
Scalability Model for the LOFAR Direction Independent Pipeline

A.P. Mechev a , T.W. Shimwell b , A. Plaat c , A.L. Varbanescu d , H. Intema a , H.J.A Rottgering a

a Leiden Observatory, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands

b ASTRON, Oude Hoogeveensedijk 4, 7991 PD , The Netherlands

c Leiden Institute of Advanced Computer Science, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands

d University of Amsterdam, Spui 21, 1012 WX Amsterdam, the Netherlands

Abstract

Understanding the performance of the LOFAR Direction Independent and Direction Dependent Pipelines is important
when trying to optimize the throughput for large surveys. Making a model of completion time will enable us to predict the
time taken to process a data set, optimize our parameter choices, help schedule future LOFAR processing services, and
predict processing time for future large radio telescopes. We tested the full LOFAR prefactor target calibration pipeline
by scaling several parameters, notably number of CPUs, data size and size of calibration sky model. Furthermore, we
tested the overhead incurred by downloading and extracting the data and queuing jobs on the distributed cluster tasked
with processing the LOFAR Two-Meter Sky Survey. We present these results as a comprehensive model which will be
used to predict processing time for a wide range of processing parameters. We also discover that the calibration time
scales favorably in time with smaller calibration models, while the calibration results do not degrade in quality. Finally,
we validate the model and compare predictions with production runs from the past six months.

Keywords: Radio Astronomy, Performance Analysis, Performance Modelling, High Performance Computing

1. Introduction

Astronomy is entering the big data era with many
projects creating Petabytes of data per year. This data
is often processed by complex multi-step pipelines consist-
ing of various algorithms. Understanding the scalability
of astronomical algorithms theoretically, in a controlled
environment, and in production is important to making
prediction for future projects and upcoming telescopes.

The Low Frequency Array (LOFAR) (Van Haarlem
et al., 2013) is a leading European low-frequency radio
telescope. LOFAR’s core stations are in the Netherlands,
however it can collect data from sites across Europe. As it
is an aperture synthesis array, LOFAR data needs to un-
dergo several computationally intensive processing steps
before obtaining a final scientific image.

To create a broadband image, LOFAR data is first pro-
cessed by a Direction Independent Calibration pipeline
followed by Direction Dependent Calibration software
(Van Weeren et al., 2016; Williams et al., 2016; Smirnov
and Tasse, 2015; Tasse et al., 2018). Direction Independent
LOFAR processing can be parallelized on a high through-
put cluster, while the Direction Dependent processing is
typically performed on a single HPC node.

The LOFAR Surveys Key Science Project (SKSP)
(Shimwell et al., 2017; Shimwell et al., 2018) is a long

Email address: apmechev@strw.leidenuniv.nl (A.P. Mechev a)

running project with the aim of creating a deep image
of the northern sky at low frequencies. The broadest tier
of the survey, Tier 1, will create more than 3000 8-hour
observations at a sensitivity below 100 µJy. We have al-
ready processed more than 500 of these observations using
the prefactor direction independent software (Horneffer
et al., 2018).

While the current imaging algorithms can process data
averaged by a factor of 64, it is important to understand
how LOFAR processing scales with processing parameters,
such as averaging parameters. With increasing LOFAR
observation rates, data sizes and scientific requirements,
users need to be able to predict the time and computa-
tional resources required to process their data.

To study the scalability of LOFAR processing, we set
up processing of a sample SKSP data on an isolated node
on the GINA cluster at SURFsara, part of the Dutch
national e-infrastructure (Templon and Bot, 2016). We
tested the software performance as a function of sev-
eral parameters, including averaging parameters, number
of CPUs and calibration model size. Additionally, we
tested the performance of the underlying infrastructure,
i.e. queuing and download time, for the same parameters.
Finally, we compared the isolated tests with our produc-
tion runs of the prefactor pipeline to measure the over-
head incurred by running on a shared system.

We discover that the intensive LOFAR processing steps

Preprint submitted to Astronomy And Computing January 23, 2019

D
R
A
FT



scale linearly with data size, and calibration model size.
Additionally, we find that these steps scale as an inverse
power law with respect to the number of CPUs used. We
discover that the time to download and extract data on
the GINA cluster is linear with size up to 32GB, however
becomes slower beyond this data size. In addition to this
overhead, discover that queuing time on the GINA clus-
ter grows exponentially for jobs requesting more than 8
CPUs. We validate these isolated tests with production
runs of LOFAR data from the past six months. Finally we
combine all these tests into a single model and show its
prediction power by testing the processing time for differ-
ent combinations of parameters. The major contributions
of this work can be summarized as:

• A model of processing time for the slowest steps
in the LOFAR Direction Independent Calibration
Piepline.

• A model of queueing time and file transfer time
which can be used by current or future jobs pro-
cessed on the GINA cluster.

• Insight into calibration speed and quality with cali-
bration models of radically different size and sensi-
tivity.

We introduce LOFAR processing and other related
work in Section 2 and describe our software setup and
data processing methods in Section 3. We present our re-
sults and performance model in Section 4 and discussions
and conclusions in Section 5.

2. Related Work

In previous work, we have parallelized the Direction
Independent LOFAR pipeline on a High Throughput in-
frastructure (Mechev et al., 2017). While this paralleliza-
tion has helped accelerate data processing for the SKSP
project, creating a performance model of our software is
required if we are to predict the resources taken by future
jobs. This model will be particularly useful in understand-
ing how processing parameters will affect run time.

Performance modelling on a distributed system is an
important field of study related to grid computing. A good
model of the performance of tasks in a distributed work-
flows can help more efficiently schedule these jobs on a
grid environment (Sanjay and Vadhiyar, 2008). Many of
the systems require knowledge of the source code and an
analytical model of the slowest parts of the code (Xu et al.,
1996). Many systems exist to model the performance of
distributed jobs (Barnes et al., 2008; Xu et al., 1996; Ku-
perberg et al., 2008; Witt et al., 2018), with some employ-
ing Black Box testing (Yang et al., 2005; Kavulya et al.,
2010) or tests on scientific benchmark cases (Carrington
et al., 2006). Such performance analysis does not require
intimate knowledge of the software and can be applied on
data obtained from processing on a grid infrastructure.

Empirical modelling is useful in finding bugs in parallel
code (Calotoiu et al., 2013) and modelling the performance
of big data architectures (Castiglione et al., 2014). The
insights from these models are used to optimize the archi-
tecture of the software system or determine bottlenecks in
processing. We plan to use empirical modelling to deter-
mine how the LOFAR prefactor performance scales with
different parameters.

3. Processing Setup

Using the CVMFS LOFAR software install described
in (Mechev et al., 2017), we processed a typical LOFAR
SKSP observation 1 at multiple different averaging param-
eters. Changing these parameters will decrease the final
data size (as seen in Table 1). We test the processing time
for different averaging parameters by running 15 runs per
parameter step.

The processing was done on a dedicated node of the
SURFsara GINA cluster, f18-01. The node is a typical
processing node used by our LOFAR Surveys processing,
however it is dedicated for the tests in order to ensure
there’s no contamination by other processes. The node is
described in Section 3.3.

There are two sources of latency that need to be stud-
ied for a true end-to-end model of LOFAR processing.
The first is the performance of the LOFAR software on
the Dutch grid for a wide range of processing parame-
ters. The second is the overhead, such as job queuing and
data movement. Both of these effects depend on similar
parameters such as data size and number of CPUs used.
We will examine these effects in our study of the LOFAR
processing performance by studying the performance at
different parameter steps. While some parts of the pro-
cessing software may change, the infrastructure parts of
our performance model can be used independently of the
the processing software and can even be applied to other
scientific projects running on the GINA cluster.

We processed the sample data set with the LOFAR
prefactor pipeline. The prefactor version used was the
same as we use for the LOFAR SKSP broadband surveys
(Horneffer et al., 2018).

3.1. Processing Metrics

The goal for our scalability model is to understand the
effect of several parameters on the job completion time of
LOFAR software. We do this by testing the processing
time for various values of data size, number of CPUs used
and sky model size.

The data used by the LOFAR surveys is stored at a
time resolution of 1 second intervals and frequency reso-
lution of 16 channels per Subband (equivalent to 12kHz

1LOFAR Observation ID L658492, co-ordinates [17h42m21.785,
+037d41m46.805] observed by the LOFAR High Band Array for 8
hours between 2018-06-20 and 2018-06-21.

2

D
R
A
FT



channel width). While some of the processing steps such
as flagging of Radio Frequency Interference and removal
of bright off-axis sources needs to be done on the high-
resolution data, later steps can be performed on averaged
data. To make processing faster, the raw data is aver-
aged in time and frequency, decreasing the input data size
to later tasks. For the LOFAR surveys project, our fi-
nal averaging parameters are 8 seconds per sample and 2
channels per Subband. This corresponds to a reduction
in size by a factor of 64. In section 4.1.1, we measure the
performance or the prefactor pipeline for data sizes be-
tween the raw data of 64GB/Subband and the averaged
data of 1GB/Subband. The tested data sizes and param-
eters are shown in table 1. It should be noted that the
gsmcal solve and gsmcal apply steps act on a concatena-
tion of 10 Subbands. As such, if the input data is 1GB, the
input to these steps will be 10GB. The concatenation of
prefactor data is described fully in (Mechev et al., 2017)
and (Van Weeren et al., 2016).

Data set Time
averaging
parameter

(sec)

Channels
per Subband

Size (Gb)

1GB 8 2 1.235
2GB 4 2 2.459
4GB 2 2 4.906
8GB 1 2 9.802
16GB 1 4 18.00
32GB 1 8 36.72
64GB 1 16 66.88

Table 1: Averaging parameters and final data sizes tested for the
sample LOFAR SKSP observation. The raw data is 64 GB per Sub-
band. The LOFAR SKSP data processing uses averaging parameters
of 8 seconds and 2 channels per Subband. This reduces the raw data
by a factor of 64. We highlight the data size used in the LOFAR
SKSP Tier 1 survey.

The slowest step of the prefactor pipeline is the gsm-
cal solve step, which performs the gain calibration against
a model of the radio sky. We obtain this model through the
TGSS sky model creator2. By default this service creates
a text sky-model from the TGSS survey (Intema et al.,
2017) and sets a threshold of sources brighter than 0.3 Jy.
Lowering this threshold creates longer sky-model files with
more faint sources, while increasing it will return only the
few brightest sources. Since sky model calibration requires
converting the sky-model into UV data (van Diepen and
Dijkema, 2018), a longer sky model will increase the time
taken to gain calibrate a data set. We created 7 sky mod-
els with minimal flux ranging between 0.05 Jy and 1.5 Jy.
The resulting files are listed in Table 2. For production3,

2Accessible at the TGSS ADR portal.
3The query used to obtain model 3 is http://tgssadr.strw.

leidenuniv.nl/cgi-bin/gsmv3.cgi?coord=265.590770833,37.

69633472220001&radius=5&unit=deg&deconv=y&cutoff=0.3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Cutoff sensetivity (Jy)

0

100

200

300

400

500

600

700

800

Nu
m
be

r o
f s

ou
rc
es

 (a
rb

)

Length of sky model as a function of cutoff sensitivity

Figure 1: The size of the sky model (measured in number of sources)
increases exponentially as we decrease the flux cutoff of the model
(i.e. increase the sensitivity).

we used the sensitivity parameters for model 3. Each line
of these model files corresponds to one source, modelled
either as a point or an ellipse), hence the second column
also lists the number of sources per sky model file.

It is important to note that the model of the sky de-
pends on the direction of observation. As such, our test is
only a heuristic for predicting the run-time based on the
calibration model length. The model size and calibration
solution quality will differ for other observations and these
results will require a further in depth study before chang-
ing the calibration strategy. Additionally, it is notable
that the number of sources is an exponentially dependent
on the minimum sky model sensitivity (seen in Figure 1).
According to this relationship, even a modest decrease in
sensitivity can significantly decrease the size of the model.

Sky model # min sensitivity # lines

model 1 0.05 Jy 809
model 2 0.1 Jy 503
model 3 0.3 Jy 180
model 4 0.5 Jy 96
model 5 0.8 Jy 49
model 6 1.0 Jy 34
model 7 1.5 Jy 16

Table 2: List of test sky models. Model 3 is created with the param-
eters used in our production processing of LOFAR data. All models
include objects within 5 degrees from the centre of the pointing.

Finally, the number of CPUs used by each step is a
parameter that can be optimized for the entire pipeline.
While increasing the number of CPUs can make some steps
run faster, requesting jobs that reserve a large number of
CPUs will take longer to launch on shared infrastructure.
In order to understand these two effects, we study the
queuing time and processing time as a function of number
of CPUs. For the parameter steps we choose to test 1, 2,

3

D
R
A
FT

http://tgssadr.strw.leidenuniv.nl/doku.php
http://tgssadr.strw.leidenuniv.nl/cgi-bin/gsmv3.cgi?coord=265.590770833,37.69633472220001&radius=5&unit=deg&deconv=y&cutoff=0.3 
http://tgssadr.strw.leidenuniv.nl/cgi-bin/gsmv3.cgi?coord=265.590770833,37.69633472220001&radius=5&unit=deg&deconv=y&cutoff=0.3 
http://tgssadr.strw.leidenuniv.nl/cgi-bin/gsmv3.cgi?coord=265.590770833,37.69633472220001&radius=5&unit=deg&deconv=y&cutoff=0.3 


3, 4, 8 and 16 CPUs.

3.2. Infrastructure Performance

Since our jobs are launched on a cluster supporting
several different use cases, the requested resources are al-
located by a job queue, in our case implemented by the
glite workload management system (Marco et al., 2010).
As queuing jobs can take significant amount of time, we
test the queuing time as a function of number of requested
CPUs. In order to do that, we create test jobs that log the
launch time and submit them, requesting 1, 2, 3, 4, 8 and
16 CPUs. We run several tests for each parameter step
to ensure that we capture system variability at different
times of day during the week and the weekend.

Besides queuing, time is also spent during downloading
and unpacking data, as well as uploading and packing the
results. Despite using no compression to pack the data,
untarring and tarring large files still takes time depend-
ing on the system workload. We measure the time taken
to transfer and unpack data of different sizes. The data
sizes we chose were 0.5GB, 1GB, 2GB, 4GB, 8GB, 16GB,
32GB and 64GB. As our largest data sets are 64GB and
our smallest results are ∼0.2GB, these values span a re-
alistic range expected for LOFAR data processing. We
test this by uploading mock data to the dCache storage
pool at SURFsara and launching a small 1 CPU job which
downloads and untars the data, logging the start time of
each step. We present the results of this test in the next
section.

3.2.1. Software Versions

For the current test, we use the LOFAR software stack,
version 2.20.2(Dijkema, 2017). This software was com-
piled on a virtual machine and distributed using the CERN
CVMFS virtually mounted file system. We use this soft-
ware version and distribution method as it is the same
software version and distribution used to process the data
for the LOTSS Data Release 1.

3.3. Test Hardware

The LOFAR software was tested on a reserved node
on the SURFsara GINA cluster. The node, f18-01 has 348
GB of RAM, 3TB of scratch space 4. The CPU is an
Intel Xeon(R) Gold 6148 CPU with 40 cores clocked at
2.40GHz. As this hardware node was reserved, there was
no other scientific processing aside from our tests, meaning
there was no resource contention aside for that inherent in
the LOFAR software. In the results section, we compare
these isolated runs with processing results over the past
two years.

4More detailed specifications are at the GINA specification page
linked here

4. Results

Using a test data set, we tested the LOFAR prefactor

target pipeline on the SURFsara GINA cluster. First we
will present the tests done in an isolated environment and
then compare them to the run time in production on a
shared infrastructure. We will integrate all the results in
a complete model which can be used to predict processing
time for a variety of parameters. Finally, we will make
some predictions on the run time of our processing based
on the model and validate these predictions.

Since we are processing a sample data set in the context
of the LOFAR Surveys project, we will compare these tests
with the production runs of our pipeline. In production,
the parameters chosen are a data size of 1GB, a sky model
length of 180 lines and 8 CPUs for the gsmcal solve step.

4.1. Isolated Environment tests

We first tested the LOFAR software in isolation in or-
der to determine the scalability of processing time in terms
of data size. We run the entire prefactor target pipeline
which which removes Direction Independent Calibration
errors from a LOFAR science target. In the following sec-
tions, we present the models obtained from these tests.

4.1.1. Input Data Size

LOFAR data can be averaged to different sizes based on
the scientific requirements. Smaller data sets are processed
faster, so it is important to understand the effect of data
size on processing time. We show the processing time for
our test data set, averaged to different sizes for several
prefactor steps in Figures 2, 3, 4, 5, 6. The figures also
plot linear fits for consecutive pairs of parameter steps,
in gray dashed lines, used to help guide the selection of
parametric model.

All of the steps show linear behavior with respect to
input data size, while the gsmcal solve step is best fit by
two linear relationships, for data smaller and larger than
16 GB. The linear fit to the run times are shown in Equa-
tions 1a-1e. The equations show the processing time as a
function of the data size (S), with the slope in the units
of seconds/byte. The fits are also shown in Figures 2 to 6
as a black dashed line.

4.1.2. Calibration Model Size

To test the effect of the calibration model size on
run time, we tested our calibration with several different
lengths of the sky model file. We created these models
by changing the maximum sensitivity using values rang-
ing from 0.05 Jy to 1.5 Jy. The most sensitive model (0.05
Jy) had 809 sources while the 1.5 Jy model had only 16
sources.

Figure 7 shows that the calibration time is directly pro-
portional to the length of the sky model. Figure 8 shows
the run time as a function of the processing parameter: the
cutoff sensitivity. As the relationship between the number

4

D
R
A
FT

http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Service/system_specifications/gina_specs.html
http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Service/system_specifications/gina_specs.html


Tpredict ateam = 5.19× 10−8S + 4.20× 101 (1a)

Tateamcliptar = 4.57× 10−9S − 8.42× 100 (1b)

Tdpppconcat = 3.51× 10−8S + 4.20× 101 (1c)

Tgsmcal solve =

{
7.38× 10−7S − 8.20× 101 |S <= 1.6× 1010

1.04× 10−6S − 4.04× 103 |S > 1.6× 1010
(1d)

Tgsmcal apply = 2.07× 10−8S − 1.38× 101 (1e)

Equation 1: Equations describing the processing time of five prefactor steps as a function of the input data size (S) in bytes.

0 1 2 3 4 5 6 7

Size of input data (bytes) 1e10

0

500

1000

1500

2000

2500

3000

3500

4000

R
un

tim
e 

of
 ta

sk
 (s

ec
on

ds
)

1h1h

30m

10m

5m

Runtime for task predict_ateam

Figure 2: Tests of the predict ateam step for input data size ranging
from 1GB to 64 GB. This step calculates the contamination from
bright off-axis sources. Dashed lines are shown connecting each pair
of points, to highlight the trend. The linear model fit to this data
(Equation 1a) is shown in black.

0 1 2 3 4 5 6 7

Size of input data (bytes) 1e10

100

0

100

200

300

400

500

600

R
un

tim
e 

of
 ta

sk
 (s

ec
on

ds
)

10m

5m

Runtime for task ateamcliptar

Figure 3: Tests of the ateamcliptar step for input data size ranging
from 1GB to 64 GB. This step removes the contamination from bright
off-axis sources. The linear model fit to this data (Equation 1b) is
shown in black.

0 1 2 3 4 5 6 7

Size of input data (bytes) 1e10

0

500

1000

1500

2000

2500

3000

3500

R
un

tim
e 

of
 ta

sk
 (s

ec
on

ds
)

1h

30m

10m

5m

Runtime for task dpppconcat

Figure 4: Tests of the dpppconcat step for input data size ranging
from 1GB to 64 GB. This step concatenates 10 files into a single
measurement set. The linear model fit to this data (Equation 1c) is
shown in black.

0 1 2 3 4 5 6 7

Size of input data (bytes) 1e10

0

10000

20000

30000

40000

50000

60000

70000

R
un

tim
e 

of
 ta

sk
 (s

ec
on

ds
)

10h

1h

5h

Runtime for task gsmcal_solve

Figure 5: Tests of the gsmcal solve step for input data size ranging
from 1GB to 64 GB. This step performs gain calibration of the con-
catenated data set against a sky model. It is the slowest and most
computationally expensive prefactor step. We fit two linear mod-
els, for data below 16GB and above 16GB. The models, shown in
(Equation 1d) are shown in a black dashed line.

5

D
R
A
FT



0 1 2 3 4 5 6 7

Size of input data (bytes) 1e10

500

0

500

1000

1500

R
un

tim
e 

of
 ta

sk
 (s

ec
on

ds
)

30m

10m

5m

Runtime for task gsmcal_apply

Figure 6: Tests of the gsmcal apply step for input data size ranging
from 1GB to 64 GB. This step applies the calibration solutions to
the data. The linear model fit to this data (Equation 1e is shown in
dark blue.

T = 1185 · F−0.854 (2)

Equation 2: Processing time for the gsmcal solve step as a function
of the flux cutoff of the calibration model (F) in Jansky

of sources and cutoff sensitivity is a power law, here we
see the same relationship holding for processing time.

We model the run time as a function of the cutoff fre-
quency using a power law, and fit the data to the function
y = α · F−k. Our fit found the best model to be shown
in Equation 2, where F value is the cutoff flux in Jansky
and T is the run time in seconds.

We show four images made from data sets calibrated
with a 0.05Jy (top left), 0.3Jy (top right), 0.8 Jy (bottom
left) and 1.5 Jy (bottom right) cutoff in Figure 9. The
statistics for the four images, taken from the regions in
green on Figure 9) are shown in Table 3.

Calibration
Model Flux
Cutoff

RMS Noise (Jy) std dev (Jy)

0.05Jy 0.00402834 0.004026
0.3 Jy 0.00402311 0.004020
0.8 Jy 0.00404181 0.004039
1.5 Jy 0.00410204 0.004105

Table 3: Statistics for an empty region for the four images shown in
Figure 9. The 0.3Jy model, here shown shaded in gray, is the one
used in production.

4.1.3. Number of CPUs

One parameter that can be optimized is the number
of CPUs requested when the job is launched. We inves-
tigated the processing speedup as a function of the num-
ber of CPUs for the prefactor target pipeline. From the
steps tested, only the gsmcal solve step shows a significant

0 100 200 300 400 500 600 700 800

Length of Skymodel (lines)

0

2000

4000

6000

8000

10000

12000

14000

16000

R
un
tim

e 
of
 ta

sk
 (s
ec
on
ds
)

Runtime for task gsmcal_solve

Figure 7: The processing time of the gsmcal solve step is linear with
the size of the sky model as measured by the number of sources.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Flux limit of input sky model (Jy)

0

2000

4000

6000

8000

10000

12000

14000

16000

R
un

tim
e 
of
 ta

sk
 (s

ec
on

ds
)

Runtime for task gsmcal_solve

Figure 8: The run time of the gsmcal solve step as a function of the
cutoff sensitivity is not linear. As shown in Figure 1, the number of
sources increases exponentially as the minimum sensitivity decreases.
The dashed line shows the model fitted in Equation 2.

6

D
R
A
FT



Figure 9: Four dirty images made with wsclean from the data set. The four images were calibrated with sky models of various flux cutoffs
ranging from 0.05Jy (top left) to 1.5Jy (bottom right). Flux statistics for the green regions in the four images are listed in Table 3.

7

D
R
A
FT



5 10 15 20 25 30
Number of CPUS used

600

800

1000

1200

1400

1600

1800

2000

gs
m
ca

l_s
ol
ve

 p
ro
ce

ss
in
g 
tim

e 
(s
ec

)

Model of gsmcal_solve processing time vs NCPU

Figure 10: The processing time of the gsmcal solve step decreases
exponentially with the number of CPUS requested. The model in
Equation 3 is shown in a dashed line

5 10 15 20 25 30

Number of CPUS

27

28

29

30

31

32

R
un

tim
e 
of

 ta
sk

 (s
ec

on
ds

)

Runtime for task gsmcal_apply

Figure 11: The step that applies the calibration solutions, gsm-
cal apply, does not show a speedup when run on multiple cores.

speedup as the number of CPUs is increased. The run
time of this step is an inverse power law with respect to
the number of CPUs as seen in Figure 10. Unlike the solv-
ing step, the step applying the calibration solutions (gsm-
cal apply) is constant in time with respect to the number
of CPUs as seen in Figure 11.

We fit an inverse proportional model to the raw data,
shown in Equation 3, with the parameter (N ) being the
number of CPUs used.

T = 503.37 +
3062.6

N
(3)

Equation 3: Processing time for the gsmcal solve step as a function
of (N ), the Number of CPUs used by the process.

0 500 1000 1500 2000
queueing time (sec)

0

20

40 10m 30m5m
1 CPU

0 2000 4000 6000
queueing time (sec)

0

100 10m 30m 1h
2 CPU

0 1000 2000 3000 4000
queueing time (sec)

0

50 10m 30m 1h
3 CPU

0 2000 4000 6000 8000
queueing time (sec)

0

100 10m 30m 1h
4 CPU

0 5000 10000 15000 20000
queueing time (sec)

0

50 1h 5h
8 CPU

0 20000 40000 60000
queueing time (sec)

0

25
1h 5h

16 CPU

Queueing time vs NCPU requested

Figure 12: Test randomly submitting jobs to the GINA with different
number of requested CPUs.

2 4 6 8 10 12 14 16
Number of CPUs requested

0

2000

4000

6000

8000

Qu
eu
ei
ng
 ti
m
e 
(s
ec
)

Model of Queuing time using two linear fits

Figure 13: The queuing model built from two linear fits to the queu-
ing times. We use the 75th percentile of the queuing data as a upper
bound of job queuing.

4.2. Queuing Tests

Aside from performance of the LOFAR software, we
measured the queuing time at the GINA cluster, as a func-
tion of the number of CPUs requested. This data was
obtained between 16 Nov 2018 and 10 Dec 2018 for 1, 2,
3 ,4, 8, and 16 CPUs per job. A histogram of the queu-
ing time for these jobs is shown in Figure 12. Statistics for
these runs are in Table 4. We use the 75th percentile of the
queuing time for each parameter step to fit a model. This
scenario will include 75% of runs and is a good trade-off
between ignoring and including outliers.

We fit two linear models for this queueing time. One
model for 1-4 CPUs and one for 4-16 CPUs. The model,
as a function of Number of CPUS, N is in equation 4. The
two models are plotted against the 75th percentile of the
queuing times (last column in Table 4) in Figure 13.

8

D
R
A
FT



NCPU requested Mean time (sec) Median time (sec) 75th percentile (sec)

1 CPU 150.5 116.2 154.1
2 CPU 201.1 125.8 165.8
3 CPU 296.2 152.0 243.0
4 CPU 498.9 167.7 233.7
8 CPU 1944.2 428.4 2142.4
16 CPU 7079.0 696.4 8750.6

Table 4: Statistics for queuing time for different values of CPUs requested.

T =

{
49.3 · N + 120 |N <= 4

726 · N − 3071 |N > 4
(4)

Equation 4: The model for the Queuing time as described by two
linear models.

Figure 14: A histogram of the download and extracting times of
multiple data sizes on the GINA worker nodes. Download and extract
times are comparable for data up to 8GB, however above that, the
extracting time dominates.

4.3. Transfer and Unpacking Time

We tested the downloading and unpacking time for
data sizes ranging from 512MB to 64GB. We discovered
that the unpacking of files below 64GB scaled linearly with
file size, however unpacking data larger than 16GB be-
comes considerably slower than downloading it.

Figure 14 shows the histogram of the download tests,
and Figure 15 displays the tests as a function of data size.
Both figures show that extracting of the 32 and 64GB data
sets has more slow outliers than the downloading of this
data.

We fit a power law model to the time taken to trans-
fer and unpack the data. In this case, we also consider
the 75th percentile of these times in order to capture the
majority of runs and ignore outliers. The plot of the data
and our model can be seen in Figure 15 and the model is
in Equation 5, as a function of the input data size, S in
Gigabytes.

0 1 2 3 4 5 6
1e10

0

50

100

150

Do
wn

lo
ad

in
g 
tim

e

0 1 2 3 4 5 6
Data size (bytes) 1e10

0

500

1000

1500
Ex

ra
ct
in
g 
tim

e

Downloading and extracting of data

Figure 15: A scatter plot of the download and extracting times of
multiple data sizes on the GINA worker nodes. The difference between
download and extract time for the 32 and 64 GB data sets can be
seen.

0 10 20 30 40 50 60
Number of Data size (GB)

0

200

400

600

800

Tr
an

sf
er

 a
nd

 E
xt

ra
ct

 ti
m

e 
(s

ec
)

Model of Download and Extracting time

Figure 16: Fit of an exponential model to the Download and Extrac-
tion time for different data sizes. For the transfer overhead, we took
the 75th percentile from the data shown in Figure 14. The model in
Equation 5 is shown in a dahsed line.

T = 5.918× 1020 · S2.336 (5)

Equation 5: Model of the downloading and extracting time as a
function of the data size (S) in bytes.

9

D
R
A
FT



Figure 17: Downloading and extracting time for 10 1GB data sets
performed in our production environment. Data from this test ranges
from July 2018 to January 2019. The dashed red line shows the
prediction obtained from section 4.3.

4.4. Comparison with production runs

Over the past two years, the LOFAR software has been
running in production and collecting data on run time for
each processing step. We have saved detailed logs for these
runs starting in July 2018. We can compare this to the
isolated model in order to determine the overhead incurred
by processing LOFAR data on shared nodes.

Using the logs recorded by our processing launcher5,
we made plots showing the processing time for the
downloading and extracting, and for the slowest steps,
ndppp prepcal and gsmcal solve. The results are shown
in Figures 17 and 18. We include predicted extract times
from Section 4.3 as vertical dashed lines for both plots.

Finally, we present Figures 19 which shows a compar-
ison of gsmcal solve run times and our model’s prediction
for a 1GB data set. Figure 20 plots the processing time vs
data size for these production runs and includes the model
from Equation 1d. The significant overhead incurred on a
shared infrastructure can be noted.

4.5. Complete Scalability Model

To incorporate all our data into a complete model, we
consider the slowdown of each parameter as a multiplier to
the time taken to process our base run. We incorporate the
models for each parameter above for the model of the run
time. We add the transfer and queuing time to the process-
ing time to obtain a final function of all our parameters.
We can use this function to predict the processing time for
an arbitrary data set. The final performance model is in
Equation 6.

5GRID PiCaS Launcher, https://github.com/apmechev/GRID_

picastools

Figure 18: Downloading and extracting time for a 64GB data set
performed in our production environment. Data from this test ranges
from 07/2018-01/2019. The dashed red line shows the prediction
obtained from Figure 5 in Section 4.3.

Figure 19: Processing time for the gsmcal solve step in a production
environment. Data from this test ranges from 07/2018-01/2019. The
dashed red line shows the prediction for a 1GB run, obtained from
section 4.3. It should be noted that the first peak corresponds to
512MB data, as seen in Figure 20.

10

D
R
A
FT

https://github.com/apmechev/GRID_picastools 
https://github.com/apmechev/GRID_picastools 


tgsmcal solve =

{
49.3 · N + 120 |N <= 4

726 · N − 3071 |N > 4

+ 0.056 · S2.336

+ 3566 · 1

3.012
F−0.854 · 9.97 · 10−7S · (0.1412 +

0.8589

N
)

+ 0.056 · S2.336

(6)

Equation 6: Model of the total time of the gsmcal solve step (tgsmcal solve) for the parameters N , Number of CPUs; S, Size of data in bytes
and F , cutoff calibration model flux in Jansky.

0.4 0.6 0.8 1.0
Data size (bytes) 1e9

500

1000

1500

2000

2500

3000

Pr
oc
es
sin

g 
tim

e 
(s
ec
)

Production runs of gsmcal_solve and scalability model

Figure 20: The scalability model for processing data through the
gsmcal solve step and the performance for production runs of this
step between July 2018 and January 2019.

5. Discussions and Conclusions

The goal of this work is to understand the performance
of the LOFAR Direction Independent Pipeline as process-
ing parameters are scaled up or down. We increased the
size of broadband LOFAR data by a factor of 64 in size,
and discovered that all our processing steps scale linearly
in time with respect of the input data size. We learned
that for input data above 16GB in size, the slope of our
scaling relation is higher than for the smaller data sets.

As the calibration step concatenates 10 input sub-
bands, and the test system only has 380GB of RAM, data
larger than 16GB, the discrepancy in slopes can be at-
tributed to the large memory requirement for data larger
than 200GB. Splitting the performance model in two also
helps make a more accurate processing time prediction as
fitting a single linear model would have a large negative
y-intercept, predicting negative processing times for data
smaller than 2GB.

When comparing our model’s prediction with real pro-
cessing runs over the past six months, we note that there
are considerable overheads when processing data on an
isolated node vs when running on a shared infrastructure
(Figure 20). The overhead in processing is roughly a fac-

tor of two-three from our model. This discrepancy suggests
that a model for gsmcal solve needs to be built using data
when running on a shared environment, to better predict
processing time.

Overall, the slowest step was the gsmcal solve step, and
its run time scales more strongly with data size than the
other steps (equation 1d has the steepest slope). This sug-
gests that as data sizes increase, gsmcal solve will increas-
ingly dominate the processing time over the other steps
(As seen in Figures 2 and 5). This effect is especially
prominent for data larger than 16GB (160GB when 10
subbands are concatenated). As such, it is recommended
to avoid calibration of data larger than 160GB.

Additionally we discovered that the calibration scales
linearly in time as a function of the length of the calibra-
tion model, however it is a power law as a function of the
model’s cutoff sensitivity. This is because of the (expected)
power law relation between the number of sources and cut-
off sensitivity, seen in Figure 1. We can use this discovery
to accelerate the processing time by increasing the flux
cutoff to the LOFAR direction independent calibration to
0.5 Jy. Doing so will execute the calibration step in 60%
of the time, saving 83 CPU-h per run. Over the remain-
ing 2000 prefactor runs left in the LOTSS project, this
change in sensitivity will save more than 167k CPU hours.
Figures 9 show a data set calibrated with sky models with
cutoff sensitivities listed in Table 3, and figures A.21 and
A.22 show the calibration solutions obtained by calibrat-
ing with skymodels of cutoff ranging from 0.05 Jy to 1.5
Jy. These results suggest that performing gain calibration
with less complex, and thus smaller, calibration models
will not degrade image and solution quality while taking
less than 20% of processing time. Table 3 also confirms
this result.

We tested downloading and extracting test LOFAR
data of various sizes. Both downloading and extracting
was linear with respect to the data size for data up to 32
GB in size. Beyond those sizes, there was more scatter
in data extraction. This is because load on the worker
node’s file-system can be unpredictable and can affect the
extraction negatively. Nevertheless, when comparing our
extraction tests and processing for the past 6 months, the
predictions by our models (Figure 14) correspond to the

11

D
R
A
FT



Figure A.21: The calibration (phase) solutions for the test dataset
obtained when calibrating with sky models of 0.05 Jy cutoff (left) and
0.3Jy cutoff (right). The data shows the phase solutions for baselines
including stations CS003HBA0, CS003HBA1 and CS004HBA0, with
respect to the reference station, CS001HBA0.

production runs (Figures 17 and 18). Part of the LO-
FAR SKSP processing is done on shared infrastructure,
which requires requesting processing time ahead of time
for each grant period. Being able to predict the amount
of resources required to process data each grant period is
required to make a reliable estimate on what resources to
request.

Moreover, providing LOFAR processing as a service to
scientific users requires estimating the processing time for
each request. This needs to be done in order to deter-
mine whether the user has sufficient resources left in their
resource pool. Knowing the performance of the software
pipelines as a function of the input parameters will help
predict the run time for each request and the resources
consumed. Knowing this will make it possible to notify
users how long the request will take and how much of their
quota will be used up.

Finally, a performance model of the LOFAR soft-
ware will help make predictions on the time and re-
sources needed to process data for other telescopes such
as the Square Kilometer Array (SKA). Once operational,
the SKA is expected to produce Exabytes of data per
year. Processing this data efficiently requires understand-
ing the scalability of the software performance to facilitate
scheduling and resource allotment. Overall, these results
will help guide algorithm development in radio astronomy,
as well as be useful to schedule future processing jobs and
optimize resource usage.

Appendix A. Calibration Solutions for the sky
model tests

The output of the calibration step is a data set cor-
rected for direction independent effects, as well as a set
of calibration solutions. Figures A.21 and A.22 show the
calibration solutions for core station obtained when cali-
brating with sky models with minimum flux cutoffs of 0.05,
0.3, 0.8 and 1.5Jy.

Figure A.22: The calibration (phase) solutions for the test dataset
obtained when calibrating with sky models of 0.8 Jy cutoff (left) and
1.5Jy cutoff (right). The data shows the phase solutions for baselines
including stations CS003HBA0, CS003HBA1 and CS004HBA0, with
respect to the reference station, CS001HBA0.

Appendix B. Parametric model parameters and
fit accuracy

In this section, we note the uncertainties to the models
fit in Equations 1-5.

Appendix B.1. Fits quality of run time vs input size model

The models of the processing time vs input size were
fit as a linear regression. In this work we present
such models for the gsmcal solve, gsmcal apply, dppp-
concat, predict ateam and ateamcliptar, the five slowest
steps. The resulting models, calculated by the scipy

linregress(Jones et al., 2001–) routine, are shown in
Equation 1. We present the R2 values, P values and stan-
dard error below, in Table B.5.

prefactor

step
R2 P value Standard

Error

predict ateam 0.996 0 1.92× 10−10

ateamcliptar 0.979 0 3.94× 10−11

dpppconcat 0.999 1.2× 10−128 1.78× 10−10

gsmcal solve
<=16GB

0.995 3.12× 10−75 6.80× 10−9

gsmcal solve
>16GB

0.951 7.07× 10−40 1.58× 10−8

gsmcal apply 0.989 5.6× 10−82 3.12× 10−10

Table B.5: Fit parameters for the models in Equation 1.

Appendix B.2. Fit of run time vs calibration model flux
cutoff

The run time vs Flux cutoff model shown in Equation 2
is defined by the equation y = a ·x−k and two parameters,
a and k. The covariance matrix for these two parameters
is shown in Equation B.7. The standard deviation for the
fit of the parameters a and k is 26.134 and 7.624 × 10−3

respectively.

Appendix B.3. Fit of the NCPU model

The covariance matrix for the fit parameters of equa-
tion 3, a and k in y = a + k

N are shown in Equation B.8.
The standard deviation of the fits for a and k are 13.11
and 48.20 respectively.

12

D
R
A
FT



[
6.83× 102 −1.94× 10−1

−1.94× 10−1 5.81× 10−5

]
(B.7)

Equation B.7: The covariance matrix of the parameters in model in
Equation 2. [

171.94 −504.11
−504.11 2322.95

]
(B.8)

Equation B.8: The covariance matrix for the parameters for the
model predicting run time vs Number of CPUs used, shown in Equa-
tion 3.

Appendix B.4. Fit for the queuing time model

The statistics of the model fit parameters for the queu-
ing time model (Equation 4) are in Table B.6. The queuing
model is fit to the 75th percentile of the queuing times for
each parameter step. Since this results in a single num-
ber for each step, the model’s P values are larger than the
models from the other sections.

Value of N R2 P value Standard
Error

N ≤ 4 0.382 0.381 37.086
N > 4 0.986 0.075 86.293

Table B.6: Goodness of fit parameters for the model in Equation 4.
Since the model is split into two parts, we treat each section as a
single linear model.

Appendix B.5. Fit of the download and extract model

Equation B.9 shows the covariance matrix for the two
parameters a and k, y = a × 10k with the best fit values
shown in Equation 5. The standard deviations of the fits
for a and k are 0.016 and 0.068 respectively.

Acknowledgements

APM would like to acknowledge the support from
the NWO/DOME/IBM programme “Big Bang Big Data:
Innovating ICT as a Driver For Astronomy”, project
#628.002.001.

This work was carried out on the Dutch national
e-infrastructure with the support of SURF Cooperative
through grant e-infra 160022 & 160152.

References

B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. De Supin-
ski, and M. Schulz. A regression-based approach to scalability
prediction. In Proceedings of the 22nd annual international con-
ference on Supercomputing, pages 368–377. ACM, 2008.

A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf. Using automated
performance modeling to find scalability bugs in complex codes. In
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, page 45. ACM,
2013.

[
2.53× 10−4 1.08× 10−3

1.08× 10−3 4.60× 10−3

]
(B.9)

Equation B.9: The covariance matrix for the parameters for the
model for Download and Extract time, shown in Equation 5.

L. Carrington, A. Snavely, and N. Wolter. A performance prediction
framework for scientific applications. Future Generation Com-
puter Systems, 22(3):336–346, 2006.

A. Castiglione, M. Gribaudo, M. Iacono, and F. Palmieri. Exploiting
mean field analysis to model performances of big data architec-
tures. Future Generation Computer Systems, 37:203 – 211, 2014.
ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2013.07.
016. URL http://www.sciencedirect.com/science/article/

pii/S0167739X13001611. Special Section: Innovative Methods
and Algorithms for Advanced Data-Intensive Computing Special
Section: Semantics, Intelligent processing and services for big data
Special Section: Advances in Data-Intensive Modelling and Sim-
ulation Special Section: Hybrid Intelligence for Growing Internet
and its Applications.

T. J. Dijkema. LOFAR Imaging Cookbook. Available at
http://www.astron.nl/sites/astron.nl/files/cms/lofar_

imaging_cookbook_v19.pdf, 2017.
A. Horneffer, W. Williams, T. Shimwell, C. Roskowinski, D. Rafferty,

A. Mechev, M. Dzieak, S. Bourke, T. J. Dijkema, M. Hardcastle,
and J. Sabater. apmechev/prefactor: LOTSS Data Release 1,
Nov. 2018. URL https://doi.org/10.5281/zenodo.1487962.

H. Intema, P. Jagannathan, K. Mooley, and D. Frail. The gmrt 150
mhz all-sky radio survey-first alternative data release tgss adr1.
Astronomy & Astrophysics, 598:A78, 2017.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source sci-
entific tools for Python, 2001–. URL http://www.scipy.org/.
[Online; accessed January 23, 2019].

S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An anal-
ysis of traces from a production mapreduce cluster. In 2010
10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pages 94–103, May 2010. doi: 10.1109/
CCGRID.2010.112.

M. Kuperberg, K. Krogmann, and R. Reussner. Performance pre-
diction for black-box components using reengineered parametric
behaviour models. In International Symposium on Component-
Based Software Engineering, pages 48–63. Springer, 2008.

C. Marco, C. Fabio, D. Alvise, G. Antonia, G. Alessio, G. Francesco,
M. Alessandro, M. Elisabetta, M. Salvatore, and P. Luca. The glite
workload management system. In Journal of Physics: Conference
Series, volume 219, page 062039. IOP Publishing, 2010.

A. Mechev, J. B. R. Oonk, A. Danezi, T. W. Shimwell, C. Schrijvers,
H. Intema, A. Plaat, and H. J. A. Rottgering. An Automated
Scalable Framework for Distributing Radio Astronomy Process-
ing Across Clusters and Clouds. In Proceedings of the Interna-
tional Symposium on Grids and Clouds (ISGC) 2017, held 5-10
March, 2017 at Academia Sinica, Taipei, Taiwan (ISGC2017).
Online at https: // pos. sissa. it/ cgi-bin/ reader/ conf. cgi?

confid= 293 , id.2, page 2, Mar. 2017.
H. Sanjay and S. Vadhiyar. Performance modeling of parallel appli-

cations for grid scheduling. Journal of Parallel and Distributed
Computing, 68(8):1135 – 1145, 2008. ISSN 0743-7315. doi:
https://doi.org/10.1016/j.jpdc.2008.02.006. URL http://www.

sciencedirect.com/science/article/pii/S0743731508000464.
T. Shimwell, H. Röttgering, P. N. Best, W. Williams, T. Dijkema,

F. De Gasperin, M. Hardcastle, G. Heald, D. Hoang, A. Horneffer,
et al. The LOFAR Two-metre Sky Survey-I. Survey description
and preliminary data release. Astronomy & Astrophysics, 598:
A104, 2017.

T. W. Shimwell, C. Tasse, M. J. Hardcastle, A. P. Mechev, W. L.
Williams, P. N. Best, H. J. A. Röttgering, J. R. Callingham, T. J.
Dijkema, F. de Gasperin, D. N. Hoang, B. Hugo, M. Mirmont,
J. B. R. Oonk, I. Prandoni, D. Rafferty, J. Sabater, O. Smirnov,
R. J. van Weeren, G. J. White, M. Atemkeng, L. Bester, E. Bon-

13

D
R
A
FT

http://www.sciencedirect.com/science/article/pii/S0167739X13001611
http://www.sciencedirect.com/science/article/pii/S0167739X13001611
http://www.astron.nl/sites/astron.nl/files/cms/lofar_imaging_cookbook_v19.pdf 
http://www.astron.nl/sites/astron.nl/files/cms/lofar_imaging_cookbook_v19.pdf 
https://doi.org/10.5281/zenodo.1487962
http://www.scipy.org/
https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=293
https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=293
http://www.sciencedirect.com/science/article/pii/S0743731508000464
http://www.sciencedirect.com/science/article/pii/S0743731508000464


nassieux, M. Brüggen, G. Brunetti, K. T. Chyży, R. Cochrane,
J. E. Conway, J. H. Croston, A. Danezi, K. Duncan, M. Haverkorn,
G. H. Heald, M. Iacobelli, H. T. Intema, N. Jackson, M. Jamrozy,
M. J. Jarvis, R. Lakhoo, M. Mevius, G. K. Miley, L. Morabito,
R. Morganti, D. Nisbet, E. Orrú, S. Perkins, R. F. Pizzo, C. Schri-
jvers, D. J. B. Smith, R. Vermeulen, M. W. Wise, L. Alegre, D. J.
Bacon, I. M. van Bemmel, R. J. Beswick, A. Bonafede, A. Bot-
teon, S. Bourke, M. Brienza, G. Calistro Rivera, R. Cassano, A. O.
Clarke, C. J. Conselice, R. J. Dettmar, A. Drabent, C. Dumba,
K. L. Emig, T. A. Enßlin, C. Ferrari, M. A. Garrett, R. T. Génova-
Santos, A. Goyal, G. Gürkan, C. Hale, J. J. Harwood, V. Heesen,
M. Hoeft, C. Horellou, C. Jackson, G. Kokotanekov, R. Konda-
pally, M. Kunert- Bajraszewska, V. Mahatma, E. K. Mahony,
S. Mandal, J. P. McKean, A. Merloni, B. Mingo, A. Miskolczi,
S. Mooney, B. Nikiel- Wroczyński, S. P. O’Sullivan, J. Quinn,
W. Reich, C. Roskowiński, A. Rowlinson, F. Savini, A. Sax-
ena, D. J. Schwarz, A. Shulevski, S. S. Sridhar, H. R. Stacey,
S. Urquhart, M. H. D. van der Wiel, E. Varenius, B. Webster,
and A. Wilber. The LOFAR Two-metre Sky Survey - II. First
data release. arXiv e-prints, art. arXiv:1811.07926, Nov. 2018.

O. Smirnov and C. Tasse. Radio interferometric gain calibration as
a complex optimization problem. Monthly Notices of the Royal
Astronomical Society, 449(3):2668–2684, 2015.

C. Tasse, B. Hugo, M. Mirmont, O. Smirnov, M. Atemkeng,
L. Bester, M. Hardcastle, R. Lakhoo, S. Perkins, and T. Shimwell.
Faceting for direction-dependent spectral deconvolution. Astron-
omy & Astrophysics, 611:A87, 2018.

J. Templon and J. Bot. The dutch national e-infrastructure. To ap-
pear in Proceedings of Science edition of the International Sym-
posium on Grids and Clouds (ISGC) 2016 13-18 March 2016,
Academia Sinica, Taipei, Taiwan, Oct. 2016. URL https://doi.

org/10.5281/zenodo.163537.
G. van Diepen and T. J. Dijkema. DPPP: Default Pre-Processing

Pipeline. Astrophysics Source Code Library, Apr. 2018.
M. Van Haarlem, M. Wise, A. Gunst, G. Heald, J. McKean, J. Hes-

sels, A. De Bruyn, R. Nijboer, J. Swinbank, R. Fallows, et al.
LOFAR: The low-frequency array. Astronomy & astrophysics,
556:A2, 2013.

R. Van Weeren, W. Williams, M. Hardcastle, T. Shimwell, D. Raf-
ferty, J. Sabater, G. Heald, S. Sridhar, T. Dijkema, G. Brunetti,
et al. LOFAR facet calibration. The Astrophysical Journal Sup-
plement Series, 223(1):2, 2016.

W. Williams, R. Van Weeren, H. Röttgering, P. Best, T. Dijkema,
F. de Gasperin, M. Hardcastle, G. Heald, I. Prandoni, J. Sabater,
et al. LOFAR 150-MHz observations of the Boötes field: catalogue
and source counts. Monthly Notices of the Royal Astronomical
Society, 460(3):2385–2412, 2016.

C. Witt, M. Bux, W. Gusew, and U. Leser. Predictive performance
modeling for distributed computing using black-box monitoring
and machine learning. CoRR, abs/1805.11877, 2018.

Z. Xu, X. Zhang, and L. Sun. Semi-empirical multiprocessor perfor-
mance predictions. Journal of Parallel and Distributed Comput-
ing, 39(1):14 – 28, 1996. ISSN 0743-7315. doi: https://doi.org/
10.1006/jpdc.1996.0151. URL http://www.sciencedirect.com/

science/article/pii/S0743731596901513.
L. T. Yang, X. Ma, and F. Mueller. Cross-platform performance

prediction of parallel applications using partial execution. In Pro-
ceedings of the 2005 ACM/IEEE conference on Supercomputing,
page 40. IEEE Computer Society, 2005.

14

D
R
A
FT

https://doi.org/10.5281/zenodo.163537
https://doi.org/10.5281/zenodo.163537
http://www.sciencedirect.com/science/article/pii/S0743731596901513
http://www.sciencedirect.com/science/article/pii/S0743731596901513

	Introduction 
	Related Work
	Processing Setup 
	Processing Metrics
	Infrastructure Performance
	Software Versions

	Test Hardware

	Results
	Isolated Environment tests
	Input Data Size
	Calibration Model Size
	Number of CPUs

	Queuing Tests
	Transfer and Unpacking Time
	Comparison with production runs
	Complete Scalability Model

	Discussions and Conclusions
	Calibration Solutions for the sky model tests 
	Parametric model parameters and fit accuracy
	Fits quality of run time vs input size model
	Fit of run time vs calibration model flux cutoff 
	Fit of the NCPU model 
	Fit for the queuing time model
	Fit of the download and extract model 


