
1

First results solving arbitrarily structured Maximum
Independent Set problems using quantum annealing

Sheir Yarkoni∗1, 2, Aske Plaat2, and Thomas Bäck2

1D-Wave Systems Inc., Burnaby, Canada
2LIACS, Leiden University, Netherlands

Abstract
Commercial quantum processing units (QPUs) such as

those made by D-Wave Systems are being increasingly used
for solving complex combinatorial optimization problems. In
this paper, we review a canonical NP-hard problem, the
Maximum Independent Set (MIS) problem. We show how to map
MIS problems to quadratic unconstrained binary optimization
(QUBO) problems, and use a D-Wave 2000Q QPU to solve
them. We compare the results from the D-Wave system to
classical algorithms such as simulated thermal annealing and
the graphical networks package NetworkX. To our knowledge,
these are the first results of experiments involving arbitrarily-
structured MIS inputs using a D-Wave QPU. We find that
the QPU can be used as a heuristic optimizer for randomly
generated inputs, but due to physical control errors, can be
outperformed by simulated thermal annealing.

I. INTRODUCTION

Current-generation quantum processing units (QPUs), like the
D-Wave 2000Q, are used as metaheuristics for solving binary
optimization and sampling problems. The D-Wave QPUs are physical
implementations of the Ising model, using superconducting loops of
niobium metal as the quantum bits, or qubits [1]. At the beginning
of the computation, each qubit starts in a state of superposition
as both 1 and 0. As the system evolves, an energy landscape is
introduced while simultaneously lowering the strength of the transverse
field, allowing qubits to tunnel dynamically through energy barriers.
How these quantum effects contribute to solving computationally
challenging optimization and sampling problems is well documented
in literature [2]–[4]. The D-Wave QPUs are designed to minimize the
following objective function:

Obj(x,Q) = xT ·Q · x, (1)

where Q is a real-valued N × N matrix, and x is a bit-string
vector. These problems are known as quadratic unconstrained binary
optimization (QUBO) problems.

The maximum independent set (MIS) problem is defined as follows:
Given an undirected graph G, with vertices V and edges E, find
the maximum set of vertices V ′ ∈ V , such that no two vertices
in V ′ share an edge in E. The decision version of this problem is
NP-complete, and finding the maximum such set is NP-hard. MIS
can be transformed to QUBO form in the following way: For every
vertex v ∈ V , assign a binary variable xi, where xi = 1 denotes that
xi is in the candidate solution, and xi = 0 denotes it is not. Let Q
be the matrix representing the MIS problem in QUBO form. Assign
a weight of −1 to every diagonal element Qii. For every edge in
e ∈ E between nodes vi and vj (represented by binary variables xi
and xj), assign the off-diagonal term Qij a value of 2. Thus, the
minimum of this QUBO is when no two adjacent nodes are selected,
while maximizing the number of nodes in the set. Now the set of
selected nodes is both independent and the size is maximized, as
required. A similar transformation of the MIS problem to the Ising

* Corresponding author: syarkoni@dwavesys.com

model is shown in [5]. The Ising model is equivalent to QUBO (up to
a constant offset), using a simple transformation of variables. Given
an Ising spin s (in the {−1, 1} basis), and a QUBO binary variable x
(in the {0, 1} basis), a simple transformation is given by s = 2x− 1.
A full derivation of an Ising form of MIS (as well as many other
NP-complete problems) is shown in [5].

II. PREVIOUS WORKS

Solving general MIS problems using quantum annealing was
originally investigated in [6] to show that exponentially small energy
gaps between the global minimum and first excited states did not
necessarily prevent quantum annealing from failing to solve NP-
complete problems. However, this result is a theoretical proof, and a
follow-up paper with experimental results used only quantum Monte
Carlo simulations to solve these problems [7].

Practical results solving the MIS problem are shown in [8], however
these problems were generated on the D-Wave QPU’s native structure
which is, by construction, bipartite. Therefore, these instances have
solutions which can be found in polynomial time. Other previous
reports testing arbitrarily-structured MIS problem using D-Wave QPUs
have focused on the Weighted Maximum Independent Set problem
rather than the unweighted version considered here [9].

III. PROBLEM TESTBED

In this paper, we generate random graphs, and empirically
determine the point of maximum difficulty. This is measured by
finding the minimum probability of the QPU to find the presumed
MIS as a function of edge probability p in the random graph. We
find that for the QPU, the point of maximum difficulty is around
p = 0.2, as shown in Figure 1. This point of maximum difficulty is
similar to that found in previous studies for random graphs [10].

0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425
Edge probability

10−4

10−3

10−2

Su
cc

es
s p

ro
ba

bil
ity

Fig. 1. Plot showing the performance of the D-Wave 2000Q as a function
of edge probability (p) in random graphs. The point with the lowest success
probability (lowest in the graph) is presumed to be maximally difficult for the
QPU; this is observed to be at p = 0.2.

For every point in Figure 1, we generated 50 random graph instances
testing edge probabilities p ∈ [0.05, 0.425]. We then submitted the
problem directly to the QPU, and collected 100,000 sample solutions
per instance. Mean probability of success over problem instances is
shown in Figure 1; error bars are bootstrapped 95% CI.

IV. METHODS AND SOLVERS

The classical software chosen to compare against the D-Wave
QPU were selected to fulfill two criteria. The first point is

2

to address the fact that this paper is not concerned with the
physical aspects of quantum annealing. The point of interest is
the performance of the QPU on a canonical NP-hard problem,
something closer to an application than a physics simulation. Meaning,
algorithms such as quantum Monte Carlo were not considered: while
these algorithms are adept at simulating the physical dynamics of
the QPU, they are not necessarily relevant to solving the MIS problem.

Currently, when solving problems directly using current D-Wave
QPUs, problems must be posed in QUBO form. Obviously, when
solving the MIS problem in practice, this is not the case. Therefore,
we chose one classical algorithm that provides a quick polynomial
approximation to the MIS problem natively, and another heuristic
algorithm that solves the QUBO problem natively. This allows a fair
comparison across both the “native” problem space of MIS, and the
“specialized” problem space of QUBO. Here we review the classical
software used in this study.

A. Simulated thermal annealing

Simulated thermal annealing (STA) is a heuristic optimizer, inspired
by the physical annealing of metals [11]. The system is initialized
to a random binary vector, mimicking infinite temperature, and is
manipulated through a “cooling” schedule to reach a candidate solution.
The simulated thermal annealing procedure in this paper uses Gibbs
sampling, a special case of the Metropolis-Hastings algorithm [12].
At every step of the procedure, we iterate through the variables of the
binary vector, and propose possible bit-flips based on the following
rule:

P = max {1, exp(−β∆E)} , (2)

where P is the probability of accepting the proposal, ∆E is the
difference in energy resulting from the proposed bit-flip, and β is
the inverse temperature parameter (β = 1/T). The schedule is the
sequence in which the temperature is decremented, or “cooled”.
The cooling schedule we used was a linear interpolation between
βstart = 0.01 and βend = 31. At each βi ∈ [βstart, βend], we
propose a flip as per Equation 2 to all variables in the problem.
Updating all the variables at a single βi is called a sweep. We
perform exactly one sweep per interpolated βi in the schedule,
meaning the number of βi is Nsweeps.

The distance between successive βi in the schedule, dictated by the
number of sweeps, control the rate of change in dynamics within the
proposed solution. The distribution of solutions from STA is expected
to converge to the Boltzmann distribution as the number of sweeps
are increased. In our tests, we ran the STA routine with increasing
number of sweeps (Nsweeps ∈ {10, 100, 1000}), and selected the
version with the fastest average time-to-solution. This was always
the Nsweeps = 10 version, and is the version used in the comparison
tests. Our STA algorithm was executed on a single threaded CPU.

B. NetworkX

NetworkX is an open-source package in Python for working
with and visualizing graph structures2. There are various algorithms
implemented in this package to calculate graph properties; among
these is a heuristic to estimate the maximum independent set. This
heuristic is a polynomial-time approximation that returns a solution
with quality bounded by O

(
|V |/ log

(
|V 2|

))
in the worst case [13].

1We normalized the inputs’ Q matrix to be between 0 and 1 so that the
same schedule can be used for all inputs.

2GitHub source: https://networkx.github.io

C. The D-Wave QPU

To program a D-Wave QPU, one specifies the matrix Q, and the
QPU attempts to find the configuration of bits, x, that minimizes
Equation 1. Finding this minimizing vector x is equivalent to finding
the minimum of an Ising model, and is an NP-hard problem [5]. It
is conjectured that, should D-Wave QPUs provide a computational
speedup, this may be extended to many important and well-known
applications [14], [15].

1) Submitting queries to the QPU: Currently, D-Wave QPUs only
accept problems to be solved in QUBO form (or trivially transformed
to an Ising Hamiltonian). While this is possible for all NP-complete
problems [5], a polynomial transformation can often result in more
problem variables than available qubits. Communicating directly with
the D-Wave QPU is done using a client library, SAPI (Solver API),
provided by D-Wave Systems. This library has implementations in C,
Python, and Matlab, and has an assortment of tools to construct both
QUBOs and Ising models, tuning them, and submitting them to the
QPU. While there are other methods of solving complex optimization
problems using the QPU (often using hybrid classical/quantum
software), for simplicity we chose to use a purely quantum approach
and submit problems directly using SAPI.

The topology of all current-generation D-Wave QPUs is called
Chimera. This structure is a 2D lattice of unit cells, with 8 qubits
in each cell, arranged as a K4,4 bipartite graph3. One half of
the bipartition is connected to left/right adjacent cells, and the
other half of the bipartition is connected to adjacent cells on the
top/bottom (connected via couplers, allowing qubits’ quantum states
to influence each other). This results in a relatively sparse topology,
with qubits in the inner tiles having degree 6, edge tiles’ qubits
having degree 5. A visualization of the QPU used in this paper
is shown in Figure 2. Due to this structure, arbitrarily-structured
problems, like the random problems considered in this paper, must
be mapped to fit this graph. This process, called minor embedding
of graphs, assigns multiple variables in the target graph (in this
case, multiple physical qubits on the D-Wave 2000Q QPU) to
represent logical variables in the problem graph. Finding an optimal
(i.e. minimum) embedding is an NP-hard problem in itself, so
heuristics are used in practice. The heuristic used in this study is
the find_embedding function provided by D-Wave in the SAPI
library. This function implements an iterative algorithm that embeds
one graph into another, while (heuristically) minimizing the distance
between variables, i.e., the number of variables used to represent each
logical variable. A full explanation of the algorithm is provided in [16].

Although generating an embedding is time-consuming, it has
been shown in literature that embeddings can have strong effects
on performance [3]. Therefore, in this work we investigated the
possibility of using multiple embeddings for the same problem. During
a test trial of 50 randomly-generated instances of 50 variables (at
the point of maximum difficulty, p = 0.2), we generated 25 different
embeddings for each problem, and submitted the embedded problem
to the QPU. We measured the performance of the QPU by comparing
the size of the largest independent set found by each embedding to the
record maximum independent set found for each problem. We then
performed linear regression to check correlation between the size of
the independent set with the size of the embedding (number of qubits
in the embedding). The slope of this regression line is of interest, as it

3Bipartite graphs, typically denoted as KN,M with size N +M variables,
are graphs with the property that all nodes can be separated into two distinct
groups, with no edges within a group.

https://networkx.github.io

3

Fig. 2. Visualization of the D-Wave 2000Q QPU used in these studies. Qubits
are represented as vertices and couplers are shown as edges. The maximum
number of qubits on a D-Wave 2000Q QPU is 2048, however due to fabrication
issues, only 2023 qubits were usable on this QPU. The number of such active
qubits varies between QPUs [17], [18].

shows the marginal degradation of results with increasing embedding
size. A box plot with the full suite of results is shown in Figure 3.

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Sl
op

e

Linear regression data

Fig. 3. Box plot showing distribution of degradation of performance as
a function of increasing embedding size. Plotted are the slopes of linear
regression performed for 50 unique problems (random graphs, p = 0.2) with
25 embeddings each. Slopes greater than zero (higher in the plot) imply smaller
independent sets found by the D-Wave 2000Q with increasing embedding size.

Results show that in most cases, the size of the independent
set found by QPU shrinks as the size of the embedding grows.
Therefore, we find it useful to allocate some time to pre-computing
embeddings, and selectively choose a “best candidate” in order to
solve the problem using the QPU. The number of qubits in the
embedding is demonstrated to be a sufficient criterion for performance.

Given that D-Wave QPUs are analog systems, another issue in using
the QPU directly (embedding a problem) is the precision required to
encode the problem. For each qubit and coupler, there is analog noise
that perturb the values used to program the QUBO problem [19].
As the precision required to encode the problem grows, the analog

noise becomes comparable to the gap between energy levels in the
QUBO. Thus, it becomes increasingly difficult for the QPU to find the
global optimum. While the MIS QUBO formulation as presented in
Section I is low precision, embedding problems complicates matters.
As mentioned previously, multiple qubits can be chained together to
act as a single logical variable when embedding a problem. This works
by applying a “chain strength”, essentially an additional constraint
forcing the chains to act as a single continuous qubit. However, as
the size of the chain grows (i.e., the degrees of the variables in the
problem), the chain strength must be increased in order to preserve
the quantum properties of the qubits.

One common mitigation technique for the analog noise is the
use of spin-reversal transforms, which have been shown to boost
performance [4]. This method uses the generation of random strings
of {−1, 1}N (length N) to reverse the signs of some terms in the
problem submitted to the QPU, leaving the underlying structure of the
problem invariant4. It is trivial to transform the results obtained from
the QPU back to solutions of the original problem, and averaging over
many such random strings averages over the analog noise. However,
each spin-reversal transform requires reprogramming the QPU for a
new random string, and has diminishing returns the more they are
used. A rule-of-thumb for using spin-reversal transforms is suggested
in [4].

2) Timing the QPU: Since the D-Wave QPU is an analog system,
there are various sources to consider when timing the results. Total
wall-clock time is a misrepresentation of the properties of the
underlying problem, given that a remote connection to the D-Wave
system needs to be established. Even then, once the problem is
submitted, there are various sources of time that are uncontrollable by
the user, such as time spent in the submission queue, time to convert
the QUBO to analog signals, etc. Thus, we use the “total computation
time” metric, established previously in literature [17]:

tcompute = Nreads · tanneal (3)

where tcompute is the total computation time, Nreads is the number
of solutions returned by the QPU, and tanneal is the amount of time
required to generate a single solution. This represents the total time
required by the QPU to perform the core of the calculation, and is
independent of engineering issues such as reprogramming, I/O, and
latency. In the experiments presented here, we use the default value
of tanneal = 20 µs. We explicitly do not include programming time
as part of the computation time, despite the fact that spin-reversal
transforms are used to improve the performance of the QPU. As
the point of this paper is to quantify performance of the QPU
in solving a well-known NP-hard problem, and not to measure
end-to-end application performance (where timing is critical from a
user perspective), we consider this an appropriate timing scheme.

3) Tuning QPU parameters: There are many different parameters
that a user can tune when using a D-Wave QPU, such as: anneal time,
anneal offsets5, and number of spin-reversal transforms. For some of
these parameters (like spin-reversal transforms) it is understood how
they affect performance, and what their usage should be. However,
for many other parameters it is not obvious how to set them a priori,

4As of version 2.4 of D-Wave’s SAPI library, the number of spin-reversal
transforms can be specified as a parameter as part of submitting a problem,
which are then performed on the server side.

5The anneal offset features are new to the D-Wave 2000Q QPU, and allow
a user to delay or advance the annealing procedure for qubits independently.
This has been shown to boost performance of the QPU on some problems by
up to 1000x [20]. Given the independence of each qubit, the search space for
optimal anneal offset settings is exponential, so exhaustive search is impossible.
Setting these parameters is out of the scope of this paper and the default
values (no offset) are used.

4

so an exhaustive approach is used. In this section, we discuss the
various QPU parameters that have been tuned in our experiments.

Although not explicitly a QPU parameter, the chain strength used
in embedding a problem directly onto a QPU can strongly affect
performance. Chain strength is the magnitude of couplers within a
chain of qubits in an embedding. The magnitude must be high enough
to enforce the chained qubits to act as a single device, but not too
high as to push the logical problem into the noise range of the QPU.
To test the performance of the QPU with respect to chain strength, we
submitted random graph instances (p = 0.2, 50 random instances per
problem size) with varying chain strength, and measure the success
probability (probability of finding the presumed optimal MIS). The
results of this experiment are shown in Figure 4.

20 25 30 35 40 45 50 55 60
Problem size

10−6

10−5

10−4

10−3

10−2

10−1

100

Su
cc

es
s p

ro
ba

bil
ity

2
3
4
5
6
7
8
9
10

Fig. 4. Performance of the QPU as a function of the size of the random
graph (edge probability p = 0.2). The black line is the upper envelope of the
success probability (higher being better success probability), and is viewed as
optimized at each problem size with respect to chain strength.

From these results, we confirm that as we increase the problem
size, stronger chains result in better QPU performance, as has been
shown in the past [21]. Additionally, high magnitude chain strengths
at small problem sizes hurt QPU performance. However, one surprise
is how low the chain strength is relative to the number of variables
in the problem. The weakest chain strength tested (2) was the
highest performing chain strength of all strengths tested for problem
sizes ∈ [20, 35]. To understand why this is the case, we looked at
the distribution of chain lengths as a function of logical problem size,
shown in Figure 5. From these results, it seems that a chain strength
of (2) is sufficient for chain lengths of up to 6, as this was the chain
strength with the highest success probability in that region. This is
likely due to two key factors. First, because the QUBO formulation
of the MIS, as presented here, is relatively low precision. Second,
because the edge probability in these random graphs is p = 0.2, the
graphs that are generated are relatively sparse. This means that the
chains don’t experience as much torque as they would in a dense
graph, making them less likely to break.

We can use the results in Figures 4 and 5 as a basic guide
to choosing a chain strength given an embedding. While this is
obviously only optimized for this application (MIS in random graphs
with edge probability p = 0.2), given the density of the graph and
an embedding, it is possible to make an educated initial guess for
a suitable chain strength. In this study, we used the optimal chain
strengths as shown in Figure 4.

20 25 30 35 40 45 50 55 60
Problem size

0

2

4

6

8

10

12

14

16

M
ea

n
ch

ain
 le

ng
th

Fig. 5. Box plot showing the distribution of chain lengths as a function
of number of logical variables in the problems from Figure 4. Small chain
lengths (low points in the plot) are more desirable.

For the comparison tests, we submitted each MIS problem to the
QPU with the parameters as presented above, and requested 10,000
samples with 100 spin-reversal transforms (the point of diminishing
returns as per [4]). Therefore, the maximum runtime tcompute per
problem for the QPU was 0.2 seconds.

V. RESULTS

When using heuristics to solve a problem, there are three main
criteria that are always in tension: quality of solution, runtime to obtain
solution, and input problem size. Ideally, a good heuristic will provide
optimal solutions to large problems with short runtimes. In practice,
these three criteria often limit each other: a better result in one criterion
will often worsen results in another (for example, better results can
be obtained by running certain heuristics longer). In order to compare
the solvers in this paper fairly, we present Figures 6 and 7. These
show the performance of each algorithm with respect to runtime6 and
solution quality, for increasing problem sizes.

20 25 30 35 40 45 50 55 60
Problem size

10−6

10−5

10−4

10−3

10−2

10−1

Ti
m

e
to

 c
los

es
t [

s]

Solver name
STA
NetworkX
D-Wave 2000Q

Fig. 6. Plot showing mean runtimes for the different algorithms to reach
their respective presumed optimum (not the global optimum) for 50 random
instances per problem size. Shorter times-to-solution (lower in the graph) is
better, implying a more successful solver.

From the results in Figure 6, we can see that, especially for
small problem sizes (up to n = 40), the D-Wave QPU finds its

6As stated in Section IV-C2, we compare only the computation time between
the algorithms. For the classical algorithms, this means we explicitly remove
the initialization time.

5

20 25 30 35 40 45 50 55 60
Problem size

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Cl
os

es
t t

o
re

co
rd

Solver name
STA
NetworkX
D-Wave 2000Q

Fig. 7. Plot showing mean relative proximity of the presumed optimum to
the global optimum for 50 random instances per problem size. Lower points
in the graph show a solver’s ability to find (putative) global optima.

presumed optimum extremely efficiently, often needing fewer than 10
samples. Additionally, these presumed optima are (on average) indeed
the global optima to the random problems, as shown in Figure 7.
However, as problem sizes increase, it appears the polynomial-time
approximation provided by NetworkX performs increasingly better,
without a significant increase in runtime. This indicates that the
randomly generated inputs (with edge probability p = 0.2) become
easier to approximate and solve classically with increasing problem
sizes. That the QPU does not experience a similar boost in performance
is explained by referring to Figure 5. It has been well-documented that
the quantum dynamics of qubits in chains experience a “freeze-out”
effect, meaning the classical states of the qubits are determined earlier
in the anneal the longer the chain (as is the case with the larger inputs
tested). This limits the QPU’s ability to effectively solve problems,
independent of the problem’s combinatorial difficulty. As mentioned,
tuning the anneal offset parameter designed to mitigate these effects
is beyond the scope of this paper.

The best-performing algorithm in these tests was simulated thermal
annealing, which always found the putative optimum, and was always
the fastest in doing so for problem sizes of 30 and greater. This is
additional evidence that the problem testbed was particularly easy, as a
quick STA routine (10 sweeps per sample) was enough to solve these
problems. That the QPU tested here was slowest in finding optima is
not necessarily surprising, since the problems were generated at the
point of maximum difficulty for the QPU, as stated in Section III.

VI. CONCLUSIONS

In this paper, we have introduced a method to generate arbitrarily-
structured maximum independent set problems, and prepare them for
submission to a D-Wave QPU. We have also shown that it is possible
to use a D-Wave QPU as a heuristic to provide fast approximate
solutions to these problems, evidenced by Figures 6 and 7. We
observed a regime (up to input sizes of n = 50) where the QPU
provides quick and mostly optimal results to the MIS problem.
Beyond these sizes (n > 50) the QPU provided mostly near-optimal
solutions. This was despite the evidence that the performance of the
QPU was limited by physical effects, independent of the classical
difficulty of the input problems. These physical effects, namely
the need to use long chains to embed dense problems leading to
high numerical precision, proved to be detrimental to the QPU’s
performance. Alternative topologies with higher density graphs (and
thus lower precision) should improve performance drastically.

It is important to note that the specific inputs used in this study
were synthetic and randomly generated. Additionally, in retrospect,
they were easy to solve using common heuristics. This is evidenced
by the fact that a short STA routine (as explained in Section IV-A)
could quickly find the putative optima, usually faster than the QPU.
Previous studies that compared STA and D-Wave QPUs have found
that, on native instances generated on the QPU’s Chimera topology,
STA can often struggle to find global optima efficiently [17], [18].
This further lends credence to the notion that the QPU suffers greatly
from the process of embedding problems. The specific inputs used
in this study are also a single slice in the domain of randomly-
generated MIS problems, as only size is varied and edge probability
(p) is held constant. Thus, the results presented here should not
be interpreted as general benchmarks of the QPU on the MIS problem.

A limiting factor in this study was the number of QPU parameters
that need to be tuned to optimize performance. The QPU has many
parameters, a subset of which were tuned in these experiments
(chain strength and embedding size). It is important to stress that
the QPU has additional parameters that were not tuned at these
experiments, and could improve results. However, given the number
of parameters of the QPU and their associated search space, it is
impractical to tune all parameters exhaustively. A better solution
could be to write software to automatically tune QPU parameters
with an iterative approach. This could allow for proper testing of
larger inputs, extending the results presented here. Given that the
MIS problem is interesting both from an academic perspective as
well as in applications, the MIS problem would be a good candidate
for further investigation in this direction.

The focus of future research will be to incorporate iterative
parameter tuning, as well as finding additional problem classes (like
the MIS) that are both classically difficult and low precision in QUBO
form. This will allow fair comparison of the QPU performance to
classical algorithms, and highlight the use cases of quantum annealing
in practical applications.

6

REFERENCES

[1] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze,
N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M.
Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky,
T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik,
S. Uchaikin, J. Wang, B. Wilson, and G. Rose, “Quantum annealing with
manufactured spins,” Nature, vol. 473, pp. 194–198, May 2011.

[2] V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush, V. Smelyan-
skiy, J. Martinis, and H. Neven, “What is the computational value of
finite-range tunneling?,” Phys. Rev. X, vol. 6, p. 031015, Aug 2016.

[3] D. Venturelli, D. J. J. Marchand, and G. Rojo, “Quantum annealing
implementation of job-shop scheduling.” arXiv:1506.08479, 2015.

[4] J. Raymond, S. Yarkoni, and E. Andriyash, “Global warming: Temperature
estimation in annealers,” Frontiers in ICT, vol. 3, p. 23, 2016.

[5] A. Lucas, “Ising formulations of many NP problems,” Frontiers in Physics,
vol. 2, p. 5, 2014.

[6] N. G. Dickson and M. H. S. Amin, “Does adiabatic quantum optimization
fail for np-complete problems?,” Phys. Rev. Lett., vol. 106, p. 050502,
Feb 2011.

[7] N. G. Dickson and M. H. Amin, “Algorithmic approach to adiabatic
quantum optimization,” Phys. Rev. A, vol. 85, p. 032303, Mar 2012.

[8] O. Parekh, J. Wendt, L. Shulenburger, A. Landahl, J. Moussa, and
J. Aidun, “Benchmarking adiabatic quantum optimization for complex
network analysis.” arXiv:1604.00319, 2016.

[9] C. Wang, H. Chen, and E. Jonckheere, “Quantum versus simulated
annealing in wireless interference network optimization,” Sci Rep, vol. 6,
p. 25797, May 2016.

[10] T. Back and S. Khuri, “An evolutionary heuristic for the maximum
independent set problem,” in Proceedings of the First IEEE Conference
on Evolutionary Computation. IEEE World Congress on Computational
Intelligence, IEEE, 1994.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[12] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in
Statistical Physics. Cambridge, UK: Cambridge University Press, 2nd ed.,
2005.

[13] R. Boppana and M. M. Halldórsson, “Approximating maximum inde-
pendent sets by excluding subgraphs,” BIT, vol. 32, pp. 180–196, May
1992.

[14] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M.
Martinis, D. A. Lidar, and M. Troyer, “Defining and detecting quantum
speedup,” Science, vol. 345, no. 6195, pp. 420–424, 2014.

[15] T. Albash and D. A. Lidar, “Evidence for a limited quantum speedup on
a quantum annealer.” arXiv:1705.07452, 2017.

[16] J. Cai, W. G. Macready, and A. Roy, “A practical heuristic for finding
graph minors.” arXiv:1406.2741, 2014.

[17] J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch,
“Benchmarking a quantum annealing processor with the time-to-target
metric.” arXiv:1508.05087, 2015.

[18] J. King, S. Yarkoni, J. Raymond, I. Ozfidan, A. D. King, M. M. Nevisi,
J. P. Hilton, and C. C. McGeoch, “Quantum annealing amid local
ruggedness and global frustration.” arXiv:1701.04579, 2017.

[19] S. Boixo, V. N. Smelyanskiy, A. Shabani, S. V. Isakov, M. Dykman, V. S.
Denchev, M. H. Amin, A. Y. Smirnov, M. Mohseni, and H. Neven, “Com-
putational multiqubit tunnelling in programmable quantum annealers,”
vol. 7, p. 10327 EP, Jan 2016.

[20] E. Andriyash, Z. Bian, F. Chudak, M. Drew-Brook, A. D. King, W. G.
Macready, and A. Roy, “Boosting integer factoring performance via quan-
tum annealing offsets.” https://www.dwavesys.com/resources/publications,
2016.

[21] Z. Bian, F. Chudak, R. B. Israel, B. Lackey, W. G. Macready, and A. Roy,
“Mapping constrained optimization problems to quantum annealing with
application to fault diagnosis,” Frontiers in ICT, vol. 3, p. 14, 2016.

	Introduction
	Previous works
	Problem testbed
	Methods and solvers
	Simulated thermal annealing
	NetworkX
	The D-Wave QPU
	Submitting queries to the QPU
	Timing the QPU
	Tuning QPU parameters

	Results
	Conclusions
	References

