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ABSTRACT
Modern embedded technology is a driving factor in satellite minia-
turization, contributing to a massive boom in satellite launches
and a rapidly evolving new space industry. Miniaturized satellites
however su�er from low reliability, as traditional hardware-based
fault-tolerance (FT) concepts are ine�ective for on-board comput-
ers (OBCs) utilizing modern systems-on-a-chip (SoC), and larger
satellites continue to rely on proven processors with large feature
sizes. So�ware-based concepts have largely been ignored by the
space industry as they were researched only in theory, and have
not yet reached the level of maturity necessary for implementa-
tion. �erefore, we present the �rst integral, real-world solution
to enable fault-tolerant general-purpose computing with modern
multiprocessor-SoCs (MPSoCs) for space�ight, thereby enabling
their use in future high-priority space missions. In this contribution,
we focus on the �rst stage of a multi-stage approach, o�ering short-
and medium term FT using coarse-grained thread-level lockstep-
ping with only a minimal performance degradation. We provide
practical benchmark results indicating a beyond factor-of-5 perfor-
mance increase over state-of-the-art radiation-hard OBC designs.
On overview over the other stages which utilize FPGA recon�gura-
tion and mixed criticality to extend the lifetime of spacecra� with
aged or degraded OBCs is also provided. �e presented approach
was developed for a 4-year European Space Agency (ESA) project,
and we are developing a tiled MPSoC prototype system together
with two industrial partners.

1 INTRODUCTION
Modern embedded technology is a driving factor in satellite minia-
turization, signi�cantly contributing to a massive boom in satellite
launches and a rapidly evolving new space industry. Especially
micro- and nanosatellites (100-1kg) have become increasingly popu-
lar platforms for a variety of commercial and scienti�c applications,
due to an excellent balance of performance and cost. However, this
class of spacecra� su�ers from low reliability, discouraging its use
in long, complex, or high-priority missions. �e on-board com-
puter (OBC) related electronics constitute a much larger share of
a miniaturized satellite than they do in larger satellites, thus per
component they must deliver drastically be�er performance and
consume less energy. �erefore and due to cost considerations,
miniaturized satellite OBCs are generally based upon processors
with considerably �ner feature size, such as those developed for mo-
bile embedded devices. Traditional hardware-based fault-tolerance
(FT) concepts for general-purpose computing are however ine�ec-
tive for scaled technology node systems-on-chip (SoCs), becoming
a prime source of malfunctions aboard miniaturized satellites [1, 2].
Larger satellites, too, are limited by the measures traditionally
used to assure FT for space applications, as these prevent larger
satellites from harnessing the bene�ts of modern processor- and

multiprocessor-SoC (MPSoC) designs with a �ne feature size. Also,
these hardware-based FT-measures can not handle varying per-
formance requirements during multi-phased missions and mega-
constellations [3].

So�ware-based FT measures are e�ective for modern embedded
hardware and have rapidly evolved due to e�orts of the scienti�c
community. However, these advances have largely been ignored
by the space industry as they were researched only mathematically
or in theory, but rarely intended for implementation. While many
of these concepts include innovative ideas, they leave major im-
plementation obstacles unaddressed, and o�en make impractical
assumptions towards the platform or application environment. To
the best of our knowledge, research has not yielded an integral and
practical solution to FT in modern MPSoC based systems, which
enables their use in high-priority space missions. Prior work o�en
covers fault mitigation, but ignores fault detection, recovery from
fail-over, or real-world constraints. Also, most concepts a�empt to
uphold safety and availability, e.g. for atmospheric aerospace use,
but not computational correctness.

Today, there is a wide gap between academic research towards
novel FT concepts and their practical application in spacecra�
OBCs. Satellite command & data handling computers (CDH) for
control purposes are still largely based upon architectures devel-
oped decades ago, while theoretical research has not achieved the
level of maturity necessary to bridge this gap. �us, neither tradi-
tional hardware- nor so�ware-based FT solutions could o�er all the
functionality necessary to improve the reliability of state-of-the-art
embedded SoCs in miniaturized satellite OBCs. Other concepts
promise excellent FT guarantees in theory, but require complex
architectures that o�en do not address the speci�c challenges of
computers �ying in space. Innovations are especially needed in
general-purpose computing, as OBCs must execute a broad variety
of applications e�ciently. �e presented research addresses these
challenges and our main contributions are:

• to our best knowledge, the �rst practical, MPSoC based approach
to FT general purpose computing for space�ight use that oper-
ates within real-world constraints, leaving no conceptual gaps,

• is not based upon a custom or modi�ed instruction set function-
ality or processor designs, and

• can be implemented in full with pre-existing standard platform
toolchains, and minimal development e�ort;

• an in-depth analysis of the �rst stage of our multi-stage ap-
proach, which provides so�ware-de�ned and controlled fault-
detection and short- and medium term fault-coverage;

• performance measurements which show a low performance
overhead and a beyond factor-of-5 performance increase over
the current state-of-the-art in FT space-based computing,

• and an outline of the other stages which combine mixed critical-
ity with recon�gurable logic to enable long-term fault coverage
within a tiled MPSoC architecture.
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We developed this approach for a 4-year European Space Agency
(ESA) project, and designed an optimized, FPGA-based MPSoC
architecture as platform for the presented approach with two in-
dustrial partners. Due to the interdisciplinary nature of this project,
each stage, the MPSoC architecture, and the actual radiation-tested
prototype OBC will be presented in separate publications.

In the next section, we will outline related work and its limita-
tions which have resulted in the outlined gap between research
and space computing. Section 3 describes the challenges and con-
straints of the space environment in which our approach must
guarantee FT operation, our optimized MPSoC architecture, as
well as terminology. Section 4 - 7 contain a high-level overview
of the multi-stage FT approach, and an in-depth analysis of the
�rst stage. Section 8, contains benchmark results. Discussions
on aspects beyond the scope of this paper, a brief outlook on the
prototype implementation schedule, and conclusions are given in
Sections 9 and 10.

2 RELATEDWORK
Radiation-hardened processors for space applications are based
on proven manufacturing processes with a large feature size and
hardware-FT, at the cost of e�ciency and energy consumption. Tra-
ditionally, dual- and triple-modular redundancy (DMR and TMR)
is implemented at the circuit- [4], RTL- and pipeline- [5, 6, 7, 8],
core- [9, 10], and OBC-levels. Especially at the RTL- and circuit-
level, the required voter-logic can not adequately report faults and
instead suppresses them, making it di�cult or impossible to assess
the health-state of such a component. �us so�ware is unaware
that it is being executed redundantly and takes no active part in
fault-mitigation except for monitoring fault-counters and status
registers. At core level and above, vast arrays of synchronized
high-frequency voters are necessary to implement such solutions,
and these are impractical beyond few hundred MegaHertz [9]. At
GigaHertz clock frequencies, core lock-stepping has thus only been
implemented with specialized processor cores and costly, custom
IP-based SoCs [9]. �e space industry has considerable experience
designing FT solutions this way, but it results in single-vendor
walled-garden solutions which proved to be costly to develop,
maintain, and validate, as well as slow to evolve. Hence, RTL-
and pipeline-level voting are only e�ective for comparably simple
microcontroller designs, whereas coarser voting levels are costly
and infeasible aboard miniaturized satellites. FT MPSoCs for space
use are still largely at an experimental stage [11, 12, 13], and the
only commercial implementations contain retro��ed single-core
processors [6, 14]. To avoid the above mentioned technical con-
straints, our approach does not rely on hardware-TMR, but instead
utilizes so�ware-side functionality.

Coarse-grained lockstepping can be a powerful so�ware-side
FT measure, if applied to space computing. First practical non-
space applications are promising but at an exploratory stage [15],
or do not address the speci�c challenges to FT in space [16]. Un-
fortunately, most implement checkpoint & rollback or restart ap-
proaches, which makes their use in CDH applications di�cult or
impossible [17]. Most research which does not rollback faults is at
an early theoretical stage [18], or entails an extreme performance-,
or resource overhead [19]. Outstanding, promising concepts such
as [15] still impose unreasonable design constraints on so�ware

and the operating system (OS), and ultimately do not implement
so�ware-side but only hardware-assisted, so�ware-controlled FT.
Another notable exception is COLO [16] which can only assure
availability, but requires no modi�cations to the application so�-
ware, lives entirely in so�ware and requires li�le custom code.
�us, we consider coarse-grained lockstepping the way forward
for space-based FT, but our approach does not utilize it to roll
back operations and requires modi�cations only in two, distinct
OS components. We allow the application developer to specify
comparison points and utilize coarse-grained lockstepping to im-
plement forward error-correction, utilizing known-correct results
from a majority decision for recovery.

Other so�ware-based FT approaches have advanced rapidly
over the past decades. �ough even the most complete FT concepts
exist only in theory [20, 21, 22, 23], and do not address funda-
mental practical issues [24, 25, 26, 27, 28] such as fault detection
[23]. While these contributions do not provide practical or imple-
mentable approaches, they do show how issues such as real-time
scheduling in mixed critical so�ware-FT systems can be solved
e�ciently [22, 29]. Some works also address peripheral concerns
when deploying so�ware-side FT, e.g. performance estimation [30],
or QoS [31]. None of this prior research o�ers a single, viable and
practical solution to assure FT of modern low feature-size MPSoCs,
but each publication does treat individual issues which must be
addressed if so�ware-side FT is used. As such, our approach in-
corporates several of these ideas to assure scalability, compliance
with timing-constraints, and enable task migration in mixed critical
systems.
3 PLATFORM AND ENVIRONMENT
Here, we describe the application environment and platform ar-
chitecture for our multi-stage FT approach. �e threat-scenario
for MPSoCs in satellite OBCs is drastically di�erent than in most
other application �elds for embedded FT. Even in atmospheric
aerospace, FT primarily implies fail-over and availability instead of
computational correctness. �us, the outlined gap between theory
and application can in part be a�ributed to unawareness of the
challenges to FT in space. We brie�y present the main challenges
to OBC dependability and conceptional constraints below. �en we
will provide an overview of the architecture we have developed as
a platform for our approach, and �nally introduce the terminology
used throughout the rest of the paper.
3.1 �e Space Environment
Scienti�c and commercial space missions in the past o�en required
large, custom designed spacecra� to accommodate the individ-
ual mission payload and maximize lifetime. Due to innovations
in chip and electronics design, material science, and cost consid-
erations, many modern instruments have modest performance
requirements. �ese can be be�er satis�ed by cheaper, less com-
plex and (comparably) quick to build miniaturized satellites, for
which pre-�ight testing and the actual launch is possible at a frac-
tion of the costs of a larger satellite. OBCs for such satellites are
tightly constrained in size and mass, limiting design �exibility and
minimizing slack-space. Due to the emergence of formation �y-
ing and mega constellations consisting of hundreds of satellites,
the reliability constraints of more a�ordable modern embedded
hardware have also become critical for the space industry.
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Solar cells are the main power source aboard modern space-
cra�. �e spacecra�’s orbit, location and orientation (a�itude)
relative to the Sun, and the solar array’s temperature all in�uence
the e�ciency of its solar array. �e average sustainable power
consumption over time (power-budget) aboard a satellite is there-
fore very limited, and engineers are pressed hard to minimize each
individual subsystem’s energy consumption. Miniaturized satellite
OBCs are usually limited to a few Wa�s of power-budget, thus most
FT approaches for ground application are not viable for spacecra�.

Mid-mission physical access to a spacecra� is impossible, and
historically satellite servicing missions were conducted only on
rare occasions for satellites of outstanding importance in low-Earth
orbit (LEO). Also, signal-travel times, limited communication win-
dows, and scarce bandwidth make live-interaction with a spacecra�
impractical. �us, faults detected during a satellite mission must
be resolved una�ended, remotely, and fully autonomously.

About 20% of all anomalies [32] aboard satellites can directly be
a�ributed to high-energy particles, and they are the predominant
cause for faults within OBCs. �ese particles travel along the
Earth’s magnetic �eld-lines in the Van Allen belts, are ejected by
the Sun during Solar Particle Events, or arrive as Cosmic Rays from
beyond our solar system. In LEO, the residual atmosphere and the
Earth’s magnetic �eld provides some protection from radiation, but
this absorption e�ect diminishes quickly with altitude. �erefore,
an OBC will be penetrated by a mix of highly charged particles,
with �ux density depending on solar activity and the spacecra�’s
a�itude. �ey can induce a variety of electrical phenomena in OBC
components and supporting electronics:
• Single Event E�ects (SEE) - particle deposited electrical charges

and local ionization can result in incorrect logical operations,
bit-�ips within data-storage cells and connecting circuitry.

• Displacement Damage (DD) - very high energy particles can also
induce permanent la�ice displacement within a chip’s crystalline
components, hence processor logic.

• Total Ionizing Dose (TID), is a cumulative charge trapping ef-
fect in the oxide of electronic devices, eventually resulting in
a spontaneous electric discharge between components, which
can be mitigated through power-cycling.
�e impact of these e�ects on di�erent microfabrication pro-

cesses, substrates, and memory technologies varies. In general,
electronics with a large feature size are more resilient to radia-
tion e�ects than those manufactured in �ner production nodes.
Highly scaled chips are susceptible to multi-event upsets, SEEs
propagating within circuits corrupting entire memory blocks or
larger circuits. �e increased impact of radiation e�ects on �ner
feature size chips also prevents be�er protection through more
circuit-level protection.

Radiation events can also cause Single Event Functional Inter-
rupts (SEFIs), a�ecting sets of circuits, individual interfaces, or
even entire chips. In general, the e�ects of SEEs and SEFIs can be
transient, while DD is permanent and accumulative [33]. Physical
shielding can reduce certain radiation e�ects, but is infeasible even
aboard medium sized spacecra� due to mass constraints.
3.2 Platform Architecture
As depicted in Figure 1, our MPSoC implements an asymmetric
tiled architecture. We developed this architecture to be an ideal
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Figure 1: A simpli�ed representation of our 8-core tiledMP-
SoC architecture with memory controllers highlighted in
yellow, memory scrubbers in green, and the interconnect in
blue. A dedicated interface on each tile allows the external
supervisor access to the local interconnect.

platform for our approach and designed it for FPGA use. How-
ever, the architecture and our approach can also be realized on
an ASIC, and one of our industrial partners will focus on an ASIC
based implementation. Each tile is equipped with a processor core,
an interrupt controller (IRQ in the �gure), a dedicated on-chip
memory slice, and several peripheral interfaces through the local
interconnect. We refer to this dedicated on-chip memory slice as
validation memory. Tiles are connected through an I/O memory
management unit (IOMMU) and a global interconnect to main- and
non-volatile memory. �ey can not access the local interconnect
of other tiles to prevent interference and minimize shared logic.

�e main memory is split into several segments: each tile has
write-access to its own segment, and can read the global shared
code segment. Each tile’s main memory segment, validation mem-
ory, and its interfaces are mapped to the same tile-local address
ranges. At the thread-level, the address-space in each tile is identi-
cal. �e application and OS code is thus tile independent, allowing
all tiles to share the same code segment. Data integrity in the
architecture is assured using several error correction measures:
• To reduce the strain on the memory subsystem and increase

overall system performance, processor cores are equipped with
caches. As cached data has an extremely short lifetime, SECDED
codes (error-correcting codes - ECC) o�er su�cient protection
from radiation induced upsets.

• �e dual-port validation memory in each tile holds the cur-
rent tile-status (active, needs update ,…), as well as the thread-
checksums and state information. As this data is critical to the
system’s reliability, we utilize stronger Reed-Solomon based
ECC, as this erasure coding system has shown superior perfor-
mance in protecting highly-scaled SDRAM memory compared to
SECDED codes [34]. ECC-fault syndrome interrupts are handled
by each tile’s processor. One interface is connected to the tile’s
local interconnect, while the second port is read-only accessible
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via the global interconnect. �e validation memory is inherently
redundant, as threads are executed on at least two tiles.

• �e shared main memory is redundant. Both instances are
connected to the global interconnect, and ECC protected like
the validation memory. ECC-fault syndrome interrupts for main
memory are handled by the supervisor.

• Non-volatile memory is implemented redundantly as well. Our
full prototype is designed to utilize MRAM [35] and PCM [36],
both inherently immune to gradual data degradation caused
by radiation. However, data can still be corrupted due to so�-
ware issues and faults in the interface logic. Several solutions
to address these issues have been developed, which usually are
implemented at the block- or �lesystem level and rely upon a
system of checksums and composite erasure coding [37, 38, 39].
�rough these solutions we can enable e�cient and computa-
tionally inexpensive FT data storage for application data and
program code even during long-term missions.

All these memories are susceptible to SEFIs and DD, but such faults
are covered through redundancy. We perform error-scrubbing to
avoid accumulating bit-�ips in rarely used memory.

Faults detected by our approach are relayed to an o�-chip su-
pervisor, which is connected to each tile. �e supervisor can then
restore a tile’s state or replace faulty tiles. In modern MPSoCs
where processor cores run at GigaHertz clock frequencies, supervi-
sion is non-trivial as radiation-hard microcontrollers can not reach
such high speeds. However, the �rst stage of our approach enables
a reduction of the necessary lockstepping frequencies far below
the KiloHertz range. �us, high-performance MPSoCs utilizing
our approach can very well be controlled using COTS supervi-
sors. Hence, we can utilize a pre-existing, proven low-performance
radiation-hardened microcontroller as supervisor.

Supervisor access to memory and other devices is possible via a
MUXed AXI bridge in each tile to reduce the necessary pin count.
To prevent malfunctioning tiles from interfering with the shared
memories, the supervisor can detach tiles from the global intercon-
nect by disabling their IOMMU. �e supervisor also controls the
other stages of our approach.

3.3 Application Model and Terminology
Fault detection in our approach is based upon sets of tiles running
two or more lockstepped copies of application threads. We refer
to such a group of lockstepped threads as a thread group. Timing-
compatible thread groups can be combined and executed on the
same set of tiles, and are then referred to as a tile group. A tile
group periodically executes a checkpoint routine, which computes
checksums for all active threads and compares them with the other
tiles in the group (siblings), thereby enabling a majority decision.
�eir relation is depicted in Figure 2.

A thread group can be executed on two tiles, enabling consis-
tency checking as supervised DMR group. For many space appli-
cations this is su�cient, as they will �rst a�empt to switch to a
secondary CDH instance. �ree tiles in a tile group assure com-
putational correctness through TMR. More advanced setups are
possible with 4 or more tiles, e.g. Byzantine agreement [40]. No
alterations to the MPSoC or the so�ware are required to support
these advanced voting scenarios, as only the supervisor has to be
aware of the actually used algorithm.

Thread
Group

Thread
Group

Tile TileTile

Thread 0 Thread 0 Thread 0

Thread 1 Thread 1 Thread 1

Tile Group

Figure 2: Timing-compatible thread groups (yellow) can be
combined into tile groups, and multiple tile groups can co-
exist in the same MPSoC.

A thread can provide the system with four callback routines,
which are executed during tile initialization or by the checkpoint
handler:
• an initialization routine, to be executed on all tiles at bootup,

even on tiles where these threads are initially inactive.
• a checksum callback, used to generate a checksum for compari-

son with siblings,
• a synchronization callback, exposing all thread-state relevant

data to synchronize a sibling with a tile group;
• and an update callback, which is executed on a tile that needs

to synchronize its state to a tile group.
Besides the checksum generated by each checksum callback, the
checkpoint handler also generates an additional checksum for
global operating system metadata.

A lockstep cycle ends with a checkpoint, and the length of a cycle
(the checkpoint frequency) is de�ned by the threads in a tile group. It
can be modi�ed at runtime, and must be updated if a thread is added
or removed from a group. Schedulability, timing conformity, and
deadlock-avoidance have been extensively researched in literature,
e.g. in [22].

Our approach is designed for generic COTS MPSoCs, as these are
readily available in a variety of performance classes at low cost. �is
is particularly important for miniaturized satellite applications, as
these spacecra� are usually equipped with only one mobile-market
MPSoC, for CDH and payload processing. �e tiled architecture
described above is thus optional but we consider it an ideal platform
for this approach. In MPSoCs without a tiled architecture, the word
tile can be substituted and read as processor core.

4 BRIDGING THE GAP: OUR APPROACH
To the best of our knowledge, this is the �rst integral and practical
approach which can enable the usage of modern MPSoCs within an
environment as hostile and isolated as space, and is not dependent
on custom processor designs or circuit level FT. Our multi-stage
FT approach provides the fault-coverage necessary for current and
future CDH applications, while also o�ering su�cient performance
and scalability to handle challenging payload tasks. �is approach
consists of three fault-mitigation stages:
• �e �st stage is implemented entirely in so�ware and provides

fault-detection through coarse-grained lockstepping. �e nec-
essary code can be implemented in commercial o� the shelf
(CTOS) MPSoCs.

• �e second stage improves medium-term reliability, and enables
long-term fault-coverage through FPGA recon�guration and the
use of alternative con�guration variants.
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• �e third stage extends the lifetime of a degraded OBC beyond
the point where it would usually become unusable by utilizing
mixed criticality.

Our approach delivers high performance and strong fault-coverage
for modern MPSoCs which up until now are considered unsuitable
for high-priority space missions due to their low reliability.

�e �rst fault-mitigation stage is implemented in the scheduler,
and lockstepping is instruction set and processor design agnostic. It
o�ers so�ware-controlled, thread-level, distributed majority voting
and �ne-grained fault logging. �e checkpoint frequency necessary
to assure a desired level of fault-coverage can be adjusted at run-
time. �e supervisor only receives information about agreements
between tiles from each processor’s perspective, without centrally
assessing the system state itself. Instead of exerting direct control
over the MPSoC, it can assure FT indirectly, as fault-coverage and
control are distributed and enforced by the tiles themselves. In
consequence, the supervisor does not require any knowledge about
the executed application threads, an individual tile’s state, or other
OBC intrinsics. �e thread group assignment within an MPSoC
can be recon�gured freely at runtime to implement di�erent voting
con�gurations, while su�cient intact tiles are available. �us, the
described approach can exploit parallelization to improve reliabil-
ity, throughput, or minimize power consumption. It can also take
advantage of frequency-voltage scaling and various power manage-
ment features to adapt to di�erent operating conditions. �erefore,
the system’s FT guarantees and performance can be adjusted per
thread to meet varying latency, energy consumption, throughput
requirements or enable speci�c interfaces when needed, thereby
allowing the system to adapt to multi-phased missions. �is stage
relies on the presence of spare tiles and tiles with spare processing
capacity to replace faulty tiles.

�e second stage is designed to recover faulty tiles by reprogram-
ming corrupted SRAM- or �ash memory components (BRAM and
LUTs) and re-purposing permanently defective logic cells within an
FPGA. As FPGA-fabric is inherently redundant, we can utilize it to
improve the survivability of an OBC. Bit-�ips can a�ect the content
of logic cell LUTs, which can usually be repaired through recon�g-
uration [41, 42]. Even if a logic cell is damaged permanently, the
residual FPGA-fabric will remain intact and can be re-purposed
[43], reprogramming it with di�erently routed, functionally equiv-
alent con�gurations. As e�cient fault-detection at the FPGA-logic
level is an unsolved issue, the second stage instead utilizes the
extensive fault-detection capabilities of the �rst stage.

�e third stage utilizes thread-level mixed criticality to stabi-
lize the system and extend the OBC’s lifetime, as the other stages
can only o�er fault coverage if enough healthy tiles are available.
In strongly iradiated FPGAs, the system will thus eventually be
unable to provide su�cient FT processing power for all applica-
tions. Performance degradation or even a loss of lower-criticality
tasks aboard a satellite is in general preferable to a loss of system
stability or degradation of the most important satellite control ap-
plications. Applications in a satellite’s CDH system are thus clearly
prioritized in criticality. �is stage can uphold fault-coverage for
high-criticality applications by sacri�cing compute performance,
increasing latency, or decreasing the checkpoint frequency of lower-
criticality tasks to uphold reliability for high-criticality threads.

5 STAGE 1: SHORT-TERM FAULT HANDLING
�e program �ow of this stage is depicted in Figure 3, and can be
implemented within the scheduler of an existing OS. In fact this �g-
ure is directly derived from our proof-of-concept implementation,
and we will explain each element of the �gure individually below.
As depicted, the execution �ow can be subdivided into three parts:
tile and application initialization, checkpoint execution, and appli-
cation processing. �e only necessary modi�cations to an OS to
implement this code are highlighted in blue. �e additional checks
during application processing are can be added to the scheduler,
while the rest can be implemented as interrupt service routine (ISR).
�us, code additions are necessary only in two locations in the OS.
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Figure 3: �e execution cycle of a tile during the �rst stage
of our multi-stage FT approach. All code necessary for im-
plementation is highlighted in blue, callbacks in yellow.
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Below, we will step through the depicted program �ow and
provide formal timing de�nitions for all recurring operations. �e
time required for an action is indicated as τaction . As tile bootup
and application initialization are one-time operations, they have
no direct impact on the runtime performance of our approach. A
practical example for tile fault handling and recovery is provided at
the end of this section to illustrate the depicted logic’s behaviour.

5.1 Bootup & Initialization
A�er bootup, a tile �rst executes basic self-test functionality to as-
sure integrity of tile-local IP-cores, its interfaces, and the integrity
of the validation memory. Each thread can provide an initialization
routine to be executed when the OBC is booted, which is labelled
as �read Init in Figure 3 and denoted as Tinit in Figure 4. Most
applications will spend a signi�cant amount of time with bootstrap
and initialization. Re-executing these operations each time a new
tile is added to its tile group would be ine�cient and needlessly
in�ate an application’s state data. Each thread’s initialization rou-
tine is executed on all tiles, even on tiles where these threads are
initially inactive. �is behaviour increases the overall OBC mem-
ory consumption, but allows a drastic reduction of the time and
data necessary for synchronization.

During application initialization, each thread will register its
checkpoint frequency requirements and the callback routines which
are needed in the subsequent steps. A�er these callbacks have been
executed, the tile will set a periodic timer to initiate checkpoints. As
depicted in Figure 3, each tile will execute its �rst checkpoint, if the
entire MPSoC has just been booted to assure that application and
OS initialization were successful. At this point, all lockstepping-
relevant information has been initialized and stored in validation
memory, and the scheduler can be le� in control.

5.2 Checkpoint Start
A checkpoint can be induced by the described timer interrupt
or by the supervisor. �e checkpoint ISR will invoke the actual
checkpoint routine, as the operations possible within an ISR are
constrained in most popular instruction set architectures. �e ISR
is therefore only responsible for performing a context switch to
system- or kernel mode and entering the checkpoint handler.

�reads can be executed in an arbitrary order within a lockstep
cycle. However, interrupting an active application at a random
point in time is usually undesirable, as outlined in [15]. We avoid
this and the entailing thread-synchronization issues worked around
in [15], as in our approach the application developer can de�ne
comparison points, where the application will yield control to the
checkpoint handler. A thread can thus delay interrupt processing
until it has reached a safe state for checksum comparison. �ereby
introduced time variances are handled in Section 5.4.

5.3 Checksum Computation
�e checkpoint handler will then iterate through all siblings’ valida-
tion memories, and invoke each active thread’s checksum callback,
requiring τCS time to generate each checksum. As there is no
e�cient, uniform approach to assess the health of a thread, we
chose to rely on the application to assess its own health-state or ex-
pose state-relevant information to the system for comparison. �e
generated checksums are re-computed upon each checkpoint, ac-
cording to the thread group’s lockstepping frequency. �eir format

and algorithm can be de�ned by the system designer to optimize
for performance or fault-detection. Four options are o�ered for
generating a checksum:

(1) �e checkpoint handler by default invokes an application pro-
vided callback routine which returns a checksum. �e time
required to generate such a checksum can be minimized with
slight modi�cations to the application’s code, e.g. by retaining
computational by-products which would usually be discarded.
�us, the application developer’s cooperation is necessary, as
the application code must be adapted to provide the necessary
checking functionality. �is approach can yield the strongest
fault-detection guarantees and best performance.

(2) Sometimes, applications wri�en for a spacecra�’s OBC are pro-
prietary and the vendor may be unable or unwilling to extend
the functionality of their so�ware. �us, if no checkpoint rou-
tine was provided, a checksum is computed automatically for
an application-de�ned memory segment. �e application devel-
oper can place state-relevant data within this segment without
altering the actual application logic, through linker scripts or
pre-processor macros. �e main limitation of this approach is
the constrained space in validation memory that can be made
available to an application.

(3) Alternatively, the system developer can also specify individual
memory addresses of variables and data structures for byte-wise
comparison, a viable approach if only few individual variables
must be compared and source-code modi�cations are impossible.

(4) Non-continuously running applications can also deposit state-
relevant data within a dedicated bu�er and return a checksum
when exiting. �is option supports emulating algorithmic diver-
sity and can e�ciently handle sparse, time-triggered tasks.

Usually, only a subset n of all thread groups will be active on a tile,
thus only n+ 1 checksums will be generated and stored in the tile’s
local validation memory (+1 as we generate an extra checksum for
OS metadata). Each newly generated checksum will be stored in
validation memory, and the time necessary to execute this part of
the checkpoint is τдenCS =

∑n+1
(
τCS

)
.

5.4 Checksum Comparison
Once all checksum callbacks have been executed, a tile will mon-
itor the other tile group members’ validation memories for valid
checksums until the system designer’s global, tile-wide deadline
passes (τdeadline ). A tile will usually begin comparing its check-
sums (τcompar ison = (n+1)∗vcmpCS ) with other siblings early on,
and only wait brie�y (τcompar ison ≤ τdeadline ). If a tile detects a
checksum mismatch or a sibling did not provide checksums before
the deadline expires, it will report disagreement with that tile to the
supervisor and stop comparing checksums with this sibling. Tech-
nically, thread-level disagreement reporting is also possible, though
it does not signi�cantly improve voting reliability and restricts the
system’s scalability as it penalizes higher tile numbers. �us, we
chose to implement tile-level voting. Checksum comparison with
a tile’s siblings is thus τvote ≤ τcompar ison + τloadVMn + τcmpCS

It is important to note that the reliability of each individual tile’s
voting decision can be weak, and an individual tile can report false-
agreement or disagreement with its siblings. Our approach takes
this into account, and mitigates it through a distributed decision
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based on each tile’s perspective of it’s siblings’ correctness. As a tile
group will usually consist of three or more tiles, and the likelihood
of false-disagreements or non-reported disagreement is very low,
as multiple concurrent faults would have to occur on several tiles
within the same tile group during a single checking period. �e
probability for such an event is extremely low at all but exception-
ally high radiation levels, and thus statistically negligible unless
a tile group already consisted of tiles with permanent defects. As
the second stage of our approach speci�cally addresses the issue
of permanently defective tile-logic and its recovery, any remain-
ing concern regarding this corner-case can be well addressed by
expanding a tile group to additional tiles.

5.5 �read Disagreement & State Propagation
If a tile detected disagreement with any of its siblings, it will exe-
cute the synchronization routines for all d threads in the a�ected
tile group. �ese routines will copy all data necessary to synchro-
nize a sibling within its tile group to validation memory. �ey
can do so by either placing the relevant data directly in the tile’s
validation memory, or through references to data structures in the
tile’s main memory segment. Hence, an application requires no
prior knowledge about another tile’s memory contents, as it can
utilize the provided references in validation memory. Like with
checksum callbacks, the state synchronization routines should be
provided by the application developer, and the time necessary for
their executions is

∑d τsync . A faulty tile will execute these call-
backs as well, as from its perspective the other tiles are faulty. �is
callback can thus be omi�ed, if all state-relevant data is already
in validation memory. If a new thread group was added to the tile
group, the checkpoint routine will update the checkpoint’s timer
and return control to the scheduler.

�e supervisor will react to disagreement between tiles accord-
ing to the system designer’s recovery algorithm, but faults will
actually be reported by each tile individually through the OS’s
logging facility (e.g. syslog, kernel-bu�er, tile-local UART, …). Di-
agnostics can thus be enriched with application-level information,
which can drastically improve debugging and defect assessment
accuracy. �ereby, we can provide the application developer with
the functionality necessary to make be�er decisions regarding the
spacecra�’s health. Spacecra� operators and system designers no
longer have to assess the consistency and correctness of an appli-
cation’s state, and can instead concentrate on �nding an optimal
FT strategy.

5.6 State Update and�read Execution
When resuming processing, the scheduler will check three condi-
tions: if the tile is member of a tile group and thus active, if it was
newly added to a tile group, and which threads are active. Idle tiles
will immediately enter into a sleep state and are woken up at the
next checkpoint to reduce energy consumption and fault-potential.

In case the tile must update a thread’s state from a sibling, the
relevant application-provided update routine will be executed. �e
faulty tile or its replacement will utilize the data stored by the
synchronization routine to update its own state to the tile group’s
known correct state. �e other siblings will wait for this tile to
update its state for an application developer or system designer
de�ned grace period (τдrace ). Regardless if a tile had to synchronize

with its siblings or wait for one, the time necessary for recovery is∑d τupdate ≤ τдrace .
Once the tile has updated its state using its sibling’s data, its

scheduler can continue to execute applications, and its siblings
wake up and do the same. �is concludes the lockstep cycle.

5.7 Stage 1 Summary
Figure 4 depicts a quad-core MPSoC running a single tile group
on three tiles. In this example, a fault has occurred during the
second lockstep cycle on tile C2, which is subsequently replaced
with the idle tile C3. C3 must then retrieve a copy of the state of
its threads Ta and Tb from another valid sibling. �e replaced tile
can subsequently be rebooted to determine if it is permanently
defective.
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Figure 4: Tile initialization and a complete lockstep cycle in
a quad-core MPSoC implementing the presented logic.

LEO operation will require checkpoint frequencies in the low
Hertz range, and even in strongly irradiated environments below
the Earth’s magnetosphere 1-20 Hertz lockstepping will be su�-
cient for most applications [32]. Hence, the performance impact of
our approach compared to unprotected application execution is low
even in aged or degraded OBCs, and far below the constraints of tra-
ditional hardware-FT. �e time necessary to execute one lockstep
cycle including all described functionality can be formally de�ned
as τtotal = τinitCP + τдenCS + τvote +

∑d τsync +
∑d τupdate .

6 STAGE 2: TILE REPAIR & RECOVERY
Over-provisioning of tiles naturally is ine�cient and can curtail
system scalability especially on FPGA based systems, where tran-
sient faults in the FPGA-fabric can corrupt the programmed logic.
�ere, transients can induce permanent logic-level faults which
can be repaired through recon�guration. �e second stage of our
FT approach utilizes the fault-detection capabilities of our �rst
stage, as no e�ecting and scalable approach to fault detection at
the FPGA-fabric level beyond static TMR has been published to
date. Our tiled architecture can especially bene�t from partial re-
con�guration, as tiles can be placed strategically on an FPGA’s
fabric within di�erent partition borders. Details on the recovery of
faulty tiles, as well as other features possible at this stage will be
discussed in a separate publication.

7 STAGE 3: APPLIED MIXED CRITICALITY
�is stage is designed to extend the lifetime of an OBC implement-
ing our approach, in case the previous stages have depleted all idle
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tiles and insu�cient spare processing capacity to migrate a tile
group is available in the MPSoC. Aboard a satellite, upholding FT
guarantees for a minimal set of mission critical control applica-
tions is usually preferable to running a larger set of applications
on an unreliable system. �e criticality of applications executed on
an OBC can be di�erentiated by the importance of the controlled
subsystems. Also, thread groups can be added and removed from
tile groups, and multiple tile groups can coexist in the same MP-
SoC. Hence, threads can also be migrated between tile groups [23].
We can then utilize mixed criticality to split degraded tile groups
and evacuate high-criticality threads, thereby maintaining strong
FT guarantees for high-criticality applications even if an OBC ap-
proaches the end of its lifetime. �e operators can then de�ne a
more resource conserving schedule for all the tasks executed on
a satellite without rewriting parts of the satellite’s so�ware, the
traditional approach to solving such issues. �ey can then, for
example, reduce on-orbit data pre-processing, and sacri�ce link
capacity or on-board storage space for system stability.

In practice, if a fault was detected and no further spare process-
ing resources are available, other tile groups may be able to execute
individual thread groups of a degraded tile group. �e remaining,
lower-criticality thread groups can then continue execution in a
degraded tile group or be suspended. �ereby, this third FT stage
can extend an OBC’s lifetime and guarantee fault-coverage for high
criticality threads, even if insu�cient healthy tiles are available
within a system and no tiles could be repaired by the second stage.
�us, it also relies upon the fault-detection functionality provided
by the �rst stage to enable the practical use of mixed criticality in
a strongly resource constrained environment.

In the example depicted in Figure 5, initially two tile groups
are executed on one MPSoC with 6 tiles. �e green tile group
consisting of a computationally expensive low-criticality payload
data processing application Td and a shorter but more critical
payload control thread Tc . �e white group consists of mission
critical CDH tasks. Such setups are extremely common in many
space applications and inevitable aboard miniaturized satellites
with only one OBC. Tiles 0, 1 and 2 would still have su�cient
spare capacity to accommodate Tc , but not Td (Tiles 0 and 1 are
not depicted for simplicity). A fault occurred in tile 5 and there are
no idle tiles available. �e lower-criticality task Td thus remains
in a degraded tile group on tiles 3 and 4, which can only detect
but not correct future faults. Tc is migrated to a separate, new tile
group and executed on tiles 2, 3 and 4, maintaining computational
correctness for all high-criticality applications. In our example
we omi�ed that the checkpoint frequencies must be adapted to
accommodate the timing requirements for the CDH group. �e
program code necessary to do so is not particularly complex, and
only the timing properties for the new tile group and the defunct
one must be updated.

8 PERFORMANCE ESTIMATION
To achieve worst-case performance estimations, we developed a
naive and unoptimized implementation of the �rst stage of our
approach in C. �is implementation was wri�en in approximately
800 lines of user-space C-code including benchmark facilities. It uti-
lizes system calls and the POSIX threading library to simulate tiles
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Figure 5: If no additional intact tiles are available, the third
stage of our approach can split defunct tile groups and up-
hold FT guarantees for high-criticality threads.

and thread management. �read-management at this level is com-
putationally expensive, and is drastically faster in a kernel-level
MPSoC based implementation. Besides enabling very pessimistic
benchmarking, this implementation also serves as an excellent
simulator to validate the correctness of the described logic, and
allows be�er debugging than on the actual MPSoC implementa-
tion. Also, this allows to assess the performance of our approach
pessimistically without requiring a full prototype in hardware, as
simulating such a large FPGA design is only viable for debugging
purposes but not for benchmarking.

�e provided benchmark results were generated based on code
derived o� a special CCD readout program used for space-based
astronomical instrumentation. Its speci�cations and program �ow
is based on the NASA/James Webb Space Telescope’s Mid-Infrared
Instrument (MIRI) described in [44]. �is program continuously
reads three 16-bit false-color sensor arrays and stores the results in
a bu�er. It then averages multiple captured frames to optimize the
instruments exposure time and avoid saturated pixels or capture
faint astronomical sources [44]. For each plot, 100 measurements
were taken of the real-time necessary to process 600 1-Megapixel
frames with subsequent processing runs. �e application was
executed with a varying amount of data processing runs in a tile
group at the indicated checking frequencies, and without protection
for reference. Data heavy modes indicate a high amount of post-
processing runs, whereas compute-heavy modes indicate lower
per-thread workload. Benchmark results were generated on a Intel
Core I7 Sandy Bridge-based system with a host kernel’s scheduling
frequency of 1kHz (CONFIG HZ 1000). Binaries compiled with GCC
6.3.1 (20161221) without compiler optimization (-O0).

�is naive implementation of our approach at the application
level on Linux shows median-best performance degradation of 9%
and median-worst degradation of 26%, which are also indicated in
Figure 6a and e in bold. Across all test runs, we measured on aver-
age 80% worst-case and 95% best-case performance compared to the
unprotected reference runtime. �e violin plots – shadows around
the box-plots – indicate the distribution of the measurements to
depict the quality of the measurements taken. As expected, the
performance varies depending on workload, with data-heavy tasks
a-c showing be�er performance. �is too was expected as the �rst
stage’s code consists mainly of function calls, integer operations,
binary comparisons, and jumps. Drastically be�er performance
can be expected in a more optimized implementation at the kernel
level. To put these measurements into context, even a 50% per-
formance degradation on modern MPSoCs will o�er a factor-of-5
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performance increase over state-of-the-art radiation-hardened pro-
cessor designs. Assuming an average performance degradation
between 10% and 20%, our approach can thus allow a modern MP-
SoC to perform drastically be�er than comparable state-of-the-art
solutions, while requiring no proprietary processor design, o�ering
full so�ware-control at a fraction of the development e�ort and
costs.
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Figure 6: Performance measurements for processing 600
frames with di�erent checking frequencies and workloads.

9 DISCUSSION & OUTLOOK
In the current design, the checkpoint handler must assure the
integrity of kernel structures and collect relevant OS metrics di-
rectly. �is is a workaround, as error detection for operating system
metadata is not available in any OS to date, and currently being
developed [45]. �e approach outlined in [46] could automatically
generate EDAC statistics for validation during an OS’s execution,
and would therefore assess the health-state of the OS be�er and
faster.

Our approach assures consistency for each lockstep cycle, but
does not guarantee consistency of data emi�ed by each member of
a tile group. However, peripheral output consistency is a non-issue
aboard all but the smallest miniaturized satellites. OBC interfaces in
most spacecra� are implemented redundantly at great e�ort for FT
reasons, and our architecture inherently provides this redundancy
already. Only for very small nanosatellites, interface redundancy

is o�en impossible due to mass and PCB-space constraints. In such
OBCs, I/O voting can be implemented for peripheral interfaces.

Over the past years, several publications on virtualization-based
FT concepts were published, though these results are at an early
stage [47, 48]. �e miniaturized satellite community, too, is begin-
ning to discover the advantages of virtualization for fault-tolerance,
but relevant research projects have just been initiated [49]. As our
approach is implemented in the OS scheduler, it would also be
possible to implement it within a hypervisor. An implementation
within a hypervisor would enable the described functionality at
the virtual machine-level instead of for threads, thereby enabling
an entirely new application area. Most functionality necessary to
implement our approach at that level is similar or identical to the
logic described in this paper.

Due to the basic design of our approach, the supervisor can
also handle MPSoCs distributed across multiple FPGAs or ASICs.
A multi-chip setup can drastically increase an OBCs resistance
against SEFIs, permanent device failure, and improve scalability. It
allows considerably higher tile counts and tighter real-time guar-
antees, if needed. In such an OBC, one instance of each redundant
memory controller can be placed on each chip, which enables it
to tolerate even complete chip-level failure. It would also allow
one half of an FPGA-based OBC to continue processing una�ected
while the other chip was reprogrammed, thereby enabling seam-
less operation during a full FPGA-recon�guration. We are aware
that additional logic is necessary for such MPSoC designs, and the
global interconnect would have to be split between multiple chips.
A three-level interconnect (tile-local, chip-local and global) would
also be advisable due to overall system performance considerations.
Of course, multi-chip MPSoCs require more PCB space and energy,
which makes them suitable for larger satellites.

We are currently porting the presented FT stage to the ARM
platform, as our MPSoC is based upon ARM Cortex-A/R cores. We
plan to make this port available to the public under an open license
at a later point during the project. Once the port has been com-
pleted we will gradually improve system performance, increase
tile count, and reduce tile group volatility. In the third quarter of
the project, we will migrate our MPSoC from an FPGA develop-
ment board to prototype hardware with miniaturized satellite and
space-industry relevant interfaces. Once this prototype hardware is
available, it will undergo radiation testing to assess its performance
in a space-like environment.

10 CONCLUSIONS
In this contribution, we presented to our knowledge the �rst prac-
tical and integral multi-stage approach to fault-tolerant general
purpose computing for space�ight use, which operates within
real-world constraints and does not leave conceptual gaps. We
showed that our approach is programmatically simple and requires
a minimal amount of custom code, which can also be implemented
in most pre-existing multi-threading capable operating systems.
Faults can be detected and mitigated using application provided
routines, enabling decisions about an application’s integrity to be
taken by the application developers themselves. In consequence,
the system designer no longer must struggle to assess the health of
each individual application’s state, and instead can focus on deter-
mining an optimal solution to problems at hand. It allows �exible

9



fault-detection, mitigation and recovery within COTS MPSoCs,
laying the foundations for fault-tolerant computing aboard minia-
turized satellites and helping to bridge the gap between theoretical
embedded research and practical implementation in the space in-
dustry. While remaining �exible, and inducing only a minimal
performance overhead, the presented multi-stage approach can
uphold time-bounded real-time guarantees. �e approach can be
well complemented with several other reliability improving mea-
sures which were integrated into the outlined reference MPSoC
architecture. Preliminary benchmark results of an unoptimized
implementation show a low performance overhead, suggesting
a beyond factor-of-5 performance increase over state-of-the-art
radiation-hardened processors for space use. Our approach allows
the host platform to scale vertically (more powerful processor cores
and more interfaces per tile) as well as horizontally (more tiles),
with virtually any modern processor core. �ereby, we aim to
increase acceptance for these measures in the space industry, build-
ing trust in hybrid HW-SW architectures and present an example
to develop realistic FT concepts for space applications. �us, our
approach is the �rst integral, real-world solution to enabling fault-
tolerance with modern MPSoC designs, thereby enabling the use
of such architectures in future high-priority space mission.
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