

Thrun S (1998) Lifelong Learning Algorithms. In: Learning to learn. Springer,
p 181–209

Tian Y, Wang Y, Krishnan D, et al (2020) Rethinking few-shot image classi-
fication: a good embedding is all you need? arXiv preprint arXiv:200311539

Springer Nature 2021 LATEX template

Subspace Adaptation Prior for Few-Shot Learning 33

Triantafillou E, Larochelle H, Zemel R, et al (2021) Learning a univer-
sal template for few-shot dataset generalization. In: Proceedings of the
38th International Conference on Machine Learning (ICML’21), PMLR, pp
10,424–10,433

Vinyals O (2017) Talk: Model vs optimization meta learning. http://
metalearning-symposium.ml/files/vinyals.pdf, presented at a “Neural Infor-
mation Processing Systems” workshop; accessed 06-06-2020

Vinyals O, Blundell C, Lillicrap T, et al (2016) Matching Networks for One
Shot Learning. In: Advances in Neural Information Processing Systems 29,
pp 3637–3645

Wah C, Branson S, Welinder P, et al (2011) The Caltech-UCSD Birds-200-2011
Dataset. Tech. Rep. CNS-TR-2011-001, California Institute of Technology

Wang Y, Yao Q, Kwok JT, et al (2020) Generalizing from a few examples: A
survey on few-shot learning. ACM computing surveys 53(3):1–34

Wurman PR, Barrett S, Kawamoto K, et al (2022) Outracing champion gran
turismo drivers with deep reinforcement learning. Nature 602(7896):223–228

Yoon J, Kim T, Dia O, et al (2018) Bayesian Model-Agnostic Meta-Learning.
In: Advances in Neural Information Processing Systems 31. Curran Asso-
ciates Inc., pp 7332–7342

Zintgraf L, Shiarli K, Kurin V, et al (2019) Fast context adaptation via meta-
learning. In: Proceedings of the 36th International Conference on Machine
Learning (ICML’19), PMLR, pp 7693–7702

http://metalearning-symposium.ml/files/vinyals.pdf
http://metalearning-symposium.ml/files/vinyals.pdf

