
Machine Learning

Are LSTMs Good Few-Shot Learners?
--Manuscript Draft--

Manuscript Number:

Full Title: Are LSTMs Good Few-Shot Learners?

Article Type: S.I.: ECML PKDD 2023

Keywords: Meta-Learning; Few-Shot Learning; Deep Learning; Transfer Learning

Corresponding Author: Mike Huisman
Universiteit Leiden
Leiden, Zuid-Holland NETHERLANDS

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Universiteit Leiden

Corresponding Author's Secondary
Institution:

First Author: Mike Huisman

First Author Secondary Information:

Order of Authors: Mike Huisman

Thomas M. Moerland

Aske Plaat

Jan N. van Rijn

Order of Authors Secondary Information:

Funding Information:

Abstract: Deep learning requires large amounts of data to learn new tasks well, limiting its
applicability to domains where such data is available. Meta-learning overcomes this
limitation by learning how to learn. In 2001, Hochreiter et al. showed that an LSTM
trained with backpropagation across different tasks is capable of meta-learning.
Despite promising results of this approach on small problems, and more recently, also
on reinforcement learning problems, the approach has received little attention in the
supervised few-shot learning setting. We revisit this approach and test it on modern
few-shot learning benchmarks. We find that LSTM, surprisingly, outperform the popular
meta-learning technique MAML on a simple few-shot sine wave regression benchmark,
but that LSTM, expectedly, fall short on more complex few-shot image classification
benchmarks. We identify two potential causes and propose a new method called Outer
Product LSTM (OP-LSTM) that resolves these issues and displays substantial
performance gains over the plain LSTM. Compared to popular meta-learning
baselines, OP-LSTM yields competitive performance on within-domain few-shot image
classification, and performs better in cross-domain settings by 0.5% to 1.9% in
accuracy score. While these results alone do not set a new state-of-the-art, the
advances of OP-LSTM are orthogonal to other advances in the field of meta-learning,
yield new insights in how LSTM work in image classification, allowing for a whole range
of new research directions. For reproducibility purposes, we publish all our research
code publicly.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners?

Mike Huisman*, Thomas M. Moerland, Aske Plaat
and Jan N. van Rijn

Leiden Institute of Advanced Computer Science,
Leiden University, Niels Bohrweg 1, 2333CA, Leiden,

The Netherlands.

*Corresponding author(s). E-mail(s):
m.huisman@liacs.leidenuniv.nl;

Contributing authors: t.m.moerland@liacs.leidenuniv.nl;
a.plaat@liacs.leidenuniv.nl; j.n.van.rijn@liacs.leidenuniv.nl;

Abstract

Deep learning requires large amounts of data to learn new tasks well,
limiting applicability to domains where such data is available. Meta-
learning overcomes this limitation by learning how to learn. In 2001,
Hochreiter et al. showed that an LSTM trained with backpropagation
across different tasks is capable of meta-learning. Despite promising
results of this approach on small problems, and more recently, also
on reinforcement learning problems, the approach has received little
attention in the supervised few-shot learning setting. We revisit this
approach and test it on modern few-shot learning benchmarks. We find
that LSTM, surprisingly, outperform the popular meta-learning tech-
nique MAML on a simple few-shot sine wave regression benchmark,
but that LSTM, expectedly, fall short on more complex few-shot image
classification benchmarks. We identify two potential causes and propose
a new method called Outer Product LSTM (OP-LSTM) that resolves
these issues and displays substantial performance gains over the plain
LSTM. Compared to popular meta-learning baselines, OP-LSTM yields
competitive performance on within-domain few-shot image classifica-
tion, and performs better in cross-domain settings by 0.5% to 1.9% in
accuracy score. While these results alone do not set a new state-of-the-
art, the advances of OP-LSTM are orthogonal to other advances in the
field of meta-learning, yield new insights in how LSTM work in image
classification, allowing for a whole range of new research directions.
For reproducibility purposes, we publish all our research code publicly.

1

Manuscript Click here to
access/download;Manuscript;OPLSTM___E

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/mach/download.aspx?id=460075&guid=f385d9ab-9b7a-446f-a5d3-4ae27f16a26e&scheme=1
https://www.editorialmanager.com/mach/download.aspx?id=460075&guid=f385d9ab-9b7a-446f-a5d3-4ae27f16a26e&scheme=1
https://www.editorialmanager.com/mach/viewRCResults.aspx?pdf=1&docID=16210&rev=0&fileID=460075&msid=906a2128-58b3-4ab7-afe8-f97a865e1404

Springer Nature 2021 LATEX template

2 Are LSTMs Good Few-Shot Learners?

Keywords: Meta-Learning, Few-Shot Learning, Deep Learning, Transfer
Learning

1 Introduction

Deep neural networks have demonstrated human or even super-human perfor-
mance on various tasks in different areas (Krizhevsky et al, 2012; He et al,
2015; Mnih et al, 2015; Silver et al, 2016). However, they often fail to learn
new tasks well from limited amounts of data (LeCun et al, 2015), limiting
their applicability to domains where abundant data is available. Meta-learning
(Brazdil et al, 2008; Schmidhuber, 1987; Huisman et al, 2021; Thrun, 1998;
Naik and Mammone, 1992) is one approach to overcome this limitation. The
idea is to learn an efficient learning algorithm over a large number of different
tasks so that new tasks can be learned from a few data points. Meta-learning
involves learning at two different levels: the inner-level learning algorithm pro-
duces a predictor for the given task at hand, whereas the outer-level learning
algorithm is adjusted to improve the learning ability across tasks.

Hochreiter et al (2001) and Younger et al (2001) have shown that LSTMs
trained with gradient descent are capable of meta-learning. At the inner level—
when presented with a new task—the LSTM ingests training examples with
corresponding ground-truth outputs and conditions its predictions for new
inputs on the resulting hidden state (the general idea for using recurrent neu-
ral networks for meta-learning has been visualized in Figure 1). The idea is
that the training examples that are fed into the LSTM can be remembered or
stored by the LSTM in its internal states, allowing predictions for new unseen
inputs to be based on the training examples. This way, the LSTM can imple-
ment a learning algorithm in the recurrent dynamics, whilst the weights of
the LSTM are kept frozen. During meta-training, the weights of the LSTM
are only adjusted at the outer level (across tasks) by backpropagation, which
corresponds to updating the inner-level learning program. By exposing the
LSTM to different tasks which it cannot solve without learning, the LSTM is
stimulated to learn tasks by ingesting the training examples which it is fed.
The initial experiments of Hochreiter et al (2001) and Younger et al (2001)
have shown promising results on simple and low-dimensional toy problems.
Meta-learning with LSTMs has also been successfully extended to reinforce-
ment learning settings (Duan et al, 2016; Wang et al, 2016), and demonstrates
promising learning speed on new tasks.

To the best of our knowledge, the LSTM approach has, in contrast, not been
studied on more complex and modern supervised few-shot learning benchmarks
by the research community, which has already shifted its attention to more
developing new and more complex methods (Finn et al, 2017; Snell et al, 2017;
Flennerhag et al, 2020; Park and Oliva, 2019). In our work, we revisit the idea
of meta-learning with LSTMs and study the ability of the learning programs
embedded in the weights of the LSTM to perform few-shot learning on modern

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 3

benchmarks. We find that an LSTM outperforms the popular meta-learning
technique MAML (Finn and Levine, 2017) on a simple few-shot sine wave
regression benchmark, but that it falls short on more complex few-shot image
classification benchmarks.

By studying the LSTM architecture in the context of meta-learning, we
identify two potential causes for this underperformance, namely 1) the fact that
it is not invariant to permutations of the training data and 2) that the input
representation and learning procedures are intertwined. We propose a general
solution to the first problem and propose a new meta-learning technique, Outer
Product LSTM (OP-LSTM), where we solve the second issue by by learning
the weight update rule for a base-learner network using an LSTM, in addition
to good initialization parameters for the base-learner. This approach is similar
to that of Ravi and Larochelle (2017), but differs in how the weights are
updated with the LSTM and that in our approach, the LSTM does not use
hand-crafted gradients as inputs in order to produce weight updates. Our
experiments demonstrate that OP-LSTM yields substantial performance gains
over the plain LSTM.

Our contributions are the following.

• We study the ability of a plain LSTM to perform few-shot learning on mod-
ern few-shot learning benchmarks and show that it yields surprisingly good
performance on simple regression problems (outperforming MAML (Finn
et al, 2017)), but is outperformed on more complex classification problems.

• We identify two problems with the plain LSTM for meta-learning, namely
1) the fact that it is not invariant to permutations of the training data and
2) that the input representation and learning procedures are intertwined,
and propose solutions to overcome them by 1) an average pooling strategy
and 2) decoupling the input representation from the learning procedure.

• We propose a novel LSTM architecture called Outer Product LSTM (OP-
LSTM) that overcomes the limitations of the classical LSTM architecture
and yields substantial performance gains on few-shot learning benchmarks.

• We show mathematically that OP-LSTM can approximate MAML (Finn
et al, 2017) as well as Prototypical network (Snell et al, 2017) as it can
learn to perform the same weight matrix updates. Since OP-LSTM does not
update the biases, it can only approximate these two methods.

Compared to popular meta-learning baselines, including MAML (Finn et al,
2017), Prototypical network (Snell et al, 2017), and Warp-MAML (Flenner-
hag et al, 2020), OP-LSTM yields competitive performance on within-domain
few-shot image classification, and outperforms them in cross-domain settings
by 0.5% to 1.9% in raw accuracy score. While these results alone do not set
a new state-of-the-art, the advances of OP-LSTM are orthogonal to other
advances in the field of meta-learning, allowing for a whole range of new
research directions, such as using OP-LSTM to update the weights in gradient-
based meta-learning techniques (Flennerhag et al, 2020; Park and Oliva, 2019;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

4 Are LSTMs Good Few-Shot Learners?

RNN RNNRNN RNNRNN...

Support set

RNNRNN RNNRNN ... RNNRNN

Query set

Fig. 1 The use of a recurrent neural network for few-shot learning. The support set Dtr
Tj

=

{(x1,y1), . . . , (xM ,yM)} is fed as a sequence into the RNN. The predictions ŷj for new query
points x̂j are conditioned on the resulting state. We note that feeding the tuples (xi,yi) does
not lead to the RNN directly outputting the presented labels (drastic overfitting) as the goal
is to make predictions for query inputs, for which the ground-truth outputs are unknown.
Alternatively, the support set could be fed into the RNN in a temporally offset manner (e.g.,
feed support tuples (xi,yi−1) into the RNN) as in Santoro et al (2016) or in different ways
(for example feed the error instead of the ground-truth target) (Hochreiter et al, 2001).

Lee and Choi, 2018) rather than regular gradient descent. For reproducibility
and verifyability purposes, we make all our research code publicly available.1

2 Related work

Earlier work with LSTMs

Meta-learning with recurrent neural networks as proposed by Hochreiter et al
(2001) and Younger et al (2001) has been investigated and shown to achieve
promising results in the context of reinforcement learning (Duan et al, 2016;
Wang et al, 2016; Alver and Precup, 2021). In the supervised meta-learning
community, however, meta-learning with an LSTM at the data level has not
gained much attention. A possible explanation for this is that Santoro et al
(2016) compared their proposed memory-augmented neural network (MANN)
to an LSTM and found that the latter was outperformed on few-shot Omniglot
(Lake et al, 2015) classification. However, it was not reported how the hyper-
parameters of the LSTM were tuned and whether it was a single-layer LSTM
or a multi-layer LSTM. In addition, the LSTM was fed the input data as a
sequence which is not permutation invariant, which can hinder its performance.
We propose a permutation-invariant method of feeding training examples into
recurrent neural networks and perform a detailed study of the performance of
LSTM on few-shot learning benchmarks.

In concurrent work, Kirsch et al (2022) investigates the ability of trans-
former architectures to implement learning algorithms, a baseline with a
similar name as our proposed method was proposed (“Outer product LSTM”).
We emphasize, however, that their method is different from ours (OP-LSTM)
as it is a model-based approach that ingests the entire training set and query
input into a slightly modified LSTM architecture (with an outer product

1See: https://github.com/mikehuisman/lstm-fewshotlearning-oplstm

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://github.com/mikehuisman/lstm-fewshotlearning-oplstm

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 5

update and inner product read-out) to make predictions, whereas in our OP-
LSTM, the LSTM acts on a meta-level to update the weights of a base-learner
network.

In concurrent works done by Kirsch et al (2022) and Chan et al (2022), the
ability of the classical LSTM architecture to implement a learning algorithm
was also investigated. They observed that it was unable to embed a learning
algorithm into its recurrent dynamics on image classification tasks. However,
the focus was not on few-shot learning, and no potential explanation for this
phenomenon was given. In our work, we investigate the LSTM’s ability to learn
a learning algorithm in settings where only one or five examples are present
per class, dive into the inner working mechanics to formulate two hypotheses
as to why the LSTM architecture is incapable of learning a good learning
algorithm, and as a result, propose OP-LSTM which overcomes the limitations
and performs significantly better than the classical LSTM architecture.

Different LSTM architectures for meta-learning

Santoro et al (2016) used an LSTM as a read/writing mechanism to an external
memory in their MANN technique. Kirsch and Schmidhuber (2021) proposed
to replace every weight in a neural network with a recurrent neural network
that communicates through forward and backward messages. The system was
shown able to learn backpropagation and can be used to improve upon it.
Our proposed method OP-LSTM can also learn to implement backpropagation
(see section 6). Other works (Ravi and Larochelle, 2017; Andrychowicz et al,
2016) have also used an LSTM for meta-learning the weight update proce-
dure. Instead of feeding the training examples into the LSTM, as done by the
plain LSTM (Hochreiter et al, 2001; Younger et al, 2001), the LSTM was fed
gradients so that it could propose weight updates for a separate base-learner
network. Our proposed method OP-LSTM is similar to these two approaches
that meta-learn the weight update rules as we use an LSTM to update the
weights (2D hidden states) of a base-learner network. Note that this strategy
thus also deviates from the plain LSTM approach, which is fed raw input data.
In our approach, the LSTM acts on predictions and ground-truth targets or
messages. In addition, we use a coordinate-wise architecture where the same
LSTM is applied to different nodes in the network. A difference with other
learning-to-optimize works (Ravi and Larochelle, 2017; Andrychowicz et al,
2016) is that we do not feed gradients into the LSTM and that we update the
weights (2D hidden states) through outer product update rules.

3 Meta-learning with LSTM

In this section, we briefly review the LSTM architecture (Hochreiter and
Schmidhuber, 1997), explain the idea of meta-learning with an LSTM through
backpropagation as proposed by Hochreiter et al (2001) and Younger et al
(2001), discuss two problems with this approach in the context of meta-learning
and propose solutions to solve them.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

6 Are LSTMs Good Few-Shot Learners?

Fig. 2 The architecture of an LSTM cell. The LSTM maintains an inner cell state ct and
hidden state ht over time that are updated with new incoming data xt. The forget ft, input
it, output ot, and cell c̄t gates regulate how these states are updated. Image adapted from
Olah (2015).

Additionally, we propose solutions to this problem. We prove that a single-
layer RNN followed by a linear layer is incapable of embedding a classification
learning algorithm in its recurrent dynamics and show by example that an
LSTM adding a single linear layer is sufficient to achieve this type of learning
behavior in a simple setting.

3.1 LSTM architecture

LSTM (Hochreiter and Schmidhuber, 1997) is a recurrent neural network archi-
tecture suitable for processing sequences of data. The architecture of an LSTM
cell is displayed in Figure 2. It maintains an internal state and uses four gates
to regulate the information flow within the network

ft = σ(Wf [ht−1,xt] + bf), (1)

it = σ(Wi[ht−1,xt] + bi), (2)

ot = σ(Wo[ht−1,xt] + bo), (3)

c̄t = tanh(Wc[ht−1,xt] + bc). (4)

Here, θ = {Wf ,Wc,Wi,Wo,bf ,bc,bi,bo} are the parameters of the LSTM,
[a,b] represents the concatenation of a and b, σ is the sigmoid function
(applied element-wise) and ft, it,ot, c̄t ∈ Rdh are the forget, input, output, and
cell gates, respectively. These gates regulate the information flow within the
network to produce the next cell and hidden states

ct = ft ⊙ ct−1 + it ⊙ c̄t, (5)

ht = ot ⊙ tanh(ct). (6)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 7

The hidden state and cell state are obtained by applying LSTM gθ to inputs
(xt,xt−1, . . . ,x1), i.e.,

[ht, ct] = gθ(xt,xt−1, . . . ,x1) (7)

= mθ(xt;ht−1, ct−1). (8)

3.2 Meta-learning with LSTM

Hochreiter et al (2001) and Younger et al (2001) show that the LSTM
can perform learning purely through unrolling its hidden state over time
with fixed weights. When presented with a new task Tj—denoting the con-
catenation of an input and its target as x′

t = (xt,yt)—the support set
Dtr

Tj
= {(x1,y1), . . . , (xM ,yM)} = {x′

1,x
′
2, . . . ,x

′
M}, is fed as a sequence,

e.g., (x1,null), (x2,y1), . . . , (xM ,yM−1), into the LSTM to produce a hidden
state hM (Dtr

Tj
). Predictions for unseen inputs (queries) x̂ are then condi-

tioned on the hidden state hM (Dtr
Tj
) and cell state cM (Dtr

Tj
), where we have

made it explicit that hM and cM are functions of the support data. More
specifically, the hidden state of the query input x̂ = [x,yM] is computed as

[ĥ, ĉ] = mθ(x̂;hM (Dtr
Tj
), cM (Dtr

Tj
)), and this hidden state is used either directly

for prediction or can be fed into a classifier function (which also uses fixed
weights). Since the weights of the LSTM are fixed when presented with a new
task, the learning takes place in the recurrent dynamics, and the hidden state
hM (Dtr

Tj
) is responsible for guiding predictions on unseen inputs x̂. Note that

there are different ways to feed the support data into the LSTM, as one can
also use additional data such as the error on the previous input or feed the cur-
rent input together with its target tuples (xt,yt) (as done in Figure 1 and our
implementation). We use the latter strategy in our experiments as we found it
to be most effective.

This recurrent learning algorithm can be obtained by performing meta-
training on various tasks which require the LSTM to perform learning through
its recurrent dynamics. Given a task, we feed the training data into the LSTM,
abd then feed in query inputs to make predictions. The loss on these query
predictions can be backpropagated through the LSTM to update the weights
across different tasks. Note, however, that during the unrolling of the LSTM
over the training data, the weights of the LSTM are held fixed. The weights
are thus only updated across different tasks (not during adaptation to indi-
vidual tasks) to improve the recurrent learning algorithm. By adjusting the
weights of the LSTM using backpropagation across different tasks, we are
essentially changing the learning program of the LSTM and hence performing
meta-learning.

3.3 Problems with the classical LSTM architecture

The classical LSTM architecture suffers from two issues that may limit its
ability to implement recurrent learning algorithms.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

8 Are LSTMs Good Few-Shot Learners?

Non-temporal training data

LSTMs work with sequences of data. When using an LSTM in the meta-
learning context, the recurrent dynamics should implement a learning
algorithm and process the support dataset. This support dataset Dtr

Tj
=

{(x1,y1), . . . , (xM ,yM)} = {x′
1,x

′
2, . . . ,x

′
M}, however, is a set rather than

a sequence. This means that we would want the hidden embedding after
processing the support data to be invariant with respect to the order in
which the examples are fed into the LSTM. Put more precisely, given any
two permutations of the M training examples π = (π1, π2, . . . , πM) and
π′ = (π′

1, π
′
2, . . . , π

′
M), we want to enforce

gθ(x
′
π1
,x′

π2
, . . . ,x′

πM
) = gθ(x

′
π′
1
,x′

π′
2
, . . . ,x′

π′
M
), (9)

where x′
πi

is the i-th input (possibly containing target or error information)
under permutation π and x′

π′
i
the input under permutation π′.

Intertwinement of embedding and learning

In the LSTM approach proposed by Hochreiter et al (2001) and Younger et al
(2001), the recurrent dynamics implement a learning algorithm. At the same
time, however, the hidden state also serves as an input embedding. Thus, in
this approach, the input embedding and learning procedures are intertwined.
This may be problematic because a learning procedure may be highly complex
and nonlinear, whilst the optimal input embedding may be simple and linear.
For example, suppose that we feed convolutional features into a plain LSTM.
Normally, we often compute predictions using a linear output layer. Thus, a
simple single-layer LSTM may be the best in terms of input representation.
However, the learning ability of a single-layer LSTM may be too limited, lead-
ing to bad performance. In other words, stacking multiple LSTM layers may
be beneficial for finding a better learning algorithm, but the resulting input
embedding may be too complex, which can lead to overfitting. On the other
hand, a good but simple input embedding may overly restrict the search space
of learning algorithms, resulting in a bad learning algorithm.

An LSTMwith sufficiently large hidden dimensionality may be able to sepa-
rate the learning from the input representation by using the first N dimensions
of the hidden representations to perform learning and to preserve important
information for the next time step, and using the remaining dimensions to rep-
resent the input. However, this poses a challenging optimization problem due
to the risk of overfitting and the large number of parameters that would be
needed.

3.4 Towards an improved architecture

These potential issues of the classical LSTM architecture inspire us to develop
an architecture that is better suited for meta-learning.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 9

RNNRNN RNNRNN RNNRNN...

RNNRNN RNNRNN ... RNNRNN

Support set Query set

Fig. 3 Our proposed batch processing of the support data, resulting in a state that is
permutation invariant. Every support example (xi,yi) is processed in parallel, and the
resulting hidden states are aggregated with mean-pooling (denoted by the symbol ·̄). The
predictions ŷj for new query points x̂j are conditioned on the resulting permutation-invariant
state. Note that the support data is only fed once into the RNN (a single time step t),
although it is possible to make multiple passes over the data, by feeding the mean-pooled
state into the RNN at the next time step.

Non-temporal data → average pooling

In order to enforce invariance of the hidden state and cell state with respect
to the order of the support data, we can pool the individual embeddings. That
is, given an initial state of the LSTM st = [ht, ct], we update the state by
processing the support data as a batch and by average pooling, i.e.,

st+1 = [ht+1, ct+1] =
1

M

M∑
i=1

mθ(x
′
i;ht, ct). (10)

Note that one time step now corresponds to processing the entire support
dataset once, since st+1 is a function thereof. Our proposed batch processing
for a single time step (during which we ingest the support data) has been
visualized in Figure 3.

Intertwinement of embedding and learning

The problems associated with the intertwinement of the embedding and learn-
ing procedures can be solved by decoupling them. In this way, we create two
separate procedures: 1) the embedding procedure, and 2) the learning proce-
dure. The embedding procedure can be implemented by a base-learner neural
network, and the learning procedure by a meta-network that updates the
weights of the base-learner network.

In the plain LSTM approach, where the learning procedure is intertwined
with the input representation mechanism, predictions would be conditioned
on the hidden state h(x,h(Dtr

Tj
), c(Dtr

Tj
)). Instead, we choose to use the inner

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

10 Are LSTMs Good Few-Shot Learners?

product between the hidden state (acting as weight vector) and the embedding
of current input a(L)(x), i.e.,

ŷ(x) = a(L)(x) = h(L)(Dtr
Tj
)T︸ ︷︷ ︸

learning

a(L−1)(x)︸ ︷︷ ︸
embedding

, (11)

where a(L−1)(x) is the representation of input x in layer L− 1 of some base-
learner network (consisting of L layers), whose weights are updated by a
meta-network. We use the inner product to force interactions between the
learning and embedding components, so that the predictions can not rely on
either of the two separately. Note that by computing predictions in this way,
we effectively decouple the learning algorithm implemented by hidden state
dynamics from the input representation. A problem with this approach is that
the output is a single scalar. In order to obtain an arbitrary output dimen-
sion dout > 1, we should multiply the input representation a(L−1)(x) with a
matrix H ∈ Rdout×din , i.e., ŷ(x) = H(L)a(L−1)(x). In order to obtain H(L),
one could use a separate LSTM with a hidden dimension of din per output
dimension, but the number of required LSTMs would grow linearly with the
output dimensionality. Instead, we use the outer product, which requires only
one hidden vector of size din that can be outer-multiplied with a vector of size
dout. We detail the computation of 2D weight matrices H (hidden states) with
the outer product rule in the next section.

Note that the 2D hidden stateH can be seen as a weight matrix of a regular
feed-forward neural network, which allows us to generalize this approach to
networks with an arbitrary number of layers, where we have a 2D hidden state
H(ℓ) for every layer ℓ ∈ {1, 2, . . . , L} in a network with L layers. Our approach
can then be seen as meta-learning an outer product weight update rule for the
base-learner network such that it can quickly adapt to new tasks.

4 Outer product LSTM (OP-LSTM)

Here, we propose a new technique, called Outer Product LSTM (OP-LSTM),
based on the problems of the classical LSTM architecture for meta-learning and
our suggested solutions. We begin by discussing the architecture, then cover
the learning objective and algorithm, and end by studying the relationship
between OP-LSTM and other methods.

4.1 The architecture

Since we can view the 2D hidden states H(ℓ) in OP-LSTM as weight matrices
that act on the input, the OP-LSTM can be interpreted as a regular fully-
connected neural network. The output of the OP-LSTM for a given input x is
given by

fθ(x, D
tr
Tj
, T) = σ(L)(H

(L)
T a

(L−1)
T (x) + b(L)), (12)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 11

.

. .

.

. .

LSTM .
. .

+

+

.

. .

.

. .

.

. .

LSTM .
. .

+

+

.

. .

.

. .

Fig. 4 The workflow of OP-LSTM. We have visualized two layers of the base-learner net-

work. During the forward pass, the 2D hidden states H
(ℓ)
t act as weight matrices of a

feed-forward neural network that act on the input of that layer a
(ℓ−1)
t . This linear combi-

nation H
(ℓ)
t a

(ℓ−1)
t (xi) is passed through a nonlinearity σ and added with a bias vector b(ℓ)

to produce the activation a
(ℓ)
t (xi). The entire forward pass is displayed by the black arrows.

The red arrows, on the other hand, indicate the backward pass using the coordinate-wise

LSTM. The outer product (⊗) of the resulting hidden state h
(ℓ+1)
t and the inputs from the

previous layer a
(ℓ)
t are added to the 2D hidden state H

(ℓ+1)
t to produce H

(ℓ+1)
t+1 (blue arrow),

which can be interpreted as the updated weight matrix.

where Dtr
Tj

is the support dataset of the task, L the number of layers of the
base-learner network, and T the number of time steps that the network unrolls
(trains) over the entire support set. Here, σ(L) is the activation function used

in layer L, b(L) the bias vector in the output layer, and a
(L−1)
T (x) the input

to layer L after making T passes over the support set and having received the
query input.

Put more precisely, the activation in layer ℓ at time step t, as a function of

an input x, is denoted a
(ℓ)
t (x) and defined as follows

a
(ℓ)
t (x) =

{
x if ℓ = 0 (input layer),

σ(ℓ)(H
(ℓ)
t a

(ℓ−1)
t (x) + b(ℓ)) otherwise.

(13)

Note that this defines the forward dynamics of the architecture. Here, theHℓ
t ∈

Rd
(ℓ)
out×d

(ℓ)
in is the 2D hidden state that is updated by pooling over the normalized

2D outer product hidden states h
(ℓ)
t+1(x

′
i)a

(ℓ−1)
t (x′

i)
T associated with individual

training examples x′
i = (xi,yi), i.e.,

H
(ℓ)
t+1 = H

(ℓ)
t +

γ

M

M∑
i=1

h
(ℓ)
t+1(x

′
i)a

(ℓ−1)
t (xi)

T

||h(ℓ)
t+1(x

′
i)a

(ℓ−1)
t (xi)T ||F

, (14)

where γ is the step size of the updates and || · ||F is the Frobenius norm. We
perform this normalization for numerical stability. Note that this update using

average pooling ensures that the resulting hidden states H
(ℓ)
t are invariant to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

12 Are LSTMs Good Few-Shot Learners?

permutations of the support data. Moreover, we observe that this equation
defines the backward dynamics of the architecture (updating the 2D hidden
states). However, this equation does not yet tell us how the hidden states

h
(ℓ)
t+1(x

′
i) are computed.

We use a coordinate-wise LSTM so that the same LSTM can be used
in layers of arbitrary dimensions, in similar fashion as Ravi and Larochelle
(2017); Andrychowicz et al (2016). This means that we maintain a state

s
(ℓ)
t,j = [h

(ℓ)
t,j , c

(ℓ)
t,j] for every individual node j in the state vector and every

layer ℓ ∈ {1, 2, . . . , L} over time steps t. In order to obtain the hidden
state vector for a given layer ℓ and time step t, we simply concatenate
the individual hidden states computed by the coordinate-wise LSTM, i.e.,

h
(ℓ)
t = [h

(ℓ)
t,1, h

(ℓ)
t,2, . . . , h

(ℓ)

t,d(ℓ)]
T , where d(ℓ) is the number of neurons in layer

ℓ. The LSTM weights to update these states are shared across all layers and
nodes with the same activation function. For classification experiments, we
often have two LSTMs: one for the final layer which uses a softmax activation
function, and one for the body of the network, which uses the ReLU activa-
tion. We use pooling over the support data in order to update the states using

a coordinate-wise approach, where every element of the hidden state h
(ℓ)
t of a

given layer ℓ is updated independently by a single LSTM. Given an input x′
i,

the state s
(ℓ)
t,j is updated as follows

s
(ℓ)
t+1,j(x

′
i) = [h

(ℓ)
t+1,j(x

′
i), c

(ℓ)
t+1,j(x

′
i)] = mθ(z

(ℓ)
t,j (x

′
i);h

(ℓ)
t,j , c

(ℓ)
t,j), (15)

where z
(ℓ)
t,j (x

′
i) is the input to the LSTM used to update the state. These

individual states are averaged over all training inputs to obtain

s
(ℓ)
t+1,j = [h

(ℓ)
t+1,j , c

(ℓ)
t+1,j] =

1

M

M∑
i=1

s
(ℓ)
t+1,j(x

′
i). (16)

Note that we can obtain a state vector, hidden vector, and cell state vec-

tor, by concatenation, i.e., s
(ℓ)
t+1,j(x

′
i) = [s

(ℓ)
t+1,1(x

′
i), s

(ℓ)
t+1,2(x

′
i), . . . , s

(ℓ)

t+1,d(ℓ)(x
′
i)],

h
(ℓ)
t+1,j(x

′
i) = [h

(ℓ)
t+1,1(x

′
i), h

(ℓ)
t+1,2(x

′
i), . . . , h

(ℓ)

t+1,d(ℓ)(x
′
i)], and c

(ℓ)
t+1,j(x

′
i) =

[c
(ℓ)
t+1,1(x

′
i), c

(ℓ)
t+1,2(x

′
i), . . . , c

(ℓ)

t+1,d(ℓ)(x
′
i)].

In OP-LSTM, we define

z
(ℓ)
t,j (x

′
i) =

{
[(a

(ℓ)
t (xi))j , (yi)j] if ℓ = L (output layer),

[(a
(ℓ)
t (xi))j , ((H

(ℓ+1)
t)Th

(ℓ+1)
t (xi))j] otherwise.

(17)

Note that for the output layer L, the input to the LSTM corresponds to
the current prediction and the ground-truth output. For earlier layers in the
network, however, we cannot do this as the dimensionality of the activation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 13

vectors may differ from the ground-truth output dimension, and the outer
product rule requires us to multiply a(ℓ)(xi) ∈ din with a vector of size dout.
To ensure that the LSTM inputs in layer ℓ are of the same dimension as the
activation vectors (dout), we propagate the hidden states backward through the

2D hidden states H
(ℓ+1)
t , hence the expression (H

(ℓ+1)
t)Th

(ℓ+1)
t (xi) for earlier

layers. We note that this is akin to backpropagation, where error messages
δ(ℓ+1) are passed backward through the weights of the network.

4.2 The algorithm

OP-LSTM is trained to minimize the expected loss on the query sets condi-
tioned on the support sets, where the expectation is with respect to a distri-

bution of tasks. Put more precisely, we wish to minimize ETj∽p(T)

[
LDte

Tj
(Θ)

]
,

where Θ = {θ,H(1)
0 ,H

(2)
0 , . . . ,H

(L)
0 ,b(1),b(2), . . . ,b(L)}. This objective can be

approximated by sampling batches of tasks, updating the weights using the
learned outer product rules, and evaluating the loss on the query sets. Across
tasks, we update Θ using gradient descent. In practice, we use the cross-entropy
loss for classification tasks and the MSE loss for regression tasks.

The pseudocode for OP-LSTM is displayed in Algorithm 1. First, we ran-

domly initialize the initial 2D hidden states H
(ℓ)
0 and the LSTM parameters

θ. We group these parameters as Θ = {θ,H(1)
0 ,H

(2)
0 , . . . ,H

(L)
0 }, which will be

meta-learned across different tasks. Given a task Tj , we make T updates on
the entire support set Dtr

Tj
by processing the examples individually, updat-

ing the 2D hidden states H
(ℓ)
t , and computing the new hidden states of the

coordinate-wise LSTM for every layer s
(ℓ)
t . After having made T updates on

the support data, we compute the loss of the model on the query set Dte
Tj
. The

gradient of this loss with respect to all parameters Θ is added to the gradient
buffer. Once a batch of tasks B has been processed in this way, we perform a
gradient update on Θ and repeat this process until convergence or a maximum
number of iterations has been reached.

5 Experiments

In this section, we aim to answer the following research questions:

• How do the performance and training stability of a plain LSTM compare
when processing the support data as a sequence versus as a set with average
pooling? (see Section 5.1)

• How well does the plain LSTM perform at few-shot sine wave regression
and within- and cross-domain image classification problems compared with
popular meta-learning methods such as MAML (Finn et al, 2017) and
Prototypical network (Snell et al, 2017)? (see Section 5.2 and Section 5.3)

• Does OP-LSTM yield a performance improvement over the simple LSTM
and the related approaches MAML and Prototypical network in few-shot

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

14 Are LSTMs Good Few-Shot Learners?

Algorithm 1 Meta-learning with outer product LSTM (OP-LSTM)

1: Randomly initialize H
(ℓ)
0 and biases b(ℓ) for all 1 ≤ ℓ ≤ L

2: Randomly initialize LSTM parameters θ, set h
(ℓ)
o = 0, c

(ℓ)
0 = 0

3: repeat
4: Initialize gradient buffer ζ = 0
5: Sample batch of J tasks B = {Tj ∽ p(T)}Jj=1

6: for Tj = (Dtr
Tj
, Dte

Tj
) in B do

7: for t = 1, ..., T do
8: for x′

i = (xi,yi) ∈ Dtr
Tj

do

9: Compute predictions a
(L)
t−1(xi) (Equation 13)

10: Compute z
(ℓ)
t (x′

i) and h
(ℓ)
t (xi) for 1 ≤ ℓ ≤ L with backward

message passing (see Equation 17 and Equation 15)

11: Update H
(ℓ)
t for 1 ≤ ℓ ≤ L (Equation 14)

12: end for
13: Compute s

(ℓ)
t for 1 ≤ ℓ ≤ L (Equation 16) through concatenation

14: end for
15: Compute query predictions LDte

Tj
({H(ℓ)

T }Lℓ=1)

16: Update gradient buffer ζ = ζ + 1
J∇ΘLDte

Tj
({H(ℓ)

T }Lℓ=1)

17: end for
18: Update Θ = Θ− βζ
19: until convergence

sine wave regression and within- and cross-domain image classification
problems? (see Section 5.2 and Section 5.3)

• How does OP-LSTM adjust the weights of the base-learner network? (see
Section 5.4)

For our experiments, we use few-shot sine wave regression (Finn et al, 2017)
and popular few-shot image classification benchmarks, namely Omniglot (Lake
et al, 2015), miniImageNet (Ravi and Larochelle, 2017; Vinyals et al, 2016),
and CUB (Wah et al, 2011). We use MAML (Finn et al, 2017), prototypical
network (Snell et al, 2017), SAP (Huisman et al, 2023) and Warp-MAML
(Flennerhag et al, 2020) as baselines. The former two are popular meta-learning
methods and can both be approximated by the OP-LSTM (see section 6),
allowing us to investigate the benefit of OP-LSTM’s expressive power. The last
two baselines are used to investigate how OP-LSTM compares to state-of-the-
art gradient-based meta-learning methods in terms of performance, although
it has to be noted that that OP-LSTM is orthogonal to that method, in the
sense that OP-LSTM could be used on top of Warp-MAML. However, this
is a nontrivial extension and we leave this for future work. We run every
technique on a single GPU (PNY GeForce RTX 2080TI) with a computation
budget of 2 days (for detailed running times, please see Section B.3). Each
experiment is performed with 3 different random seeds, where the random

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 15

seed affects the random weight initialization of the neural networks as well as
the used training tasks, validation tasks, and testing tasks. Below, we describe
the different experimental settings that we use. Note that we do not aim to
achieve state-of-the-art performance, but rather investigate whether the plain
LSTM is a competitive method for few-shot learning on modern benchmarks
and whether OP-LSTM yields improvements over the plain LSTM, MAML,
and Prototypical network.

Sine wave regression

This toy problem was originally proposed by Finn et al (2017) to study meta-
learning methods. In this setting, every task Tj corresponds to a sine wave
sj = Aj · sin(x − pj), where Aj and pj are the amplitude and phase of the
task, sampled uniformly at random from the intervals [0.1, 5.0] and [0, π],
respectively. The goal is to predict for a given task the correct output y given
an input x after training on the support set, consisting of k examples. The
performance of learning is measured in the query set, consisting of 50 input-
output. For the plain LSTM approach, we use a multi-layer LSTM trained with
Backpropagation through Time (BPTT) using Adam (Kingma and Ba, 2015).
During meta-training, the LSTM is shown 70 000 training tasks. Every 2 500
tasks, we perform meta-validation on 1 000 tasks, and after having selected the
best validated model, we evaluate the performance on 2 000 meta-test tasks.

Few-shot image classification

In case of few-shot image classification, all methods are trained for 80 000
episodes on training tasks and we perform meta-validation every 2 500
episodes. The best learner is then evaluated on 600 hold-out test tasks, each
task having a number of examples per class in the support set as indicated by
the experiment (ranging from 1–10) as well as a query set of 15 examples per
class. We repeat every experiment 3 times with different random seeds, mean-
ing the that weight initializations and tasks are different across runs, although
the class splits for sampling training/validation/testing tasks are kept fixed.
For the Omniglot image classification dataset, we used a fully-connected neu-
ral network as base-learner for MAML and OP-LSTM, following Santoro et al
(2016) and Finn et al (2017). The network consists of 4 fully-connected blocks
with dimensions 256-128-64-64. Every block consists of a linear layer, followed
by BatchNorm and ReLU activation. Every layer of the base-learner network is
an OP-LSTM block. The plain LSTM approach uses an LSTM as base-learner.
For MAML, we use the best reported hyperparameters by Finn et al (2017).
We performed hyperparameter tuning for LSTM and OP-LSTM using random
search and grid search, respectively (details can be found in Appendix B).

For the miniImageNet and CUB image classification datasets, we use the
Conv-4 base-learner network for all methods, following Snell et al (2017); Finn
et al (2017). This base-learner consists of 4 blocks, where every block consists of
64 feature maps created with 3×3 kernels, BatchNorm, and ReLU nonlinearity.
MAML uses a linear output layer to compute predictions, the plain LSTM

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

16 Are LSTMs Good Few-Shot Learners?

operates on the flattened features extracted by the convolutional layers (as an
LSTM taking image data as input does not scale well), whereas OP-LSTM uses
an OP-LSTM block (see Figure 4) on these flattened features. Importantly,
OP-LSTM is only used in the final layer as it does currently not support
propagating messages backward through max pooling layers.

We first study the within-domain performance of the meta-learning meth-
ods, where test tasks are sampled from the same dataset as the one used
for training (albeit with unseen classes). Afterward, we also study the cross-
domain performance, where the techniques train on tasks from a given dataset
and are evaluated on test tasks from another dataset. More specifically, we use
the scenarios miniImageNet → CUB (train on miniImageNet and evaluate on
CUB) and vice versa.

5.1 Permutation invariance for the plain LSTM

First, we investigate the difference in performance of the plain LSTM approach
when processing the support data as a sequence (x1,y1), . . . , (xk,yk) or as a
set {(x1,y1), . . . , (xk,yk)} (see Section 3.4) on few-shot sine wave regression
and few-shot Omniglot classification. For the former, every task consists of 50
query examples, whereas for the latter, we have 10 query examples per class.
We tuned the LSTM that processes the support data sequentially with ran-
dom search (details in appendix). We compare the performance of this tuned
sequential model to that of an LSTM with batching (with the same hyperpa-
rameter configuration) to see whether the resulting permutation invariance is
helpful for the performance and training stability of the LSTM. To measure
the stability of the training process, we compute the confidence interval over
the mean performances obtained over 3 different runs rather than over all per-
formances concatenated for the different runs, as done in later experiments for
consistency with the literature.

The results of this experiment are shown in Figure 5. In the case of few-shot
sine wave regression (left subfigure), the performance of the LSTM with batch-
ing is on par or better compared with the sequential LSTM as the MSE score
of the former is smaller or equal. We also note that the performance tends to
improve with the amount of available training data. A similar, although more
convincing, pattern can be seen in the case of few-shot Omniglot classification
(right subfigure), where the LSTM with batching significantly outperforms the
sequential LSTM across the different numbers of training examples per class.
Surprisingly, in this case the performance of the LSTM does not improve as
the number of examples per class increases. We found that this is due to train-
ing stability issues of the plain LSTM (as shown by the confidence intervals):
for some runs, the LSTM does not learn and yields random performance, and
in other runs the learning starts only after a certain period of burn-in itera-
tions and fails to reach convergence within 80K meta-iterations (see appendix
Section B.2 for detailed learning curves for every run). For the LSTM with
batching, we do not observe such training stability issues. This shows that
batching not only helps improve the performance, but also greatly increases

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 17

10 20 30 40 50
Number of support examples per task

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

 L
os

s
Batch (ours)
Sequential

(a) Average MSE loss

2 4 6 8 10
Number of support examples per task

20

0

20

40

60

80

100

120

140

A
cc

ur
ac

y

Batch (ours)
Sequential

(b) Average accuracy (%)

Fig. 5 The average accuracy score of a plain LSTM with sequential and batch support
data processing on few-shot sine wave regression (left) and Omniglot classfication (right) for
different numbers of training examples per task. Note that a lower MSE (left) or a higher
accuracy (right) corresponds to better performance. The results are averaged over 3 runs
with different random seeds and the 95% confidence intervals over the mean performances
of the runs are shown as shaded regions. Batch processing performs on par or outperforms
sequential processing and improves the training stability over different runs.

the training stability. Note that the fact that the shaded confidence interval
of the sequential LSTM goes above the performance obtained by the batch-
ing LSTM is an artefact of using symmetrical confidence intervals above and
below the mean trend: the sequential LSTM never outperforms the batching
LSTM. As we can see, the MSE loss for both approaches decreases as the size
of the support set increases, as more training data is available for learning. Fur-
thermore, we see that the performance of the LSTM with batching improves
with the number of available training data, whereas this is not the case for the
sequential LSTM, which struggles to yield competitive performance. Overall,
the results imply that the permutation invariance is a helpful inductive bias
to improve the few-shot learning performance. Consequently, we will use the
LSTM with batching henceforth.

5.2 Performance comparison on few-shot sine wave
regression

Next, we compare the performance of the plain LSTM with batching, our
proposed OP-LSTM, as well as MAML (Finn et al, 2017). To ensure a fair
comparison with MAML, we tuned the hyperparameters in the same way as for
the plain LSTM as done in the previous subsection on 5-shot sine wave regres-
sion. For this tuning, we used the default base-learner architecture consisting of
two hidden layers with 40 ReLU nodes, followed by an output layer of 1 node.
Afterward, we searched over different architectures with different numbers of
parameters such that the expressivity in terms of the number of parameters
does not limit the performance of MAML. We used the same base-learner
architecture for the OP-LSTM as MAML without additional tuning.

The test performances on the sine wave regression taska are displayed in
Table 1. We note MAML, despite having a comparable number of parameters

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

18 Are LSTMs Good Few-Shot Learners?

Table 1 Average test MSE on few-shot sine wave regression. The 95% confidence
intervals are displayed as ±x. We used batch processing for the LSTM and OP-LSTM.

Parameters 5-shot 10-shot 20-shot

MAML 17 018 0.18 ± 0.009 0.033 ± 0.003 0.005 ± 0.001
LSTM 20 201 0.04 ± 0.002 0.01 ± 0.001 0.007 ± 0.000

OP-LSTM 18 107 0.11 ± 0.009 0.008 ± 0.001 0.003 ± 0.000

(models with more parameters than LSTM and OP-LSTM performed worse),
is outperformed by LSTM and OP-LSTM, indicating that LSTM and OP-
LSTM have discovered more efficient learning algorithms for sine wave tasks.
Comparing LSTM with OP-LSTM, we see that the former yields the best
performance in the 5-shot setting, whereas OP-LSTM outperforms LSTM in
the 10-shot and 20-shot settings.

5.3 Performance comparison on few-shot image
classification

Within-domain

Next, we investigate the within-domain performance of OP-LSTM and LSTM
on few-shot image classification problems, namely, Omniglot, miniImageNet,
and CUB. The results for the Omniglot dataset are displayed in Table 2.
Note that the LSTM has many more parameters than the other methods as it
consists of multiple fully-connected layers with large hidden dimensions, which
were found to give the best validation performance. As we can see, the plain
LSTM (with batching) does not yield competitive performance compared with
the other methods, in spite of the fact that it has many more parameters and,
in theory, could learn any learning algorithm. This shows that the LSTM is
hard to optimize and struggles to find a good solution in more complex few-
shot learning settings, i.e., image classification. OP-LSTM, on the other hand,
which separates the learning procedure from the input representation, yields
competitive performance compared with MAML and ProtoNet in both the
1-shot and 5-shot settings, whilst using fewer parameters than the plain LSTM.

Table 2 The mean test accuracy (%) on 5-way Omniglot classification across 3 different
runs. The 95% confidence intervals are displayed as ±x. The plain LSTM is outperformed
by MAML. All methods (except LSTM) used a fully-connected feed-forward classifier.

Technique parameters 1-shot 5-shot

MAML 247 621 84.1 ± 0.9 93.5 ± 0.3
ProtoNet 247 621 83.6 ± 0.88 93.4 ± 0.29

LSTM 13 530 097 72.6 ± 0.9 84.8 ± 0.5
OP-LSTM (ours) 249 167 84.3 ± 0.9 91.8 ± 0.3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 19

The results for miniImageNet and CUB are displayed in Table 3. Note
that again, the LSTM uses more parameters than other methods as it con-
sists of multiple large fully-connected layers which were found to yield the best
validation performance. Nonetheless, it is applied on top of representations
computed with the Conv-4 backbone, which is also used by all other methods.
As we can see, the plain LSTM approach performs at chance level, again sug-
gesting that the optimization problem of finding a good learning algorithm is
too complex for this problem. The OP-LSTM, on the other hand, yields com-
petitive or superior performance compared with all tested baselines on both
miniImageNet and CUB, regardless of the number of shots, which shows the
advantage of decoupling the input representation from the learning procedure.

Table 3 Meta-test accuracy scores on 5-way miniImageNet and CUB classification over 3
runs. The 95% confidence intervals are displayed as ± x. All methods used a Conv-4
backbone as a feature extractor. The “-” indicates that the method did not finish within 2
days of running time.

miniImageNet CUB

Technique params 1-shot 5-shot 1-shot 5-shot

MAML 121 093 48.6 ± 1.04 63.0 ± 0.54 57.5 ± 1.04 74.8 ± 0.51
Warp-MAML 231 877 50.4 ± 1.04 65.6 ± 0.53 59.6 ± 1.0 74.2 ± 0.51
SAP 412 852 53.0 ± 1.08 67.6 ± 0.51 63.5 ± 1.0 73.9 ± 0.51
ProtoNet 121 093 50.1 ± 1.04 65.4 ± 0.53 50.9 ± 1.01 63.7 ± 0.55

LSTM 55 879 349 20.2 ± 0.2 19.4 ± 0.2 - -
OP-LSTM (ours) 141 187 51.9 ± 1.04 67.9 ± 0.5 60.2 ± 1.04 73.1 ± 0.52

Cross-domain

Next, we investigate the cross-domain performance of the LSTM and OP-
LSTM, where the test tasks come from a different a different dataset than the
training tasks. We test this in two scenarios: train on miniImageNet and eval-
uate on CUB (MIN → CUB) and vice verse (CUB → MIN). The results of this
experiment are displayed in Table 4. Again, the plain LSTM does not outper-
form a random classifier, whilst the OP-LSTM yields superior performance in
every tested scenario, showing its versatility in this challenging setting.

5.4 Analysis of the learned weight updates

Lastly, we investigate how OP-LSTM updates the weights of the base-learner
network. More specifically, we measure the cosine similarity and Euclidean dis-
tance between the OP-LSTM updates and updates made by gradient descent
or Prototypical network. Denoting the initial final classifier weight matrix as

H
(L)
0 , the OP-LSTM update direction after T updates is ∆OP = H⃗

(L)
T − H⃗

(L)
0 ,

where M⃗ means that we vectorize the matrix by flattening it. Similarly, we
can measure the update compared with the initial weight matrix and those

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

20 Are LSTMs Good Few-Shot Learners?

Table 4 Average cross-domain meta-test accuracy scores over 5 runs using a Conv-4
backbone. Techniques trained on tasks from one data set and were evaluated on tasks from
another data set. The 95% confidence intervals are displayed as ± x. The “-” indicates that
the method did not finish within 2 days of running time.

MIN → CUB CUB → MIN

1-shot 5-shot 1-shot 5-shot

MAML 37.9 ± 0.40 53.6 ± 0.40 31.1 ± 0.36 45.8 ± 0.39
Warp-MAML 42.0 ± 0.43 56.9 ± 0.42 31.1 ± 0.35 41.3 ± 0.36
SAP 41.5 ± 0.44 58.0 ± 0.41 33.3 ± 0.39 47.1 ± 0.39
ProtoNet 39.7 ± 0.41 56.0 ± 0.41 31.7 ± 0.34 45.3 ± 0.38

LSTM 20.1 ± 0.28 20.0 ± 0.25 - -
OP-LSTM (ours) 42.3 ± 0.42 58.5 ± 0.41 35.8 ± 0.40 49.0 ± 0.4

obtained by employing nearest-prototype classification (H
(L)
Proto) as done in

Prototypical network or gradient descent H
(L)
GD , where the latter is obtained

by performing T gradient update steps (with a learning rate of 0.01). These

updates are associated with the update direction vectors ∆Proto = H⃗
(L)
Proto −

H⃗
(L)
0 and ∆GD = H⃗

(L)
GD − H⃗

(L)
0 . We can then measure the distance between

the update direction ∆OP of the OP-LSTM and ∆Proto and ∆GD . As a dis-
tance measure, we use the Euclidean distance. In addition, we also measure the
cosine similarity between the update directions as an inverse distance measure
that is invariant to the scale and magnitudes of the vectors. After every 2 500
episodes, we measure these Euclidean distances and cosine similarity scores on
the validation tasks, and average the results over 3 runs.

The results of this experiment are displayed in Figure 6. As we can see,
the cosine similarity between the weight update directions of OP-LSTM and
gradient descent and prototype-based classifiers increases with training time.
OP-LSTM very quickly learns to update the weights in a similar direction as
gradient descent, followed by a gradual decline in similarity, which is later fol-
lowed by a gradual increase. This gradual decline may be to incorporate more
prototype-based updates. Looking at the Euclidean distance, we observe the
same pattern for the similarity compared with the prototype-based classifier,
as the distance between the updates decreases (indicating a higher similar-
ity). The Euclidean distance between OP-LSTM updates and gradient updates
slightly increase over time, which may be a side effect of the sensitivity to scale
and magnitude of this distance measure. Thus, even if both would perform
gradient descent, but with different learning rates, The cosine similarity gives
a better idea of directional similarity as it abstracts away from the magnitude
of the vectors.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 21

0 5 10 15 20 25 30
Time

0.0

0.2

0.4

0.6

0.8

1.0
C

os
in

e
si

m
ila

rit
y

Gradient descent
Prototype classifier

(a) Cosine similarity

0 5 10 15 20 25 30
Time

0

25

50

75

100

125

150

175

200

Eu
cl

id
ea

n
di

st
an

ce

Gradient descent
Prototype classifier

(b) Euclidean distance

Fig. 6 The average cosine similarity (left) and Euclidean distance (right) between the
weight update directions of the OP-LSTM and a prototype-based and gradient-based clas-
sifier as a function of time on 5-way 1-shot miniImageNet classification. Each point on the
x-axis indicates a validation step, which is performed after every 2 500 episodes. The results
are averaged over 3 runs with different random seeds and the 95% confidence intervals are
shown as shaded regions. The confidnce intervals are within the size of the symbols and
imperceptible. As time progresses, the updates performed by OP-LSTM become more simi-
lar to those of gradient descent and prototype-based classifiers (increasing cosine similarity).

6 Relation to other methods

Here, we study the relationship of OP-LSTM to other existing meta-learning
methods. More specifically, we aim to show that OP-LSTM is a general meta-
learning approach, which can approximate the behaviour of different classes of
meta-learning, such as optimization-based meta-learners (e.g., MAML, Finn
et al (2017)) and metric-based methods (e.g., Prototypical network, Snell et al
(2017)).

Model-agnostic meta-learning (MAML)

MAML (Finn et al, 2017) aims to learn good initialization parameters for

a base-learner network θ = {W(1)
0 ,W

(2)
0 , . . . ,W

(L)
0 ,b

(1)
0 ,b

(2)
0 , . . . ,b

(L)
0 } such

that new tasks can be learned efficiently using a few gradient update steps.

Here, W
(ℓ)
0 is the initial weight matrix of layer ℓ and b

(ℓ)
0 the initial bias vector

of layer ℓ when presented with a new task.

The initial 2D hidden states H
(ℓ)
0 in OP-LSTM can be viewed as the initial

weights W
(ℓ)
0 of the neural network in MAML. In MAML, the weights in layer

ℓ for a given input are updated as W
(ℓ)
t+1 = W

(ℓ)
t − ηδ(ℓ)(p(ℓ−1)(x))T , where

a(i)(x) (with 1 ≤ i ≤ L) is the vector of post-activation values in layer i as a
result of the input x, and δ(i) = ∇a(i)L(x), where L(x,y) is the loss on input
x given the ground-truth target y, and η is the learning rate.

Instead of using this hand-crafted weight update rule, OP-LSTM learns
the update rule using the outer product of LSTM hidden states and the input
activation. From Equation 14 it follows that OP-LSTM is capable of updat-

ing the weights H
(ℓ)
t with gradient descent by setting h

(ℓ)
t+1(x) = −ηδ(ℓ) =

−η∇a(ℓ)L(x,y). (Note that in Equation 14 the gradient is also normalized by

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

22 Are LSTMs Good Few-Shot Learners?

the Frobenius norm, which is formally not part of MAML.) We note that the
inputs to the coordinate-wise LSTM contain the necessary information to com-
pute the errors δ(ℓ) in every layer. That is, for the output layer, the LSTM
receives the ground-truth output and prediction in the output layer. For ear-
lier layers, the LSTM receives the backpropagated messages (the errors), as
well as the activations. Consequently, OP-LSTM can update the 2D hidden
states H(ℓ) with gradient descent, as MAML. OP-LSTM is thus an approxi-
mate generalization of MAML as it could learn to perform the same weight
matrix updates, although OP-LSTM does not update the bias vectors given a
task.

Prototypical network

Prototypical network (Snell et al, 2017) aims to learn good initial weights θ =

{W(1)
0 ,W

(2)
0 , . . . ,W

(L−1)
0 ,b

(1)
0 ,b

(2)
0 , . . . ,b

(L−1)
0 } for all parameters except for

the final layer, such that a nearest-prototype classifier yields good performance.
Let fθ(xi) be the embeddings produced by this (L − 1)-layered network for
a given observation xi (from the support set). Note that the network has
(L − 1) layers as this is the feature embedding module without the output
layer. Prototypical network computes centroids cn = 1

|Xn|
∑

xi∈Xn
fθ(xi) for

every class n, where Xn is the set of all support inputs with ground-truth
class n, and fθ(x) is the embedding of input x. Then, the predicted score of a

new input x̂ for class n is then given by ŷn(x̂) =
exp(−d(fθ(x̂),cn))∑
n′ exp(−d(fθ(x̂),cn′))

, where

d(xi,xj) = ||xi − xj ||22 is the squared Euclidean distance, and n′ is a variable
iterating over all classes.

This nearest-prototype classifier can be seen as a regular linear output layer
(Triantafillou et al, 2020). To see this, note that the prediction score for class
j is given by

ŷj(x̂) = ||fθ(x̂)− cn||22 = (fθ(x̂)− cn)
T (fθ(x̂)− cn) (18)

= fθ(x̂)
T fθ(x̂)− 2fθ(x̂)

T cn + cTncn (19)

∝ −2fθ(x̂)
T cn + cTncn, (20)

where we ignored the first term (fθ(x̂)
T fθ(x̂)) as it is constant across all classes

n. The prediction score for class j is thus obtained by taking the dot product
between the input embedding fθ(x̂) and −2cn and by adding a bias term bn =
cTncn. Thus, the prototype-based classifier is equivalent to a linear output layer,
i.e., x̂ = W(L)fθ(x̂) + b(L) where the n-th row of W(L) corresponds to −2cn
and the n-th element of b(L) is equal to cTncn. OP-LSTM can approximate the
behavior of Prototypical network with T = 1 steps per task as follows. First,
assume that the underlying base-learner network is the same for Prototypical
network and OP-LSTM, i.e., the initialization of the hidden state is equivalent

to the initial weights of the base-learner used by Prototypical network H
(ℓ)
0 =

W
(ℓ)
0 for ℓ ∈ {1, 2, . . . , L− 1}, and that the hidden state of the output layer in

OP-LSTM is a matrix of zeros, i.e., H
(L)
0 = 0. Second, let the hidden states of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 23

the LSTM in OP-LSTM be be a vector of zeros h(ℓ) = 0 for every layer ℓ < L,
and let the hidden state of the output layer given the example x′

i = (xi,yi) be
the label identity function h(L)(x′

i) = yi (which can be learned by an LSTM).
Then, OP-LSTM will update the hidden states as follows using Equation 14.

The n-th row of H(L) will equal γ 1
M

∑
xi∈Xn

a(L−1)(xi)
||a(L−1)(xi)||F

, where Xn = {xi ∈
Dtr

Tj
|yi = en} is the set of training inputs with class n, and γ and M are the

learning rate of OP-LSTM and number of examples respectively. Note that
this expression corresponds to the scaled prototype (mean of the embeddings)

of class n, that is, γc̄n, where c̄n = 1
M

∑
xi∈Xn

a(L−1)(xi)
||a(L−1)(xi)||F

. The prediction

for the n-th class for a given input x̂ is thus given by γc̄Tna
(L−1)(x) + b

(L)
n ,

where we omitted the time step for a(L−1) and bn is a fixed bias in the output
layer. Note that for γ = −2, the first term (−2c̄Tna

(L−1)(x)) resembles the
first term in the prediction made by Prototypical network for class n, which
is given by −2cTna

(L−1)(x), where a(L−1)(x) = fθ(x). Hence, OP-LSTM can
learn to approximate (up to the bias term) a normalized Prototypical network
classifier.

We have thus shown that OP-LSTM can learn to implement a paramet-
ric learning algorithm (gradient descent) as well as a non-parametric learning
algorithm (prototype-based classifier), demonstrating the flexibility of the
approach.

7 Conclusions

Meta-learning is a strategy to enable deep neural networks to learn from small
amounts of data. The field has witnessed an increase in popularity in recent
years, and many new techniques are being developed. However, the potential
of some of the earlier techniques have not been studied thoroughly, despite
promising initial results. In our work, we revisited the plain LSTM approach
proposed by Hochreiter et al (2001) and Younger et al (2001). This approach
simply ingests the training data for a given task, and conditions the predictions
of new query inputs on the resulting hidden state.

We analysed this approach from a few-shot learning perspective and uncov-
ered two potential issues for embedding a learning algorithm into the weights
of the LSTM: 1) the hidden embeddings of the support set are not permutation
invariant, and 2) the learning algorithm and the input embedding mechanism
are intertwined, which leads to a challenging optimization problem and an
increased risk of overfitting. In our work, we proposed to overcome issue 1)
by mean pooling the embeddings of individual training examples, rendering
the obtained embedding permutation invariant. We found that this method
is highly effective and increased the performance of the plain LSTM on both
few-shot sine wave regression and image classification. Moreover, with this first
solution, the plain LSTM approach already outperformed the popular meta-
learning method MAML (Finn et al, 2017) on the former problem. It struggled,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

24 Are LSTMs Good Few-Shot Learners?

however, to yield good performance on few-shot image classification problems,
highlighting the difficulty of optimizing this approach.

In order to resolve this difficulty, we proposed a new technique, Outer
Product LSTM (OP-LSTM), that uses an LSTM to update the weights of
a base-learner network. By doing this, we effectively decouple the learning
algorithm (the weight updates) from the input representation mechanism
(the base-learner), solving issue 2), as done in previous works (Ravi and
Larochelle, 2017; Andrychowicz et al, 2016). Compared with previous works,
OP-LSTM does not receive gradients as inputs. Our theoretical analysis shows
that OP-LSTM is capable of performing an approximate form of gradient
descent (as done in MAML (Finn et al, 2017)) as well as a nearest prototype
based approach (as done in Prototypical network (Snell et al, 2017)), show-
ing the flexibility and expressiveness of the method. Empirically, we found
that OP-LSTM overcomes the optimization issues associated with the plain
LSTM approach on few-shot image classification benchmarks, whilst using
fewer parameters. It yields competitive or superior performance compared with
MAML (Finn et al, 2017) and Prototypical network (Snell et al, 2017), both
of which it can approximate.

Future work

When the base-learner is a convolutional neural network, we applied OP-
LSTM on top of the convolutional feature embeddings. A fruitful direction for
future research would be to propose a more general form of OP-LSTM that
can update also the convolutional layers. This would require new backward
message passing protocols to go through pooling layers often encountered in
convolutional neural networks.

Moreover, we note that OP-LSTM is one way to overcome the two issues
associated with the plain LSTM approach, but other approaches could also be
investigated. For example, one could try to implement a convLSTM (Shi et al,
2015) such that the LSTM can be applied directly to raw inputs, instead of
only after the convolutional backbone in case of image classification problems.

Lastly, OP-LSTM is a method to learn the weight update rule for a base-
learner network, and is thus orthogonal to many advances and new methods
in the field of meta-learning, such as Warp-MAML (Flennerhag et al, 2020)
and SAP (Huisman et al, 2023). Since this is a nontrivial extension of these
methods, we leave this for future work. We think that combining these methods
could yield new state-of-the-art performance.

Acknowledgments. This work was performed using the compute resources
from the Academic Leiden Interdisciplinary Cluster Environment (ALICE)
provided by Leiden University.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 25

Declarations

Funding

Not applicable: no funding was received for this work.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any
organization or entity with any financial interest or non-financial interest in
the subject matter or materials discussed in this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable: this research does not involve personal data, and publishing of
this manuscript will not result in the disruption of any individual’s privacy.

Availability of data and material

All data that was used in this research have been published as benchmarks by
Deng et al (2009); Vinyals et al (2016) (miniImageNet) and Wah et al (2011)
(CUB), and is publicly available. The data generator for sine wave regression
experiments can be found in the provided code (see below).

Code availability

All code that was used for this research is made publicly available at https:
//github.com/mikehuisman/lstm-fewshotlearning-oplstm.

Authors’ contributions

MH has conducted the research presented in this manuscript. TM, AP, and
JvR have regularly provided feedback on the work, contributed towards the
interpretation of results, and have critically revised the whole.

All authors approve the current version to be published and agree to be
accountable for all aspects of the work in ensuring that questions related to
the accuracy or integrity of any part of the work are appropriately investigated
and resolved.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://github.com/mikehuisman/lstm-fewshotlearning-oplstm
https://github.com/mikehuisman/lstm-fewshotlearning-oplstm

Springer Nature 2021 LATEX template

26 Are LSTMs Good Few-Shot Learners?

Employment

All authors declare that there is no recent, present, or anticipated employment
by any organization that may gain or lose financially through the publication
of this manuscript.

Appendix A Sine wave regression: additional
results

We also performed an experiment to investigate the effect of the input rep-
resentation on the performance of the plain LSTM approach (proposed by
Younger et al (2001); Hochreiter et al (2001)) on the 5-shot sine wave regres-
sion performance. The experimental setting follows the setup described in
Section 5.1. For every input format, we performed hyperparameter tuning with
the same randomly sampled hyperparameter configurations using Table B2.
The performances of the best validated models per input format are displayed
in Table A1. The best performance is obtained by feeding the current input,
previous target, and the previous prediction into the LSTM, although the
differences with other inputs are small.

Table A1 The influence of different input information on the performance of the LSTM
on 5-shot sine wave regression. 95% confidnce intervals are displayed as ±x.

Input xt Prev target yt−1 Prev pred ŷt−1 Prev error et−1 5-shot MSE

✓ ✓ 0.04 ± 0.002
✓ ✓ ✓ 0.03 ± 0.002
✓ ✓ ✓ 0.05 ± 0.004
✓ ✓ ✓ ✓ 0.06 ± 0.011

Appendix B Hyperparameter tuning

B.1 Permutation invariance experiments

For the permutation invariance experiments on few-shot sine wave regression,
we sampled 20 random configurations for the plain LSTM from the distribu-
tions displayed in Table B2 and validated their performance on 5-shot (k = 5)
sine-wave regression. We selected the best configuration and evaluated it on
the meta-test tasks,

For Omniglot, we performed random search with a function evalua-
tion budget of 100, with a fixed learning rate of 0.001. The architecture
of the plain LSTM with sequential data processing was sampled uniformly

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 27

Table B2 The used ranges and distributions for tuning the hyperparameters with
random search for sine wave regression.

Hyperparameter Range

Number of layers Uniform({1,2,3,4})
Hidden dimensions Uniform({1,3,8,20,40})
Meta-batch size Uniform({1,2,3,4})
Learning rate LogUniform(1e-5, 4e-2)
Unroll steps Uniform({1,2,. . . ,14})

at random from {1024-512-256-128-64,2048-1024-512-128-64,2048-1024-512-
256-128,1024-600-400-200-92,1024-512-512-256-128-64,1024-512-512-256-256-
128-64,612-400-256-128-64,1024-1024-1024-512-256-128-64,2048-1024-512-180-
100,1024-580-280-160-80,256-128-64,512-256-128-64,128-64-64-64,256-128-
64,512-256-64,256-128-100,128-64-64-64-64,64-64-64-64,50-50}, the number
of passes over the support data T was sampled uniformly at random from
{1, 2, . . . , 10}, and the meta-batch size from {1, 2, . . . , 32}. We used the best
hyperparameter configuration of the sequential plain LSTM for the plain
LSTM with batching to compare the differences in performance.

B.2 Omniglot

For the plain LSTM approach, we used the best hyperparameter configura-
tion found for the permutation invariance experiments.

For OP-LSTM, we performed a grid search, varying the meta-batch size
within {1,4,8,16,32}, the architecture of the coordinate-wise LSTM within {20-
1, 10-10-1, 40-5, 40-20-1, 20-20-20-5} (note that the last element is always 1
because it operates per coordinate), and the number of passes over the support
set within {1,3,5,10}.

Detailed learning curves for the plain LSTM on Omniglot

Here, we show the validation learning curves of the sequential LSTM and the
LSTM which uses batching to complement the results displayed in Section 5.1.
Figure B1 displays the validation learning curves of the LSTM with batch data
ingestion (top row) and the LSTM with sequential data processing (bottom
row). As we can see, batching increases the stability of the training process
and makes the LSTM less sensitive to the random initialization, as every run
succeeds to reach convergence in contrast to the sequential LSTM.

B.3 miniImageNet and CUB

For plain LSTM, we used random search with a budget of 130 function
evaluations, the meta-batch size was sampled uniformly between 1 and 48,
the number of layers between 1 and 4, the hidden size log-uniformly between
32 and 3200, and the number of passes T over the support dataset uniformly
between 2 and 9.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

28 Are LSTMs Good Few-Shot Learners?

0 10 20 30

20

30

40

50

60

70

80

90
A

cc
ur

ac
y

(%
)

k=1

0 10 20 30

20

30

40

50

60

70

80

90

k=3

0 10 20 30

20

30

40

50

60

70

80

90

k=5

0 10 20 30

20

30

40

50

60

70

80

90

k=8

0 10 20 30

20

30

40

50

60

70

80

90

k=10

0 10 20 30
Time

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

0 10 20 30
Time

20

30

40

50

60

70

80

90

0 10 20 30
Time

20

30

40

50

60

70

80

90

0 10 20 30
Time

20

30

40

50

60

70

80

90

0 10 20 30
Time

20

30

40

50

60

70

80

90

Fig. B1 The mean validation accuracy of the LSTM over time on Omniglot for every of
the three different runs, for different numbers of examples per class k. Top row: LSTM
with batching (mean-pooling). Bottom row: LSTM with sequential data ingestion. As we
can see, batching improves the stability of the training process.

For OP-LSTM, we performed the same grid search as for Omniglot. We
use the best found hyperparameters for both methods on miniImageNet also
on CUB.

We also measured the running times of the techniques on miniImageNet
and CUB, as shown in Table B3. We note that the running times may be
affected by the server’s load and thus can only give a rough estimation of the
required amount of compute time. As we can see, the plain LSTM is the slowest
method, despite achieving random performance on miniImageNet. OP-LSTM,
in contrast, is more efficient.

Table B3 Mean running times on 5-way miniImageNet and CUB classification over 3 runs.
All methods used a Conv-4 backbone as a feature extractor. “xhymin” means x hours and
y minutes. The “-” indicates that the method did not finish within 2 days of running time.

miniImageNet CUB

Technique params 1-shot 5-shot 1-shot 5-shot

MAML 121 093 13h9min 12h1min 26h57min 17h39min
Warp-MAML 231 877 12h25min 12h30min 13h6min 12h48min
SAP 412 852 5h40min 11h14min 7h11min 11h17min
ProtoNet 121 093 4h14min 5h6min 31h18min 38h46min

LSTM 55 879 349 40h14min 46h47min - -
OP-LSTM (ours) 141 187 4h50min 5h31min 31h58min 40h8min

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 29

B.4 Robustness to random seeds

Here, we investigate the robustness of the investigated methods to the random
seed for the few-shot image classification experiments performed in Section 5.3.
We perform th Instead of computing the confidence intervals over the perfor-
mances of all test tasks for all seeds, we now compute the confidence interval
over the mean test performance per run. As we perform three runs per method,
we compute the confidence intervals over three observations per method. Note
that the mean performance does not change as taking the mean of the three
means will be equivalent (as the means are based on an equal number of task
performances).

B.4.1 Within-domain

Here, we present additional results for the conducted within-domain image
classification experiments.

Omniglot

The mean test performance and confidence intervals over the random seeds for
Omniglot image classification are shown in Table B4. As we can see, the con-
fidence intervals are higher than in previous experiments because the intervals
are computed over 3 observations instead of 1800 individual test task perfor-
mances (600 per run). As we can see, the LSTM is unstable, supporting the
hypothesis that the optimization problem is difficult. OP-LSTM, on the other
hand, is less sensitive to the chosen random seed and has a stability that is
comparable to that of MAML.

Table B4 The mean test accuracy (%) on 5-way Omniglot classification across 3 different
runs. The 95% confidence intervals, computed over the mean performances of the 3
different random seeds, are displayed as ±x. The plain LSTM is outperformed by MAML.
All methods (except LSTM) used a fully-connected feed-forward classifier.

Technique parameters 1-shot 5-shot

MAML 247 621 84.1 ± 3.10 93.5 ± 0.70
ProtoNet 247 621 83.6 ± 0.52 93.4 ± 1.48

LSTM 13 530 097 72.6 ± 3.87 84.8 ± 6.12
OP-LSTM (ours) 249 167 84.3 ± 3.18 91.8 ± 0.70

MiniImageNet and CUB

The mean test performance and confidence intervals over the random seeds
for miniImageNet and CUB image classification are shown in Table B5. In
contrast to what we observed on Omniglot, the LSTM is now more stable. This
is caused by the fact that it consistently fails to learn a learning algorithm that
performs better than random guessing, and thus performs stably at chance
level.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

30 Are LSTMs Good Few-Shot Learners?

Table B5 Meta-test accuracy scores on 5-way miniImageNet and CUB classification over 3
runs. The 95% confidence intervals, computed over the mean performances of the 3 different
random seeds, are displayed as ± x. All methods used a Conv-4 backbone as a feature
extractor. The “-” indicates that the method did not finish within 2 days of running time.

miniImageNet CUB

Technique params 1-shot 5-shot 1-shot 5-shot

MAML 121 093 48.6 ± 4.00 63.0 ± 0.33 57.5 ± 0.83 74.8 ± 2.10
Warp-MAML 231 877 50.4 ± 2.58 65.6 ± 0.98 59.6 ± 2.15 74.2 ± 2.51
SAP 412 852 53.0 ± 3.71 67.6 ± 0.47 63.5 ± 6.24 73.9 ± 1.57
ProtoNet 121 093 50.1 ± 4.06 65.4 ± 2.84 50.9 ± 2.35 63.7 ± 0.47

LSTM 55 879 349 20.2 ± 0.60 19.4 ± 0.47 - -
OP-LSTM (ours) 141 187 51.9 ± 2.52 67.9 ± 2.40 60.2 ± 1.58 73.1 ± 1.57

Table B6 Average cross-domain meta-test accuracy scores over 5 runs using a Conv-4
backbone. Techniques trained on tasks from one data set and were evaluated on tasks from
another data set. The 95% confidence intervals, computed over the mean performances of
the 3 different random seeds, are displayed as ± x. The “-” indicates that the method did
not finish within 2 days of running time.

MIN → CUB CUB → MIN

1-shot 5-shot 1-shot 5-shot

MAML 37.9 ± 2.22 53.6 ± 0.67 31.1 ± 1.19 45.8 ± 2.06
Warp-MAML 42.0 ± 0.85 56.9 ± 4.16 31.1 ± 1.59 41.3 ± 1.37
SAP 41.5 ± 3.72 58.0 ± 1.79 33.3 ± 2.33 47.1 ± 1.28
ProtoNet 39.7 ± 4.11 56.0 ± 4.89 31.7 ± 0.20 45.3 ± 1.84

LSTM 20.1 ± 0.77 20.0 ± 0.40 - -
OP-LSTM (ours) 42.3 ± 1.90 58.5 ± 1.49 35.8 ± 2.98 49.0 ± 0.80

B.4.2 Cross-domain

Lastly, we compute the confidence intervals in cross-domain settings and dis-
play the results in Table B6. Again, the LSTM is a stable random guesser.
The other algorithms are less stable, but do yield a better performance. We
cannot observe a general pattern of stability in the sense that one algorithm
is consistently more stable than others.

References

Alver S, Precup D (2021) What is going on inside recurrent meta reinforcement
learning agents? arXiv preprint arXiv:210414644

Andrychowicz M, Denil M, Colmenarejo SG, et al (2016) Learning to learn by
gradient descent by gradient descent. In: Advances in Neural Information
Processing Systems 29. Curran Associates Inc., pp 3988–3996

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 31

Brazdil P, Carrier CG, Soares C, et al (2008) Metalearning: Applications to
Data Mining. Springer-Verlag Berlin Heidelberg

Chan SC, Santoro A, Lampinen AK, et al (2022) Data distributional properties
drive emergent in-context learning in transformers. In: Advances in Neural
Information Processing Systems

Deng J, Dong W, Socher R, et al (2009) ImageNet: A Large-Scale Hierarchi-
cal Image Database. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, pp 248–255

Duan Y, Schulman J, Chen X, et al (2016) RL2: Fast Reinforcement Learning
via Slow Reinforcement Learning. arXiv preprint arXiv:161102779

Finn C, Levine S (2017) Meta-learning and universality: Deep representa-
tions and gradient descent can approximate any learning algorithm. arXiv
preprint arXiv:171011622

Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adap-
tation of deep networks. In: Proceedings of the 34th International Conference
on Machine Learning (ICML’17), PMLR, pp 1126–1135

Flennerhag S, Rusu AA, Pascanu R, et al (2020) Meta-learning with warped
gradient descent. In: International Conference on Learning Representations
(ICLR’20)

He K, Zhang X, Ren S, et al (2015) Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In: Proceedings of the
IEEE international conference on computer vision, pp 1026–1034

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural compu-
tation 9(8):1735–1780

Hochreiter S, Younger AS, Conwell PR (2001) Learning to Learn Using Gra-
dient Descent. In: International Conference on Artificial Neural Networks,
Springer, pp 87–94

Huisman M, Van Rijn JN, Plaat A (2021) A survey of deep meta-learning.
Artificial Intelligence Review 54(6):4483–4541

Huisman M, Plaat A, van Rijn JN (2023) Subspace adaptation prior for few-
shot learning. Forthcoming

Kingma DP, Ba JL (2015) Adam: A method for stochastic gradient descent.
In: International Conference on Learning Representations (ICLR’15)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 LATEX template

32 Are LSTMs Good Few-Shot Learners?

Kirsch L, Schmidhuber J (2021) Meta learning backpropagation and improving
it. In: Advances in Neural Information Processing Systems 34, pp 14,122–
14,134

Kirsch L, Harrison J, Sohl-Dickstein J, et al (2022) General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:221204458

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet Classification with
Deep Convolutional Neural Networks. In: Advances in Neural Information
Processing Systems 25, pp 1097–1105

Lake BM, Salakhutdinov R, Tenenbaum JB (2015) Human-level concept learn-
ing through probabilistic program induction. Science 350(6266):1332–1338

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

Lee Y, Choi S (2018) Gradient-based meta-learning with learned layerwise
metric and subspace. In: Proceedings of the 35th International Conference
on Machine Learning (ICML’18), PMLR, pp 2927–2936

Mnih V, Kavukcuoglu K, Silver D, et al (2015) Human-level control through
deep reinforcement learning. Nature 518(7540):529–533

Naik DK, Mammone RJ (1992) Meta-neural networks that learn by learning.
In: International Joint Conference on Neural Networks (IJCNN’92), IEEE,
pp 437–442

Olah C (2015) Understanding LSTM Networks. https://colah.github.io/posts/
2015-08-Understanding-LSTMs/, accessed: 23-01-2023

Park E, Oliva JB (2019) Meta-curvature. In: Advances in Neural Information
Processing Systems 32, pp 3309–3319

Ravi S, Larochelle H (2017) Optimization as a Model for Few-Shot Learning.
In: International Conference on Learning Representations (ICLR’17)

Santoro A, Bartunov S, Botvinick M, et al (2016) Meta-learning with Memory-
augmented Neural Networks. In: Proceedings of the 33rd International
Conference on International Conference on Machine Learning (ICML’16),
pp 1842–1850

Schmidhuber J (1987) Evolutionary principles in self-referential learning, or on
learning how to learn: the meta-meta-... hook. Master’s thesis, Technische
Universität München

Shi X, Chen Z, Wang H, et al (2015) Convolutional lstm network: A machine
learning approach for precipitation nowcasting. In: Advances in neural
information processing systems 28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Springer Nature 2021 LATEX template

Are LSTMs Good Few-Shot Learners? 33

Silver D, Huang A, Maddison CJ, et al (2016) Mastering the game of go with
deep neural networks and tree search. Nature 529(7587):484–489

Snell J, Swersky K, Zemel R (2017) Prototypical Networks for Few-shot Learn-
ing. In: Advances in Neural Information Processing Systems 30. Curran
Associates Inc., pp 4077–4087

Thrun S (1998) Lifelong Learning Algorithms. In: Learning to learn. Springer,
p 181–209

Triantafillou E, Zhu T, Dumoulin V, et al (2020) Meta-dataset: A dataset
of datasets for learning to learn from few examples. In: International
Conference on Learning Representations (ICLR’20)

Vinyals O, Blundell C, Lillicrap T, et al (2016) Matching Networks for One
Shot Learning. In: Advances in Neural Information Processing Systems 29,
pp 3637–3645

Wah C, Branson S, Welinder P, et al (2011) The Caltech-UCSD Birds-200-2011
Dataset. Tech. Rep. CNS-TR-2011-001, California Institute of Technology

Wang JX, Kurth-Nelson Z, Tirumala D, et al (2016) Learning to reinforcement
learn. arXiv preprint arXiv:161105763

Younger AS, Hochreiter S, Conwell PR (2001) Meta-learning with backpropa-
gation. In: International Joint Conference on Neural Networks (IJCNN’01),
IEEE

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

MLJ Contribution Information Sheet

What is the main claim of the paper? Why is this an important contribution to the machine learning
literature?

In this paper, we revisit the idea proposed by Hochreiter et al. (2001) that LSTMs can embed a
learning algorithm in their recurrent dynamics by processing the training examples and query input
as inputs. Training an LSTM on different tasks would then amount to learning how to learn, or
meta-learning. This idea has yielded promising results and more recently in meta-reinforcement
learning settings (Duan et al., 2016; Wang et al., 2016).

In our work, we investigate whether LSTMs are good few-shot learning methods on modern few-shot
learning benchmarks. Our main claim is that LSTMs can embed highly efficient learning algorithms
for few-shot regression on a simple toy problem (sine wave regression) but that it fails to do this for
more complex few-shot image classification problems. We identify two potential problems that can
hinder its ability to learn good learning algorithms, and propose a new meta-learning algorithm called
Outer Product LSTM (OP-LSTM). We demonstrate that OP-LSTM overcomes the two issues of the
classical LSTM architecture as it substantially outperforms it. OP-LSTM performs on par or slightly
better compared with other popular meta-learning techniques.

Our work is an important contribution to the machine learning literature as it increases our
understanding of the ability of LSTMs to embed learning algorithms in their recurrent dynamics, and
more generally black-box meta-learning systems. Moreover, our work gives rise to promising future
research by combining OP-LSTM with state-of-the-art meta-learning methods to investigate potential
performance gains.

What is the evidence you provide to support your claims?

We perform extensive experiments with LSTMs and their few-shot learning capabilities on a
synthetic toy problem, where we show that it outperforms the popular meta-learning technique
MAML (Finn et al., 2017). Moreover, we conduct various experiments on few-shot learning image
classification datasets and illustrate that the LSTM performs worse than the baseline methods,
indicating that it struggles to learn a good learning algorithm in these more complex settings. We
perform the same experiments with OP-LSTM and demonstrate that it outperforms the LSTM,
overcoming its limitations.

What papers by other authors make the most closely related contributions and how is your paper
related to them?

Hochreiter et al. (2001) proposed the idea that LSTMs can embed learning algorithms in their
recurrent dynamics. We investigate this idea and study the performance of LSTMs on modern
few-shot learning benchmarks.

Santoro et al. (2015) proposed a new memory-augmented neural network for meta-learning and
compared the performance of their approach to that of an LSTM and found that the latter was
outperformed by their proposed method on one few-shot image classification benchmark
(Omniglot). However, it was not reported how the hyperparameters of the LSTM were tuned and
whether it was a single-layer LSTM or a multi-layer LSTM. In addition, the LSTM was fed the input
data as a sequence, which is not permutation invariant and consequently can hinder its
performance. We perform a more systematic and extensive study of the LSTM on modern few-shot
learning benchmarks to investigate its ability to embed learning algorithms in its recurrent dynamics.

In concurrent works done by Kirsch et al. (2022) and Chan et al. (2022), the ability of the classical
LSTM architecture to implement a learning algorithm was also investigated. They observed that it
was unable to embed a learning algorithm into its recurrent dynamics on image classification tasks.
However, the focus was not on few-shot learning, and no potential explanation for this phenomenon
was given. In our work, we investigate the LSTM's ability to learn a learning algorithm in settings
where only one or five examples are present per class, investigate the inner working mechanics to
formulate two hypotheses as to why the LSTM architecture is incapable of learning a good learning
algorithm, and as a result, propose the novel OP-LSTM architecture, which overcomes the limitations
and performs significantly better than the classical LSTM architecture.

Ravi & Larochelle (2017) proposed a method where an LSTM updates the weights of a base-learner
network. OP-LSTM is similar in that the LSTM is responsible for computing weight updates for the
base-learner network, but it differs in 1) how these updates are computed (using outer products
instead of the dynamics of the LSTM) and 2) the inputs that are fed to the LSTM. More specifically, in
OP-LSTM, the LSTM does not use gradients as inputs, whereas this is the case in the method
proposed by Ravi & Larochelle (2017).

Lastly, we mathematically show that OP-LSTM can approximate the learning behavior of popular
meta-learning approaches, namely MAML (Finn et al., 2017) and Prototypical Network (Snell et al.,
2017).

Have you published parts of your paper before, for instance in a conference?

No, the work has not appeared elsewhere.

Recommended reviewers:
1) Sepp Hochreiter for his work on the original idea of meta-learning with LSTMs
2) Jane Wang for their work on applying LSTMs for meta-reinforcement learning
3) Yan Duan for their work on applying LSTMs for meta-reinforcement learning
4) Safa Alver for their work on understanding meta-learning with LSTMs
5) Stephanie C.Y. Chan for their work on understanding meta-learning with transformers (instead of
LSTMs)

References
[1] Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. Advances in neural
information processing systems, 30.

[2] Finn, C., Abbeel, P., & Levine, S. (2017, July). Model-agnostic meta-learning for fast adaptation of deep networks.
In International conference on machine learning (pp. 1126-1135). PMLR.

[3] Ravi, S., & Larochelle, H. (2017, April). Optimization as a model for few-shot learning. In International conference
on learning representations.

[4] Hochreiter, S., Younger, A. S., & Conwell, P. R. (2001). Learning to learn using gradient descent. In Artificial
Neural Networks—ICANN 2001: International Conference Vienna, Austria, August 21–25, 2001 Proceedings 11 (pp.
87-94). Springer Berlin Heidelberg.

[5] Kirsch, L., Harrison, J., Sohl-Dickstein, J., & Metz, L. (2022). General-purpose in-context learning by meta-learning
transformers. arXiv preprint arXiv:2212.04458.

[6] Chan, S. C., Santoro, A., Lampinen, A. K., Wang, J. X., Singh, A. K., Richemond, P. H., ... & Hill, F. (2022, April).
Data distributional properties drive emergent in-context learning in transformers. In Advances in Neural Information
Processing Systems.

[7] Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., & Abbeel, P. (2016). Rl $^ 2$: Fast reinforcement
learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779.

[8] Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., ... & Botvinick, M. (2016). Learning
to reinforcement learn. arXiv preprint arXiv:1611.05763.

