
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

World Models Increase Autonomy in Reinforcement Learning

Anonymous Authors1

Abstract

Reinforcement learning is an appealing paradigm
for training intelligent agents, enabling policy ac-
quisition from the agent’s own autonomously ac-
quired experience. However, the training pro-
cess of RL is far from automatic, requiring exten-
sive human effort to provide forms of supervision
(e.g. rewards / demonstrations) or resets to the
agent. Ideal RL methods would eliminate the
need for rewards, demonstrations and resets, fa-
cilitating fully autonomous training. We refer to
this minimal training setting as the Demo-free,
Reward-free, Reset-free RL (DR3L) paradigm.
Unsurprisingly, RL with such limited assump-
tions presents significant challenges. To tackle the
challenging DR3L setting, we propose a Model-
based, Reset-Free (MoReFree) framework. It
adapts two key mechanisms, exploration and pol-
icy learning, to handle DR3L tasks by prioritiz-
ing task-relevant states. MoReFree exhibits supe-
rior data-efficiency across various reset-free tasks
without access to rewards and demonstrations
while significantly outperforming privileged base-
lines that require supervision. Website: https:
//sites.google.com/view/morefree

1. Introduction
Reinforcement learning presents an attractive framework for
training capable agents. At first glance, RL training appears
intuitive and autonomous - once a reward is defined, the
agent learns from its own automatically gathered experi-
ence. However, in practice, RL training often assumes the
presence of two scaffolding mechanisms that can require
significant human effort to setup: supervision in the form
of rewards (or demonstrations), and environmental resets.
These assumptions pose a significant barrier for real world
applications of RL like robotics.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Most RL systems on real robots to date have employed vari-
ous strategies to implement resets and rewards, all requiring
a considerable amount of effort (Levine et al., 2016; Yahya
et al., 2017; Zhu et al., 2019; Nagabandi et al., 2020). In
Nagabandi et al. (2020), which trains a dexterous hand to
rotate balls, the practitioners had to (1) position a funnel
underneath the hand to catch dropped balls, and (2) deploy
a separate robot arm to pick up the dropped balls for resets,
and (3) script the reset behavior. For rewards, one notable
example is Schenck & Fox (2018); they used expensive ther-
mal cameras to measure fluid levels to train a vision-based
pouring policy.

In summary, to implement RL in real world scenarios, a
practitioner may have to add privileged sensors to estimate
state for rewards, modify the environment to facilitate resets,
and script reset controllers (potentially on another robot).
These illustrate that even for simple behaviors, proper im-
plementation of reward and reset mechanisms can result in
significant human effort and time.

To enhance autonomy and reduce human burden during
RL training, multiple lines of work have been proposed to
remove the reliance on human-specified rewards, demonstra-
tions, and reset functions. For instance, instead of requiring
humans to set up additional privileged sensors for reward
estimation, the agent can learn its own reward function from
onboard sensors (Fu et al., 2018; Hartikainen et al., 2019;
Eysenbach et al., 2021; Ma et al., 2022; Haldar et al., 2023)
Similarly, rather than necessitating human-engineered reset
mechanisms, the agent can operate within a reset-free train-
ing scheme, learning to reset itself (Eysenbach et al., 2017;
Sharma et al., 2021a; 2023; Kim et al., 2023) or learning a
policy with a diverse starting state distribution (Zhu et al.,
2020).

However, the absence of resets introduces unique explo-
ration challenges. Without periodic resets, the agent can
squander significant time in task-irrelevant regions that re-
quire careful movements to escape and may overexplore,
never returning from indefinite exploration. Therefore, hav-
ing an exploration strategy that balances between explo-
ration of unseen regions and practicing optimal behavior in
task-relevant regions is essential.

While these approaches aim to increase RL training au-
tonomy by eliminating supervision or resets, few work as-

1

https://sites.google.com/view/morefree
https://sites.google.com/view/morefree

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2024

sume the absence of both. Methods that attempt to remove
one assumption typically depend on another to compensate.
For example, most reset-free approaches rely on human-
supervised guidance, while most unsupervised RL meth-
ods assume episodic resets. This observation prompts the
question, Can we train an RL agent without requiring
supervision or resets?

We call the scenario, the Demo-free, Reward-free, Reset-
free RL setting (DR3L). Recent work (Mendonca et al.,
2021; Hu et al., 2023) in (episodic) unsupervised goal-
conditioned model-based RL has shown promising results
in training goal-conditioned policies without rewards or
demonstrations. We build upon this work, extending it to the
reset-free setting, resulting in the Model-based, Reset-Free
(MoReFree) framework (see Figure 1). MoReFree improves
two key mechanisms, exploration and goal-conditioned pol-
icy optimization, to enable non-episodic training.

Following the top row of Figure 1: to gather task-relevant
data without resets, we define a training curriculum that
alternates between temporally phases of extended task solv-
ing, resetting, and exploration. Next, as seen in the bottom
row of Figure 1, we bias goal-conditioned policy training
within the world model to achieve task-relevant goals such
as reaching initial states and evaluation states.

Our key contributions are: (1) MoReFree, a novel
model-based framework that focuses exploration and goal-
conditioned policy training on task-relevant states to handle
the challenging Demo-free, Reward-free, Reset-free RL
(DR3L) setting. (2) We compare MoReFree against base-
lines on six challenging non-episodic, continuous control
tasks ranging from pick-and-place manipulation to multi-
legged ant locomotion. MoReFree notably outperforms
baselines with privileged access to reward and demonstra-
tions in final performance and data-efficiency in 5/6 tasks,
highlighting the effectiveness of the model-based approach.
(3) We conduct extensive analysis of MoReFree and base-
lines’ exploration behavior. We find that MoReFree’s ex-
ploration strategy explores the state space throughly while
retaining high visitation counts around task-relevant states.
Our ablations show that the performance gains of MoReFree
are coming from the proposed design choices and therefore
justify the overall approach.

2. Related Work
We give an overview of related lines of work that aim to
remove human-engineered rewards and resets to reduce
human supervision over the RL training process.

Learned Reward Functions: Instead of requiring the
environment to provide a reward function, the agent can
learn its own reward function from onboard sensors and
data. Given human specified example states, e.g. a goal

∞ …

Real

Imagined

: sampled goal : goal-cond. policy : exploration policy

Practice Achieving
Eval Goal

Practice Achieving
Initial State

Practice Achieving
Random State

Figure 1. MoReFree is a model-based RL agent for solving reset-
free tasks. Top row: MoReFree strikes a balance between explor-
ing unseen states and practicing optimal behavior in task-relevant
regions by directing the goal-conditioned policy to achieve evalua-
tion states, initial state states (emulating a reset), and exploratory
goals. Bottom row: MoReFree focuses the goal-conditioned pol-
icy training inside the world model on achieving evaluation states,
initial states, and random replay buffer states to better prepare the
policy for the aforementioned exploration scheme.

image, VICE and C-Learning train reward classifiers over
examples (Fu et al., 2018; Eysenbach et al., 2021) and agent
data. The learned dynamical distance function (Hartikainen
et al., 2019) learns to predict the number of actions between
pairs of states. The dynamical distance function is used
by unsupervised MBRL approaches like LEXA and PEG
(Mendonca et al., 2021; Hu et al., 2023) to train the goal-
conditioned policy.

Reset-free RL: There is a growing interest in researching
reinforcement learning methods that can effectively address
the complexities of reset-free training. Sharma et al. (2021b)
proposes a reset-free RL benchmark (EARL) and finds that
standard RL methods like SAC (Haarnoja et al., 2018) fail
catastrophically in EARL. Multiple approaches have been
proposed to address reset-free training, which we now sum-
marize. One approach is to add an additional reset policy,
to bring the agent back to suitable states for learning (Ey-
senbach et al., 2017; Kim et al., 2022; Sharma et al., 2021a;
2022; Kim et al., 2023). LNT (Eysenbach et al., 2017) and
Kim et al. (2022) train a reset policy to bring the agent back
to initial state distribution, supervised by dense rewards and
demonstrations respectively. MEDAL (Sharma et al., 2022;
2023), train a goal-conditioned reset policy and direct it
to reset goal states from demonstrations. IBC (Kim et al.,
2023) defines a curriculum for both task and reset policies
without requiring demonstrations. VaPRL (Sharma et al.,
2021a) trains a single goal-conditioned policy to reach high
value states close to the initial states. Instead of guiding the
agent back to familiar states, R3L (Zhu et al., 2020) and

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2024

Xu et al. (2020) learn to reset the policy to diverse initial
states, resulting in a policy that is more robust to variations
in starting states. However, such methods are limited to
tasks where exploration is unchallenging. The vast majority
of reset-free approaches are model-free, with a few excep-
tions (Lu et al., 2020b;a). Other works (Gupta et al., 2021;
Smith et al., 2019) model the reset-free RL training process
as a multi-task RL problem and require careful definition of
the task distribution such that the tasks reset each other.

Goal-conditioned Exploration: A common theme running
through the aforementioned work is the instantiation of a
curriculum, often through commanding goal-conditioned
policies, to keep the agent in task-relevant portions of the
environment while exploring. Closely related is the sub-
field of goal-conditioned exploration in RL, where a goal-
conditioned agent selects its own goals during training time
to generate data. There is a large variety of approaches for
goal selection, such as task progress (Baranes & Oudeyer,
2013; Veeriah et al., 2018), intermediate difficulty (Florensa
et al., 2018), value disagreement (Zhang et al., 2020), state
novelty (Pong et al., 2019; Pitis et al., 2020), world model
error (Hu et al., 2023; Sekar et al., 2020), and more. Many
goal-conditioned exploration methods use the “Go-Explore”
(Ecoffet et al., 2021) strategy, which first selects a goal and
runs the goal-conditioned policy (“Go”-phase), and then
switches to an exploration policy for the latter half of the
episode (“Explore”-phase). PEG (Hu et al., 2023), which
MoReFree uses, extends Go-Explore to the model-based
setting, and utilizes the world model to plan states with
higher exploration value as goals. Goal-conditioned ex-
ploration methods frequently outperform non-goal-directed
counterparts, due to their structured exploration behavior.
However, such methods are not designed for the reset-free
RL setting, and may suffer from over-exploration of task-
irrelevant states.

Approach Need Demo Need Reward Need Reset Model-based
PEG ✗ ✗ ✓ ✓
LiSP ✗ ✓ ✗ ✓

MEDAL ✓ ✓ ✗ ✗
IBC ✗ ✓ ✗ ✗
R3L ✗ ✗ ✗ ✗

MoReFree ✗ ✗ ✗ ✓

Table 1. A conceptual overview of related methods. Most methods
require some combination of demos, rewards, or resets to work.
In terms of assumptions, only R3L matches MoReFree– neither
requires demos, rewards, or resets. In performance, MoReFree
significantly improves over privileged baselines IBC and MEDAL,
which in turn outperform R3L in their experiments.

We notice that the majority of all prior work that aim to
eliminate one form of assumption (e.g. reward) still depend
on another (e.g. resets). R3L is a notable exception, and
proposes a reward-free, reset-free RL approach for train-
ing robots. R3L’s model-free approach is known to suffer

from poor sample efficiency and exploration issues, limiting
its usefulness and generality. In contrast, MoReFree uses
world models to efficiently train policies and perform non-
trivial goal-conditioned exploration with minimal assump-
tions. See Table 1 for a conceptual comparison between
prior work and MoReFree.

3. Preliminaries
3.1. DR3L: Demo-free, Reward-free, Reset-free RL

We formalize the “Demo-free, Reward-free, Reset-free RL”
(DR3L) paradigm, where the only human effort is task spec-
ification of initial states and goals. The agent is trained to
achieve the goals from the initial states without resets nor ac-
tion supervision (e.g. rewards or demonstrations). Building
off of the definition of autonomous reinforcement learning
(ARL) from EARL (Sharma et al., 2021b), we formalize
this problem in a goal-conditioned setting. Unlike ARL,
we do not assume access to any form of training supervi-
sion on how to reach such state distributions (rewards or
demonstrations).

Consider the goal-conditioned Markov decision process
(MDP)M = (S,G,A, p, r, ρ0, ρg∗ , γ). At each time step
t in the state st ∈ S, a goal-conditioned policy π(·|st, g)
under the goal command g ∈ G selects an action at ∈ A
and transitions to the next state st+1 with the probability
p(st+1|st, at). Importantly, the environmental reward func-
tion r(s, a, g) is unavailable during training time, and is
only used during evaluation to score policies. ρ0 is the ini-
tial state distribution, ρg∗ is the evaluation goal distribution,
and γ is the discount factor.

The learning algorithm A is defined: {si, ai, si+1}t−1
i=0 7→

(at, πt), which maps the transitions collected until the time
step t to the action at the agent should take in the non-
episodic training and the best guess πt of the optimal policy
π∗ on the evaluation goal distribution (ρg∗). In reset-free
training the agent will only be reset to the initial state s0 ∼
ρ0 once. Similar to the “persistent RL” definition in EARL,
the evaluation of DR3L agents is still episodic. The agent
always starts from s0 ∼ ρ0, and is asked to achieve g ∼ ρg∗ .
The evaluation objective for a policy π is:

J(π) = Es0∼ρ0,g∼ρg∗ ,aj∼π(·|sj ,g),sj+1∼p(·|sj ,aj)[

T∑
j=0

γjr(sj , aj , g)],

(1)
where T is the total time steps during the evaluation. The
goal of algorithm A during the reset-free training is to mini-
mize the performance difference D(A) of the current policy
πt and the optimal policy π∗:

D(A) =
∞∑
t=0

(J(π∗)− J(πt)). (2)

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2024

In summary, the algorithm A should output an action at that
the agent should take in the non-episodic data collection
and a policy πt that can maximize J(πt) at every time step
t based on all previously collected data.

3.2. Model-based RL setup

Recent unsupervised goal-conditioned RL approaches like
LEXA (Mendonca et al., 2021) and PEG (Hu et al., 2023)
train goal-conditioned policies using learned dynamical dis-
tance rewards (Hartikainen et al., 2019). Their success at
solving long-horizon goal-conditioned tasks show that it is
possible to efficiently train policies without a given reward
function. Recall that we desire a method that 1) does not
require environmental rewards to train policies and 2) can
train without resets. Therefore, we select PEG as the back-
bone MBRL agent to fulfill the first criteria, and will later
adapt it to the non-episodic training setting to fullfill the
second criteria.

PEG (Hu et al., 2023) is a model-based Go-Explore frame-
work that extends LEXA (Mendonca et al., 2021), an unsu-
pervised goal-conditioned variant of DreamerV2 (Hafner
et al., 2020). The following components are parameterized
by θ and learned:

world model: T̂θ(st|st−1, at−1)

goal conditioned policy: πG
θ (at|st, g)

goal conditioned value: V G
θ (st, g)

exploration policy: πE
θ (at|st)

exploration value: V E
θ (st)

(3)

The world model is a recurrent state-space model (RSSM)
which is trained to predict future states and is used as a
learned simulator to train the policies and value functions.
The goal-conditioned policy πG is trained to reach random
states sampled from the replay buffer. The exploration pol-
icy πE is trained on an intrinsic motivation reward that
rewards world model error, expressed through the variance
of an ensemble (Sekar et al., 2020). Both policies are trained
on simulated trajectory rollouts in the world model.

▶ Self-supervised goal-reaching reward function: In the
absence of an environmental reward function, the agent must
define its own reward. PEG uses the learned dynamical dis-
tance function (Hartikainen et al., 2019), which predicts
the number of actions between a start and goal state. The
distance function is trained on random state pairs from imag-
inary rollouts of πG. πG is then trained to minimize the
dynamical distance between its states and commanded goal
state in imagination. See Mendonca et al. (2021) for more
details.

▶ Phased Exploration via Go-Explore: For data-
collection, PEG employs the Go-Explore strategy.

In the “Go”-phase, a goal is sam-
pled from some goal distribution
ρ. The goal-conditioned policy,
conditioned on the goal is run for
some time horizon HG, resulting
in trajectory τG. Then, in the
“Explore”-phase, starting from
the last state in the “Go”-phase,
the exploration policy is run for
HE steps, resulting in τE . The
interleaving of goal-conditioned
behavior with exploratory behav-
ior results in more directed explo-
ration and informative data. This in turn improves accuracy
of the world model, and the policies that train inside the
world model. See Algorithm 1 and Algorithm 2 for pseu-
docode.

The choice of goal distribution ρ is important for Go-
Explore. In easier tasks, the evaluation goal distribution
ρg∗ may be sufficient. But in longer-horizon tasks, evalua-
tion goals may be too hard to achieve. Instead, intermediate
goals from an exploratory goal distribution ρE can help the
agent explore. We choose PEG, which generates goals by
planning through the world model to maximize exploration
value (see Hu et al. (2023) for details). Note that in prin-
ciple, we could use alternative goal-selection mechanisms
mentioned in Section 2 like uniform density (Pong et al.,
2019) or maximum entropy (Pitis et al., 2020). We choose
PEG since it outperforms prior work in exploratory goal
selection.

Algorithm 2 MBRL Backbone (PEG)

1: Input: πG
θ , πE

θ , world model T̂θ, goal distribution ρ
2: for episode i = 1 to N do:
3: sample a goal g ∼ ρ
4: τg, τe ←Go-Explore(g, πG, πE)
5: D ← D ∪ τg ∪ τe

6: update T̂θ with D
7: update πG

θ and πE
θ with T̂θ in imagination

4. Method
We now introduce MoReFree, a model-based approach that
does not require rewards, demonstrations nor resets for train-
ing goal-conditioned policies. Model-based approaches
offer benefits like sample-efficient, self-supervised goal-
conditioned policy training inside world models (e.g. LEXA
(Mendonca et al., 2021)) and enhanced exploration capabili-
ties (e.g. Plan2Explore (Sekar et al., 2020)). Therefore, a
model-based approach with both properties, like PEG (i.e.
combines LEXA with Go-Explore) appears promising at
first glance for the DR3L formulation.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2024

However, such model-based approaches were developed and
evaluated for episodic RL settings, and may suffer when
trained without resets. Indeed, in our later ablation experi-
ments, we find that directly running the backbone MBRL
agent (PEG) results in poor performance. To port model-
based RL over to our DR3L setting, we must adapt its key
mechanisms to handle the lack of resets. MoReFree im-
proves two key mechanisms of MBRL for reset-free training:
exploration and policy training.

4.1. Back-and-Forth Go-Explore

First, we introduce MoReFree’s procedure for collecting
new datapoints in the real environment. PEG (Hu et al.,
2023) is a MBRL agent with strong goal-conditioned ex-
ploration abilities. However, without resets, PEG’s Go-
Explore procedure can undesirably linger in unfamiliar but
task-irrelevant portions of the state space. This generates
large amounts of uninformative trajectories, which in turn
degrades world model learning and policy optimization.

MoReFree overcomes this by periodically directing the
agent to return to the states relevant to the task (i.e. initial
and evaluation goals). We call this exploration procedure
“Back-and-Forth Go-Explore”, where we sample pairs of
initial and evaluation goals and ask the agent to cycle back
and forth between the goal pairs, periodically interspersed
with exploration phases (see Figure 1 top row).

Now, we define the “Back-and-Forth Go-Explore” strategy
as seen in Algorithm 3. First, we decide whether to perform
initial/evaluation state directed exploration. With probabil-
ity α, we sample goals (g∗, g0) from ρg∗ , ρ0 respectively.
Then, we execute the Go-Explore routine for each goal. We
name Go-Explore trajectories conditioned on initial state
goals as “Back” trajectories, and Go-Explore trajectories
conditioned on evaluation goals as “Forward” trajectories.
With probability 1− α, we execute exploratory Go-Explore
behavior by sampling exploratory goals from PEG.

Algorithm 3 Back-and-Forth Go-Explore

1: Input: πG
θ , πE

θ , world model T̂θ, ρg∗ , ρ0, ρE
2: Generate a random number r in [0, 1]
3: if r < α then
4: g∗, g0 ∼ ρg∗ , ρ0
5: τg∗ , τ1e ←Go-Explore(g∗, πG, πE)
6: τg0 , τ

2
e ←Go-Explore(g0, πG, πE)

7: else
8: g ∼ ρE
9: τg, τ

1
e ←Go-Explore(g, πG, πE)

10: end if

By following this exploration strategy, the agent modulates
between various Go-Explore strategies, alternating between
solving the task by pursuing evaluation goals, resetting the

task by pursuing initial states, and exploring unfamiliar
regions via exploratory goals.

4.2. Learning to Achieve Relevant Goals in Imagination

Next, we describe how MoReFree trains of the goal-
conditioned policy in the world model. To train πG, MoRe-
Free samples various types of goals and executes πG(· | ·, g)
inside the world model to generate “imaginary” trajectories.
The trajectory data is scored using the learned dynamical
distance reward mentioned in Section 3.2 , and the policy is
updated to maximize the expected return. This procedure
is called imagination (Hafner et al., 2019), and allows the
policy to be trained on vast amounts of synthetic trajectories
to improve sample efficiency.

First, we choose to sample evaluation goals from ρg∗ since
the policy will be evaluated on its evaluation goal-reaching
performance. Next, recall that Back-and-Forth Go-Explore
procedure also samples initial states from ρ0 as goals for the
Go-phase to emulate resetting behavior. Since we would like
πG to succeed in such cases so that the task is reset, we will
also sample from ρ0. Finally, we sample random states from
the replay buffer to increase πG’s ability to reach arbitrary
states. The sampling probability for each goal type is set
to α/2, α/2, 1− α respectively. In other words, MoReFree
biases the goal-conditioned policy optimization procedure
to focus on achieving task-relevant goals (i.e. evaluation
and initial states), as they are used during evaluation and
goal-conditioned exploration to condition the goal-reaching
policy (see Figure 1 bottom row).

4.3. Implementation details

Our work builds on the top of PEG (Hu et al., 2023), a
model-based goal-conditioned exploration method, and use
its default hyperparameters for world model, policies, value
functions and temporal reward function. We set the length of
each phase for Go-Explore (HG, HE) to half the evaluation
episode length for each task. We set the default value of α =
0.2 for all tasks (never tuned). See Appendix A.3 for more
details and the MoReFree codebase in the supplemental.

5. Experiments
We evaluate MoReFree and three competitive baselines on
six DR3L tasks. We aim to answer: 1) Does MoReFree
outperform baselines in DR3L tasks in terms of sample
efficiency and performance? 2) What sorts of behavior does
MoReFree and baselines exhibit in such tasks? 3) Which
components of MoReFree influence and contribute to its
performance?

Baselines: We want to compare MoReFree against compet-
itive baselines in the DR3L setting, but from our literature
search, we could only find R3L as a suitable baseline. R3L

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2024

is reported to have poor performance relative to more com-
petitive but privileged approaches that use rewards / demos
(IBC, VaPRL, and MEDAL (Kim et al., 2023; Sharma et al.,
2021a; 2022)). Hence, we choose to compare MoReFree
against privileged state-of-the-art approaches in reset free
RL (IBC, MEDAL) rather than compare against R3L. The
baselines are implemented using their official codebases,
see Appendix A.2 for details.

• MEDAL (Sharma et al., 2022) requires demonstrations
and trains two policies, one for getting back to demo states
and another that achieves task goals.

• IBC (Kim et al., 2023) is a competitive baseline that
does not rely on demonstrations and makes the weaker
assumption of having sparse environmental rewards. IBC
outperforms prior work (e.g. MEDAL, VaPRL) by defin-
ing a bidirectional curriculum for the goal-conditioned
forward and backwards (i.e. reset) policies.

• Oracle is SAC (Haarnoja et al., 2018) trained under the
episodic setting on the environmental reward.

Note that all baselines enjoy some advantage over MoRe-
Free since none of them were explicitly designed for the
DR3L setting; MEDAL uses demonstrations and rewards,
IBC uses rewards, and Oracle uses resets and rewards. See
Table 1 for a conceptual comparison between MoReFree
and prior work.

Environments: We evaluate MoReFree and baselines on 6
tasks (see Figure 2). We select five tasks from IBC’s evalua-
tion suite of six tasks; we omit Fetch Reach, because it is
trivially solvable. Next, we contribute a difficult navigation
task, Ant, which is adapted from the PEG codebase (Hu
et al., 2023). We summarize key properties:

• PointUMaze: A point-mass agent navigates a U-shape
maze through continuous acceleration commands. During
evaluation, the agent starts from the bottom-left corner and

PointUMaze Tabletop

Fetch Push Fetch Pick&Place Ant

Sawyer Door

Figure 2. We evaluate MoReFree on six reset-free tasks ranging
from navigation to manipulation.

is tasked to reach the top-left corner. This environment is
taken from IBC’s evaluation suite (Kim et al., 2023).

• Tabletop Manipulation: The agent needs to grab and
move the mug to one of the four goal locations. The initial
state is always fixed and the goal state is uniformly sam-
pled from four fixed locations. The task is taken from IBC,
and was originally part of the EARL benchmark (Sharma
et al., 2021b).

• Sawyer Door: The agent controls a Sawyer robot arm to
close the door in an open position. During the reset-free
training, it needs to learn to close the door and open the
door again to practice. The door is opened to 60 degrees
for evaluation. This task is from the EARL benchmark
also used by IBC.

• Fetch Push: The agent commands a Fetch robot arm to
push the object initialized at the center of the table to
goal locations sampled from a 15cm The environment is
taken from IBC’s evaluation suite, which modified the
original environment from Plappert et al. (2018). To pre-
vent the block from falling off the table, the IBC authors
artificially limited the block position with block position
constraints. This resulted in unrealistic jittering behavior
near the limits. To avoid this, we removed the artificial
joint constraints and surrounded the table with physical
walls. Furthermore, we enable the usage of the grippers
(disabled in IBC’s version) to permit picking behaviors
(i.e. useful for resetting), at the cost of increased action
space and exploration difficulty.

• Fetch Pick&Place: Similar to the Fetch Push, except the
Fetch robot arm needs to pick up the block and move it to a
target location. The environment is also taken from IBC’s
evaluation suite. We also replaced the artificial block
position limits with physical walls. To make the task more
difficult, we modified the evaluation goal distribution to
only include goals in the air. This requires the agent to
learn picking behaviors to solve the task whereas goals
on the table can be solved with pushing.

• Ant: The 4-legged ant agent needs to navigate in a square
room to a given goal, which is uniformly located in the
top-right corner. The initial state is at the center point
with randomness. It is adapted from Hu et al. (2023), with
changing the U-shape maze into a square room.

All methods are run with 5 seeds, and the mean performance
and standard error are reported. During the evaluation, the
performance on tasks with randomly sampled goals from
ρg∗ is measured by averaging over 10 episodes. See Ap-
pendix A for more experimental details.

5.1. Results

As shown in Fig 3, MoReFree, without demonstrations or
rewards, outperforms other baselines with privileged ac-
cess to supervision in both final performance and sample

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2024

PointUMaze Tabletop

Fetch Push Fetch Pick&Place

Fetch Push Fetch Pick&PlaceFetch PushSawyer Door AntFetch Pick&Place

Figure 3. MoReFree significantly outperforms baselines with privileged access to demos (MEDAL) and task rewards (IBC) in 5/6 tasks.
In 4 tasks, only MoReFree is able to learn meaningful behavior, showcasing MoReFree’s sample efficiency.

MoReFree IBC

MEDAL Oracle

Tabletop
200k

MEDAL,
100/50

Figure 4. XY state visitation heatmap of the mug in Tabletop of
various approaches. MoReFree’s heatmap shows high state di-
versity while retaining high visitation counts near the start (blue
circle) and evaluation state distributions (red circles).

efficiency in 5/6 tasks. The gains are especially large in
PointUMaze, Fetch Push and Fetch Pick&Place, and Ant;
IBC and MEDAL do not learn anything within the given
time steps. MoReFree learns good behaviors: the pointmass
agent hugs the wall of the UMaze to minimize travel time
and the Fetch robot deftly pushes and picks up the block into
multiple target locations. In Sawyer Door, MoReFree fails
to learn. We investigated further in Appendix D and found
that multiple Dreamer-based agents (DreamerV2, Dream-
erV3) struggle to solve this task even in the episodic setting.
If Dreamer, the base MBRL algorithm that MoReFree ex-
tends, cannot solve the task in episodic setting, then it is
unlikely MoReFree will work. See the website for videos
of MoReFree and baselines.

Comparing exploration behavior. We perform qualitative
analysis of MoReFree and baselines’ exploration behaviors.
First, we visualize the replay buffer states of different agents
to characterize their exploration behavior. Figure 4 shows
heatmaps on XY state visitations of the mug on Tabletop
Manipulation task, where increasing intensity corresponds
to higher visitations. Notably, MoReFree showcases two

MoReFree IBC

MEDAL Oracle

Fetch Pick&Place
x-z view

[1.15, 1.55], [0.4, 0.55]

Figure 5. XZ view of object state visitation heatmap on Fetch
Pick&Place. States above the red line mean the object is in the air.
MoReFree picks up the object frequently and in diverse ways.

desirable properties: diverse exploration shown through
numerous medium/high intensity cells scattered uniformly
across the plane, and distinct high visitation groups clustered
around the initial (blue circle) and goal states (red circle).
This suggests that Back-and-forth Go-Explore is creating
a curriculum that simultaneously encourages exploration,
reset, and evaluation behavior. In contrast, the baselines are
one or both properties. IBC’s bidirectional curriculum also
encourages it to shuttle back and forth between evaluation
and initial states, resulting in distinct clusters around initial
and evaluation states. However, IBC, MEDAL, and Oracle
all fail to explore well; their heatmaps are mostly populated
with low visitation cells.

We perform the heatmap visualization of the XZ dimensions
of the block position for Fetch Pick&Place in Figure 5. All
states above the red line are in the air, implying the agent
has learned to pick up the block. MoReFree’s heatmap
shows numerous high visitation cells above the red line,
and populated uniformly along the horizontal axis of the
table. This means that MoReFree has learned how to pick
up the block from diverse initial states and move it to diverse
states in the air. In contrast, IBC and MEDAL have sparser

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2024

Fetch Push Fetch Pick&Place

PointUMaze Tabletop Ant

Figure 6. We visualize the start position (red dots) of successful
“Back” trajectories of MoReFree’s Back-and-Forth Go-Explore,
where πG is directed to reset the environment.

coverage above the red line. We visualize heatmaps for
other environments in Appendix B and find similar trends
where MoReFree exploration is superior.

Analyzing Back-and-forth Go-Explore. Next, we more
closely investigate the qualitative behavior of MoReFree’s
Back-and-forth Go-Explore. To investigate if “Back” trajec-
tories help free the agent from the sink states, we analyze
the replay buffer of MoReFree for the environments, and
plot the starting locations of the agent / object right before a
successful “Back” trajectory is executed in Figure 6. The
starting locations (red dots) of the agent / object are in cor-
ners or next to walls in all environments. This observation
(that all starting locations are in corners) suggests that these
areas act as sink states, where the agent/object would remain
for long and waste time. We observe that MoReFree learns
reset behaviors like picking the block out of corners and
walls in Fetch Push and Fetch Pick&Place. See detailed
videos of the reset behavior on the website1.

Figure 7. Ablations on 5 variants of MoReFree over all 4 environ-
ments with normalized performance. MoReFree is significantly
better than the backbone MBRL agent, and all components of
MoReFree (exploration and policy optimization) are important.

1https://sites.google.com/view/morefree

5.2. Ablation study

We seek to analyze MoReFree’s components’ contributions
to performance. First, we verify that the performance of
MoReFree can be attributed to its contributions rather than
the vanilla MBRL agent (PEG). To do so, we define two
ablations. First, MF w/o Explore & Imag. removes all of
our features (Back-and-Forth Go-Explore and biased goal
sampling in imagination) and reduces to PEG, the backbone
MBRL agent. Next, MF with Only Task Goals sets α = 1,
which results in the Back-and-Forth Go-Explore and goal
sampling in imagination to only sample from initial and eval-
uation goal distributions. In Figure 7, we run ablations over
all environments and plot the normalized final performance.
MoReFree (blue) substantially outperforms both ablations
(orange, green), showing that MoReFree’s performance gain
is more than just using a strong MBRL backbone and that
sampling all 3 types of goals is important.

Next, we isolate individual components of MoReFree. First,
we disable Back-and-Forth Go-Explore by disallowing the
sampling of initial or evaluation goals during Go-Explore.
Only exploratory goals are used in Go-Explore for this abla-
tion (named MF w/o BF-GE). Next, in MF w/o Imag. we
turn off the initial / evaluation goal sampling in imagination,
so only random replay buffer goals are used to train πG.
We see that both variants perform poorly in Figure 7. This
is somewhat intuitive, as the two components rely on each
other. In MF w/o Imag., Back-and-forth Go-Explore will
suffer since πG trained on random goals cannot reliably
reach initial / evaluation goals. In MF w/o BF-GE, the
exploration strategy will not seek initial / evaluation states,
resulting in an inaccurate world model and degraded policy
optimization. In summary, the ablations show that MoRe-
Free’s design is sound and is the major factor behind its
success in the DR3L setting. See Appendix C for details.

6. Conclusion and future work
As a step towards fully autonomous training, we propose
MoReFree, a model-based approach to solving tasks without
demonstrations, rewards, nor resets. By focusing model-
based exploration and goal-conditioned policies on task-
relevant states, we are successfully able to train unsuper-
vised goal-conditioned model-based RL agents without re-
sets. Our experiments show that for a majority of tasks,
MoReFree substantially outperforms baselines that do as-
sume access to rewards and demonstrations. Despite MoRe-
Free’s overall success, MoReFree is not without limita-
tions. MoReFree is a model-based approach, and as such
inherits all of its disadvantages. For example, we believe
Sawyer Door is a task where learning the dynamics is harder
than learning the policy (see Appendix D), disadvantaging
MBRL approaches. We hope MoReFree inspires future
efforts in increasing autonomy in RL.

8

https://sites.google.com/view/morefree

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2024

7. Impact Statement
As we increase the autonomy of RL agents, the possibility
of them acting in unexpected ways to maximize reward in-
creases. The unsupervised exploration coupled alongside
the learned reward functions further add to the unpredictabil-
ity; neither mechanisms are very interpretable. As such, we
expect research into value alignment, interpretability, and
safety to be paramount as autonomy in RL improves.

References
Baranes, A. and Oudeyer, P.-Y. Active learn-

ing of inverse models with intrinsically motivated
goal exploration in robots. Robotics and Au-
tonomous Systems, 61(1):49–73, 2013. ISSN 0921-
8890. doi: https://doi.org/10.1016/j.robot.2012.05.
008. URL https://www.sciencedirect.com/
science/article/pii/S0921889012000644.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and
Clune, J. First return, then explore. Nature, 590(7847):
580–586, 2021.

Eysenbach, B., Gu, S., Ibarz, J., and Levine, S. Leave no
trace: Learning to reset for safe and autonomous rein-
forcement learning. arXiv preprint arXiv:1711.06782,
2017.

Eysenbach, B., Salakhutdinov, R., and Levine, S. C-
learning: Learning to achieve goals via recursive clas-
sification. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=tc5qisoB-C.

Florensa, C., Held, D., Geng, X., and Abbeel, P. Automatic
goal generation for reinforcement learning agents. In
International conference on machine learning, pp. 1515–
1528. PMLR, 2018.

Fu, J., Singh, A., Ghosh, D., Yang, L., and Levine, S. Varia-
tional inverse control with events: A general framework
for data-driven reward definition. Advances in neural
information processing systems, 31, 2018.

Gupta, A., Yu, J., Zhao, T. Z., Kumar, V., Rovinsky, A.,
Xu, K., Devlin, T., and Levine, S. Reset-free reinforce-
ment learning via multi-task learning: Learning dexterous
manipulation behaviors without human intervention. In
2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6664–6671. IEEE, 2021.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020.

Haldar, S., Pari, J., Rai, A., and Pinto, L. Teach a robot to
fish: Versatile imitation from one minute of demonstra-
tions. arXiv preprint arXiv:2303.01497, 2023.

Hartikainen, K., Geng, X., Haarnoja, T., and Levine,
S. Dynamical distance learning for semi-supervised
and unsupervised skill discovery. arXiv preprint
arXiv:1907.08225, 2019.

Hu, E. S., Chang, R., Rybkin, O., and Jayaraman, D.
Planning goals for exploration. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=6qeBuZSo7Pr.

Kim, J., hyeon Park, J., Cho, D., and Kim, H. J. Automating
reinforcement learning with example-based resets. IEEE
Robotics and Automation Letters, 7(3):6606–6613, 2022.

Kim, J., Cho, D., and Kim, H. J. Demonstration-free au-
tonomous reinforcement learning via implicit and bidi-
rectional curriculum. arXiv preprint arXiv:2305.09943,
2023.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-
end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Reset-free
lifelong learning with skill-space planning. arXiv preprint
arXiv:2012.03548, 2020a.

Lu, K., Mordatch, I., and Abbeel, P. Adaptive online plan-
ning for continual lifelong learning, 2020b. URL https:
//openreview.net/forum?id=HkgFDgSYPH.

Ma, Y. J., Sodhani, S., Jayaraman, D., Bastani, O., Kumar,
V., and Zhang, A. Vip: Towards universal visual reward
and representation via value-implicit pre-training. arXiv
preprint arXiv:2210.00030, 2022.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., and
Pathak, D. Discovering and achieving goals via world
models, 2021.

Nagabandi, A., Konolige, K., Levine, S., and Kumar, V.
Deep dynamics models for learning dexterous manipula-
tion. In Conference on Robot Learning, pp. 1101–1112.
PMLR, 2020.

9

https://www.sciencedirect.com/science/article/pii/S0921889012000644
https://www.sciencedirect.com/science/article/pii/S0921889012000644
https://openreview.net/forum?id=tc5qisoB-C
https://openreview.net/forum?id=tc5qisoB-C
https://openreview.net/forum?id=6qeBuZSo7Pr
https://openreview.net/forum?id=6qeBuZSo7Pr
https://openreview.net/forum?id=HkgFDgSYPH
https://openreview.net/forum?id=HkgFDgSYPH

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2024

Pitis, S., Chan, H., Zhao, S., Stadie, B., and Ba, J. Maximum
entropy gain exploration for long horizon multi-goal re-
inforcement learning. In International Conference on
Machine Learning, pp. 7750–7761. PMLR, 2020.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B.,
Baker, B., Powell, G., Schneider, J., Tobin, J., Chociej,
M., Welinder, P., et al. Multi-goal reinforcement learn-
ing: Challenging robotics environments and request for
research. arXiv preprint arXiv:1802.09464, 2018.

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and
Levine, S. Skew-fit: State-covering self-supervised re-
inforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Schenck, C. and Fox, D. Perceiving and reasoning about
liquids using fully convolutional networks. The Interna-
tional Journal of Robotics Research, 37(4-5):452–471,
2018.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,
and Pathak, D. Planning to explore via self-supervised
world models. In ICML, 2020.

Sharma, A., Gupta, A., Levine, S., Hausman, K., and Finn,
C. Autonomous reinforcement learning via subgoal cur-
ricula. Advances in Neural Information Processing Sys-
tems, 34:18474–18486, 2021a.

Sharma, A., Xu, K., Sardana, N., Gupta, A., Hausman, K.,
Levine, S., and Finn, C. Autonomous reinforcement
learning: Formalism and benchmarking. arXiv preprint
arXiv:2112.09605, 2021b.

Sharma, A., Ahmad, R., and Finn, C. A state-distribution
matching approach to non-episodic reinforcement learn-
ing. arXiv preprint arXiv:2205.05212, 2022.

Sharma, A., Ahmed, A. M., Ahmad, R., and Finn, C. Self-
improving robots: End-to-end autonomous visuomotor
reinforcement learning. arXiv preprint arXiv:2303.01488,
2023.

Smith, L., Dhawan, N., Zhang, M., Abbeel, P., and Levine,
S. Avid: Learning multi-stage tasks via pixel-level trans-
lation of human videos. arXiv preprint arXiv:1912.04443,
2019.

Veeriah, V., Oh, J., and Singh, S. Many-goals reinforcement
learning. ArXiv, abs/1806.09605, 2018.

Xu, K., Verma, S., Finn, C., and Levine, S. Continual learn-
ing of control primitives: Skill discovery via reset-games.
Advances in Neural Information Processing Systems, 33:
4999–5010, 2020.

Yahya, A., Li, A., Kalakrishnan, M., Chebotar, Y., and
Levine, S. Collective robot reinforcement learning with
distributed asynchronous guided policy search. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 79–86. IEEE, 2017.

Zhang, Y., Abbeel, P., and Pinto, L. Automatic curriculum
learning through value disagreement. Advances in Neural
Information Processing Systems, 33:7648–7659, 2020.

Zhu, H., Gupta, A., Rajeswaran, A., Levine, S., and Ku-
mar, V. Dexterous manipulation with deep reinforcement
learning: Efficient, general, and low-cost. In 2019 Inter-
national Conference on Robotics and Automation (ICRA),
pp. 3651–3657. IEEE, 2019.

Zhu, H., Yu, J., Gupta, A., Shah, D., Hartikainen, K., Singh,
A., Kumar, V., and Levine, S. The ingredients of real-
world robotic reinforcement learning. arXiv preprint
arXiv:2004.12570, 2020.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2024

A. Experimental Details
A.1. Environments

PointUMaze The state space is 7D and the action space is 2D. The initial state is (0, 0), which located in the bottom-left
corner, and noise sampled from U(−0.1, 0.1) is added when reset. The goal during the evaluation is always located in at the
top-left corner of the U-shape maze. The maximum steps during the evaluation is 100. Hard reset will happen after every
2e5 steps. In the whole training process we performed, it only reset once at the beginning of the training.

Tabletop The state space is 6D, and the action space is 3D. During the evaluation, four goal locations are sampled in turn,
the initial state of the agent is always fixed and located in the center of the table. The maximum steps during the evaluation
is 200. Hard reset will happens after every 2e5 steps. In the whole training process we performed, it only reset once at the
beginning of the training.

Sawyer Door The state space is 7D and the action space is 4D. The position of door is initialized to open state (60 degree
with noise sampled from (0, 18) degree) and the goal is always to close the door (0 degree). The arm is initialized to a fixed
location. Maximum number of steps is 300 for the evaluation. Hard reset will happen after every 2e5 steps. In the whole
training process we performed, it resets twice.

Fetch Push The state space is 25 dimensional and action space is 4 dimensional. Different from the original Fetch Push
task, in our case walls are added to prevent the object from dropping out of the table. The workspace of the robot arm is
also limited. The object is always initialized to a fixed location, and goal distribution during the evaluation is U(−0.15, 15).
Fetch Push used in IBC (Kim et al., 2023) paper, the object is limited by joint constraint, which shows unrealistic jittering
behaviors near the limits (we observe such phenomenon by running model-based go-explore, the exploration policy prefers
to always interact with the object and keep pushing it towards the limit boundary, see videos on our project website 2).
Meanwhile, the gripper is blocked, which makes the task easier. In our case, we release the gripper and it can now open
and close again which add two more dimension of the state space. We found it is important to release the gripper in our
version of Push task, when the object is in corners, it will need to operate the gripper to drag the object escape from corners.
The maximum steps the agent can take in 50 during the evaluation. Hard reset will happen after every 1e5 steps. In the
whole training process we performed, it resets 5 times in total. See a visual difference between our Pick&Place and IBC’s in
Figure 8.

Figure 8. We use walls (yellow) to limit the workspace of the object and prevent it from falling, while IBC adds joint constraints on the
object (visualized as the red frame).

Fetch Pick&Place We add walls in the same way as we did for Fetch Push. We make it more difficult by only evaluating
the agent on goals that are in the air. Then it has to learn to perform picking behavior properly, whereas goals on the ground
can just be solved by pushing. The goal will be uniformly sampled from a 5× 5× 10 cm cubic area above the table. It has

2https://sites.google.com/view/morefree

11

https://sites.google.com/view/morefree

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2024

the same observation space, action space, initial state and maximum steps with Fetch Push described above. Hard reset will
happens after every 1e5 steps. In the whole training process we performed, it resets 5 times in total.

Ant We adapt the AntMaze task from environments3 codebase of PEG and change the shape of the maze to square, also
change the evaluation goal distribution to be a uniform distribution U(2, 3) for both x and y location, which lies on the
top-left corner of the square. The ant is always initialized to the center point (0, 0) of the square to start from, with uniform
noise (U(−0.1, 0.1)) added. The state space is 29D and the action space is 8D. The maximum steps for evaluation is 500.
Hard reset will happen after every 2e5 steps. In the whole training process we performed, it reset 4 times in total.

A.2. Baseline Implementations

IBC : We use the official implementation from authors4 and keep hyperparameters unchanged.

MEDAL : We follow the official implementation of MEDAL5 and use the deafult setting for experiments. Since MEDAL
requires demonstrations, for tasks from EARL benchmark, demonstrations are provided. For other environments, we
generate demonstrations by executing the final trained MoReFree to collect data. 30 episodes are generated for each task.

Oracle : This is a episodic SAC agent, we use the implementation from MEDAL codebase and keep all the hyper-
parameters unchanged.

MoReFree Our agent is built on the model-based go-explore method PEG (Hu et al., 2023), we extend their codebase 6

by adding back-and-forth goal sampling procedure and training on evaluation initial and goal states in imagination goal-
conditioned policy training. See our codebase in the supplemental.

A.3. Hyperparameters

Train ratio (i.e. Update to Data ratio) is an important hyper-parameter in MBRL. It controls how frequently the agent is
trained. Every n steps, a batch of data is sampled from the replay buffer, the world model is trained on the batch, and then
policies and value functions are trained in imagination. In all our experiments, we only vary n on different tasks. See the
table below for different values on different tasks we used through experiments. MoReFree also introduces a new parameter
α, which we keep α = 0.2 for all tasks and did not tune it at all. All other hyperparameters we keep the same as the original
code base.

PointUMaze 2
Tabletop 1

Sawyer Door 5
Fetch Push 2

Fetch Pick&Place 2
Ant 2

Table 2. Different train ratio we used for different tasks. We keep all other hyperparameters the same as default ones.

A.4. Resource Usage

We submit jobs on a cluster with Nvidia 2080, 3090 and A100 GPUs. Our model-based experiments take 1-2 days to finish,
and the model-free baselines take half day to one day to run.

3https://github.com/edwhu/mrl
4https://github.com/snu-larr/ibc_official
5https://github.com/architsharma97/medal
6https://github.com/penn-pal-lab/peg

12

https://github.com/edwhu/mrl
https://github.com/snu-larr/ibc_official
https://github.com/architsharma97/medal
https://github.com/penn-pal-lab/peg

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2024

B. More Visualizations on Replay Buffer
We visualize the replay buffer of different agents on more tasks. See Figure 9 for xy location data of the agent in PointUMaze
and Figure 10 for xy location data of the object in Fetch Push and Fetch Pick&Place. Overall, we see MoReFree explores
the whole state space better, and has much more interactions with the object. Meanwhile, due to back-and-forth procedure,
MoReFree collects many data near initial / goal states, which are important for the evaluation.

Figure 9. State visitation heatmap on point maze. MoReFree has special focuses on both initial state (blue circles) corner and goal state
(red circles), while explore much uniformly. MEDAL collects lots of data near the goal state and little data on the initial state. Both
MEDAL and Oracle explore less extensively.

Figure 10. Object state visitation heatmap on Fetch Push (left) and Fetch Pick&Place (right) of different agents. MoReFree better explores
the whole state space, while IBC and MEDAL do not have too much interactions with the object, thus lighted areas are scattered
everywhere.

C. Detailed Ablations
We report learning curves for each variant agent we ablate in Section 5.2 on every task in Figure 11. Since MoReFree does
not learn at all in Saywer Door task, we exclude the ablation for it. In each task, MoReFree is better or on par with all other
ablations. Through learning curves, we see different components contribute differently on different tasks.

We further analyze the ablation on PointUMaze as an example by visualizing the replay buffer of different variants, see
Figure 12. In the performance on PointUMaze from Figure 11, sampling exploratory goals for data collection is important

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2024

Ablation

PointUMaze Tabletop Fetch Push AntFetch Pick&Place

Figure 11. Learning curves of ablation study on 5 tasks. We see different components contribute differently in different tasks. For instance,
in Tabletop, MF w/o Imag. even performs better than MoReFree, maybe because the whole state space can be explored quickly, then
randomly sampling states from the replay buffer as goals for training already has good coverage on evaluation initial / goal states.

(MF w/o Explore & Imag. outperforms other ablations). But we see in 12, MF w/o Explore & Imag. does not have focus on
the initial / goal state which we care about for the evaluation, which makes it slightly worse than MoReFree. MF with Only
Task Goals has a strong preference on initial / goal state, we think it is because in the later phase of the training when the
agent is able to solve the task, it goes back-and-forth consistently to collect data. But in the early phase of the training, it
might lack exploration which causes the degraded performance compare with MoReFree. MF w/o Explore and MF w/o
Imag. only either go to initial / goal state for data collection and do not practice on it during the imagination training, or
practice without really going, which both does not form the positive cycle, and end up with poor performance.

Figure 12. State visitation heatmap on PointUMaze task of all ablations. Red circles are evaluation goal states and blues are initial states.
We see MoReFree collect good amount of data near initial / goal states while stronger exploration. MF w/o Explore and MF w/o Imag.
could not gather task-relative data, which further causes poor performance.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2024

D. MBRL on Sawyer Door
We investigate why MoReFree fails on Sawyer Door tasks. Note that MoReFree is able to solve intermediate goals such as
closing the door in some angles, but is unable to solve the original IBC evaluation goal (see website for more videos).

We simplify Sawyer Door task by limiting the movement range of the robot to a box and also have the robot hold the door to
prevent it from opening it too much, see Figure 13. Although MoReFree is trained on the simplified environment, we see the
learning curve of MoReFree on Sawyer Door is completely flat in Figure 3, compared with other baselines trained on the
original task. We wonder why MoReFree can show the same performance and gain benefits as it does in other environments.

MoReFree uses DreamerV2 as a backbone agent and extends it to reset-free settings. We hypothesize that Dreamer itself,
even under the episodic setting with task reward function, would not work well. If that’s the case, then MoReFree in
reset-free setting with self-supervised reward function would almost certainly not work either. For example, if the backbone
agent cannot model the dynamics precisely, then policy learning, dynamical distance reward learning, will be degraded.

Figure 13. Simplified version of Sawyer Door. Orange walls show the limited workspace for the robot arm, and a grey wall is added to
limit the movement of the door. The door can only move to maximum 60 degrees.

Figure 14. Performance of DreamerV2 and V3 on episodic Sawyer Door task. SAC can solve the task in 200k steps, while after 1 million
steps MBRL is still not able to steadily solve the task.

We then run the underlying MBRL backbones under the episodic setting. Figure 14 shows DreamerV2 7, and Dreamerv3 8

struggle to solve the task, while Model-free method SAC can steadily solve the task after 200k steps. This might be a
potential reason that MoReFree does not work on more difficult setting, which is reset-free and reward-free. We hypothesize
that the combination of the sparse environmental reward and dynamics of the door result in a hard prediction problem for
world modelling approaches. We leave further investigation for the future work.

7https://github.com/danijar/dreamerv2
8https://github.com/danijar/dreamerv3

15

https://github.com/danijar/dreamerv2
https://github.com/danijar/dreamerv3

