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ABSTRACT

Given a database of graphs, a graph mining algorithm searches

for substructures that that satisfy constraints such as min-
imum frequency, minimum confidence, minimum interest
and maximum frequency. Examples of substructures in-
clude graphs, trees and paths. For these substructures many
mining algorithms have been proposed. In order to make
graph mining more efficient, we propose to use the “quick-
start principle” exploiting the fact that the various sub-
structures are contained in each other. In the search for
sub-structures, first paths are considered, then paths are
transformed to trees and finally trees are transformed to
graphs. In this way one can use more efficient algorithms
for the simple substructures and only use the advanced al-
gorithms when they are really needed. We implemented
a new GrAph/Sequence/Tree extractiON (GASTON) algo-
rithm based on this principle and we present results on min-
ing a large molecular database.

Keywords
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1. INTRODUCTION

In recent years data mining of complicated structures such
as graphs, trees, molecules, XML documents and relational
databases has attracted a lot of researchers. Especially
the idea of discovering all frequent substructures of such
databases has recently led to a large number of specialised
algorithms for mining paths, trees and graphs in databases
of trees or graphs. In this paper, we aim to take this re-
search a step further by investigating the interdependencies
between these patterns. Experiments on small molecular
databases reveal that the largest numbers of frequent sub-
structures in such databases are actually free trees. Free
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trees are much simpler structures than general, cyclic graphs,
and many efficient algorithms exist for free trees. Therefore,
we investigate the possibilities of quickstarting the search for
frequent structures by integrating a frequent path, tree and
graph miner into one algorithm called GASTON.

The main challenge in the development of this algorithm
is how to split up the discovery process into several phases
efficiently. Ideally, the algorithm should behave like a spe-
cialised free tree miner when faced with free tree databases,
but should also be able to deal with graphs databases ef-
ficiently. In this paper, we show how this can be done,
and we show that the application of the Quickstart prin-
ciple can indeed make a difference in performance. We use
GASTON to mine the NCI’99 database for frequent substruc-
tures and successfully compare the time efficiency of our al-
gorithm with a number of state-of-the-art structure mining
algorithms. We show that our algorithm can also easily be
used to do difference mining experiments, in which we com-
pare the NCI database to the NCI AIDS database by mining
for emerging structures.

As background knowledge for our paper we could men-
tion a large number of publications. In this paper we will
only refer to recent publications. For a larger overview, the
reader is invited to visit our homepage for frequent structure
mining, which can be found at

http://www.liacs.nl/home/snijssen/structmining.

The overview of the rest of the paper is as follows: first we
give mathematical preliminaries, then enumeration strate-
gies, frequency evaluation and finally the experimental re-
sults. We made an effort to keep the paper self-contained,
despite the complexity of the GASTON algorithm.

2. MATHEMATICAL PRELIMINARIES

To understand our algorithm some basic background knowl-
edge is required with respect to graphs, trees and paths. We
will briefly discuss them in this section. The definitions are
similar to those used in other papers, for example [9, 21,
19, 7, 11, 18, 3]. A labeled graph G counsists of a set of
nodes V, a set of edges E C V x V and a labeling function
£:V UE — L that assigns labels £ to all edges and nodes.
‘We only consider undirected graphs, i.e. (u1,u2) is the same
edge as (u2,u1). An edge is incident to a node if one of its
endpoints is in that node. The number of edges that is in-
cident to a certain node is called the degree of that node.
Two nodes are adjacent if there is an edge between the two



nodes. A sequence of nodes vi1,vs,...,v, from V is a path
if (vi,vi41) is in E. The length of a path is defined by the
number of edges in the path. If v1 = v,, the path is called a
cycle. From now on, we only consider simple paths, which
are paths in which v; # v; if ¢ # j. If there is a path between
each pair of nodes in a graph, this graph is connected. In
this paper, we will only consider connected graphs. Given
two graphs G1 = (V1, E1,41) and G2 = (Va, E», £3), an em-
bedding of G1 in G2 is an injective function f : Vi — V»
such that (1) Vv € V1 : £1(v) = £2(f(v)) and (2) V(v1,v2) €
Ey : (f(v1), f(v2)) € E2 and £i(v1,v2) = €a(f(v1), f(v2)).
The graph G, is a subgraph of G2, denoted by G1 C Gs, if
there is an embedding of G in G2. If G is a subgraph of G»
and G is a subgraph of G1, then G; and G2 are called iso-
morphic. Embedding is also called a subgraph isomorphism
and defines a partial order on labeled graphs.

In this paper, we specifically study three special subclasses
of graphs:

e Paths. They are special graphs in which two nodes
have degree 1, while all other nodes have degree 2.
Note that a path which occurs in a graph is not always
a path in a graph.

e Free Trees/Rooted Trees. If a graph has no cycles, the
graph is called a free tree. A rooted tree is a tree
in which one node is singled out. This special node
is called the root of the tree. We will always speak
of either free trees or rooted trees to avoid confusion
between these two types of trees. In a rooted tree, we
will draw the root of the tree as the top node.

Examples are given in Figure 1. Note that paths are also
free trees, and free trees are also graphs.

A special kind of tree is the spanning tree. A tree is a
spanning tree of a graph if it has exactly the same number
of nodes as the graph and the tree is furthermore a subtree
of the graph.

We assume that a database D consists of a collection of
graphs. The frequency of a graph G in D is defined by
freq(G,D) = #{G' € D|G C G'}. The support of a graph
is defined by

support(G, D) = freq(G,D)/|D|.

The primary task that our algorithm has to solve, is to find
all graphs for which

support(G, D) > minsup,

for some predefined threshold minsup that is specified by
the user. An important property is the following:

G1 C G2 = freq(G1,D) > freq(G2, D). (1)

It follows that any (large) graph which contains a (smaller)
graph which is not frequent, can not be frequent either. This
property is the essential property that has been used for the
construction of many data mining algorithms. The process
of removing graphs from the search space using this prop-
erty, is called (frequency based) pruning.

3. ENUMERATION

An important part of any frequent structure mining al-
gorithm is the strategy for traversing the set of all possibly
frequent graphs, also called the enumeration strategy. For
an efficient graph mining algorithm it is essential that:

Figure 1: Part of the partial order of graphs

e large graphs are only considered after smaller sub-
graphs are considered (i.e. to allow for frequency based
pruning);

e every graph is considered only once.

For simple structures, the second requirement can often be
satisfied with not much computational overhead. For graphs
the problem is more difficult. The source of the problem is
that in order to make sure that one does not consider the
same graph twice, one has to make sure that a graph is not
isomorphic to another graph; at the moment no polynomial
algorithm is known which accomplishes this task for general
graphs. Hence in the worst case an exponential search is
required.

A key observation is now that although for graphs no poly-
nomial algorithm exists, for subclasses of graphs polynomial
algorithms do exist. For example, for paths and trees ef-
ficient isomorphism algorithms do exist. This observation
has led to development of specialised mining algorithms for
paths [10] and free trees [3, 19].

Paths, trees and cyclic graphs can be put into a partial
order, as follows. The top of the partial order consists of
paths; paths to which an edge is added that connects to
a different node than one of the end nodes, become free
trees. After this transition from a path to a tree, further tree
construction takes place by repeatedly adding one node and
one incident edge. A free tree, in its turn, becomes a cyclic
graph when an edge is added between two existing nodes.
Starting from the root of the partial order, each cyclic graph
can only be obtained by steps that first build a path, then
(optionally) create a free tree, and finally create the cyclic
graph. All of these “refinement” steps (except those that
involve cyclic graphs), can be done with efficient, polynomial
algorithms, leading to a “quickstart” of the search. The



situation is illustrated in Figure 1.

In the sequel, each refinement of a structure by the addi-
tion of both a new node and an edge to connect this node,
is called a node refinement. A refinement which only con-
nects to existing nodes is referred to as a a cycle closing
refinement.

Details of our enumeration strategies are discussed in the
next subsections.

3.1 Path enumeration

The main problem in path enumeration is that a path can
have two orientations, for example: azazb and brara, where
a and b denote node labels and = and y edge labels. One
only wants to consider one of its orientations.

To guarantee enumeration without duplication, we follow
an approach that has some similarities with the approach
that was used in [10]. For each path, we define a unique
predecessor in the partial order as follows. Given is a path
in some orientation:

V1€1V2 '+ *Un1€n—1Un-

First compare the labels at both ends of the path by com-
paring the tuple (¢(v1), £(e1)) with the tuple (£(vy), €(en—1))
lexicographically; if one end is higher than the other, the
path without the highest tuple is considered to be the unique
predecessor. If both tuples are equal, then we distinguish
two cases. If the string is symmetric, it does not matter
which one of the two end nodes is removed and the pre-
decessor is uniquely defined too. If the string is not sym-
metric, we compare the following two oriented paths lexico-
graphically with each other: £(vi)f(e1)é(v2)---£€(vn—1) and
£(vn)l(en—1)€(vn—1) - - - €(v2). The path corresponding to the
lowest of these two strings is considered to be the prede-
cessor of the path. Please note that the relation between
these two strings is determined first by the relation between
(€(v1),£(e1)) and (€(vn),£(en—1)), and then by which of the
two orientations of £(vz) - - - £(vy, ) is the lowest.

A straightforward, recursive, approach to enumeration would

now be as follows. If a path is symmetric, apply all possible
node refinements at one end of the path; otherwise apply
all possible node refinements at both ends of the path. De-
termine for each resulting path whether the original path is
the unique predecessor of the resulting path and disregard
paths which have not grown from their unique predecessor.
Extend all other paths recursively.

For our algorithm, however, this approach is impractical.
We would like to have a more precise characterization of
the node refinements that are allowed. We obtain this as
follows.

For one specific orientation of a path vieivs - - - vp, €n—10n,
we maintain three symmetry variables, one for the oriented

path vier - - - vn—1en—1Un (total symmetry), one for vier - - - vn—1

(front symmetry) and one for vs - --v,_1€n—1v, (back sym-
metry). Each of these variables has one of three values: 0,
if the corresponding string is symmetric; —1, if the reverse
string of the current orientation is the lowest; +1, if the
string of the current orientation is the lowest.

If total symmetry is 0, a path may only be node refined
at one end; otherwise the path may be extended in two
directions as determined by the symmetry variables. Given
a particular orientation of a path vieivs---vn,en—1v, and
its symmetry variables, one can determine as follows which
labels (£(v'),£(¢')) may be appended at the back of that

path:
e all labels for which (£(v"), £(e")) > (£(v1), £(e1));

o thelabels (£(v"), £(e")) = (€(v1), £(e1)) if back symmetry >
0. Please note that if back symmetry= 0 and (£(v'), £(e')) =

(€(v1), £(e1)), the next path is symmetric.

After appending a node after the path, the total symmetry
is easily computed from the previous back symmetry, while
the previous total symmetry is the front symmetry of the new
path. Only the recomputation of back symmetry is therefore
required and can be done in linear time. We will see later
that even this computation is not always required.

The situation is analogous when nodes are prepended be-
fore the path. Please note that within our setup we have not
defined which orientation is exactly generated, but we still
have the guarantee that only one orientation is enumerated.

3.2 Freetreeenumeration

For the enumeration of free trees many approaches can be
taken. All existing specialised data mining algorithms use
a so-called breadth-first normal form [19, 3]. This method
has however practical disadvantages which we will discuss
later. Also theoretically the method is suboptimal: free
trees can be enumerated in constant time [20], which means
that for a given free tree one can determine in constant time
which refinements of this tree are allowable if one wishes
to avoid duplicates. When a breadth-first normal form is
used ‘only’ linear enumeration is possible. The constant
time method of [20] can however not be applied straightfor-
wardly because free trees are not enumerated in increasing
size. We will present a new enumeration strategy for la-
beled free trees that has constant time complexity and will
not have the aforementioned practical disadvantages. It is
based on an enumeration strategy for rooted trees that was
independently proposed by [2] and [15], and has strong sim-
ilarities with the method proposed in [13] for unlabeled free
trees.

3.2.1 A backbonefor freetrees

We will first state a well-known property of free trees.
Consider one of the paths P in a free tree T for which the
length is maximal, P = {v1,...,vm} C Vr, then all other
paths of the same maximal length have one or two nodes in
common with this path:

e if m is odd, also all other paths of maximal length go
through node v; where i = ZtL; v; is called the centre

of the free tree;

e if m is even, also all other paths of maximal length go
though the nodes {v;,viy1} where i = %; these nodes
are called the bicentre of the free tree.

A free tree is therefore either centred or bicentred. A cen-
tred tree can be conceived as a single rooted tree, while a
bicentred tree can be conceived as two separate rooted trees
of which the roots are interconnected. Within each rooted
tree, we define the length of the path from a node to the
root node to be the depth of that node. The length m of
the longest path is called the diameter of the free tree. The
highest depth in a free tree is [m/2] — 1.

Now consider all oriented paths of maximal length that
start in (each) root of the tree. By applying the label-
ing function on each of these paths, corresponding strings
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Figure 2: Examples of free trees, (bi)centres and
backbones

are obtained from the paths; the strings we compare lexico-
graphically. In centred trees, those two strings of maximal
length which are lexicographically the lowest and which oc-
cur in paths that only have the root in common, we call the
backbone strings of the free tree. In bicentred trees, the lex-
icographically lowest string in each of the two rooted trees
is defined to be the backbone string of that rooted tree. By
concatenating the reverse of the lowest backbone string and
the highest backbone string, a single path is obtained which
we call the backbone of the free tree. Examples of free trees,
centres, bicentres and backbones are given in Figure 2.

Using this procedure for uniquely determining backbones
for free trees, the partial order of free trees can be parti-
tioned. Our enumeration strategy is built on the idea that
free trees are only allowed to grow from a free tree which
has exactly the same backbone and all free trees of a cer-
tain backbone grow from the path that corresponds to that
backbone. If we can enumerate all free trees within a par-
tition uniquely, in combination with our path enumeration
strategy also all free trees are enumerated uniquely.

A tree is only refined using node refinements. Given a
free tree with maximum path length m, refinements which
would introduce another backbone in a tree are easily char-
acterized:

e 1o node may be added at depth [m/2];

e if T has one centre and a node is added at depth
[m/2] — 1, the string of labels on the path from the
root to the new node must be higher than or equal to
the highest of the two backbone strings;

e if T' is bicentred and a node is added at depth [m/2] —
1, the new node occurs in one of the two rooted trees
of the free tree; the string of labels on the path from
the root to the new node must be higher than or equal
to backbone string of the tree that the node occurs in.

We call these refinement constraints the backbone constraints.

3.2.2 Depth sequencesfor rooted trees

To enumerate free trees for a backbone, we use a method
based on depth sequences. Details about depth sequences
can be found in [15, 16, 2, 13]. Given a tree, a depth se-
quence is obtained by performing a prefix depth first walk;
each time that a node is visited for the first time, first its
depth is outputted, then the label of the edge going into that
edge and finally the label of that node; we will call this com-
bination a depth sequence tuple. Within the tuple for the
root of the tree we represent the edge label by A\. Examples
are given in Figure 4. Clearly, the depth sequence depends
on the order with which the children of a node in the tree
are visited. For an unordered, rooted tree, the canonical

Input: depth sequence diA(v1)d2f(e2)l(v2)...dné(en)l(vn)
Output: an ordered tree T'
T := a tree with node label £(v1) as root.
for i:=2 to n do
T;:= tree T;_1, with a node with label £(v;)
connected by an edge with label £(e;) to the
node at depth d; — 1 of the rightmost path of T;_;
return 7},

Figure 3: A tree construction algorithm

O\ blxa2xb2xalxa2xa OA blxblxa2xb2xa
OA blxa2xa2xblxa2xa O\ bixblxa2xa2xb
OA blxa2xalxa2xb2xa O\ blxa2xb2xalxb
O\ blxa2xalxa2xa2xb OA blxa2xa2xblxb

Figure 4: Unordered rooted trees, depicted in nor-
mal form, and all their possible depth sequences

depth sequence is defined as the depth sequence that is the
lexicographically highest sequence among all possible depth
sequences for that tree.

Every ordered tree corresponds to a depth sequence; the
reverse is also true. The constructive algorithm of Fig-
ure 3 can be used to obtain a tree from a depth sequence.
The mapping between ordered trees and depth sequences is
therefore bijective. The canonical depth sequence therefore
defines a canonical ordered tree.

Depth sequences have several properties that are of impor-
tance to efficient enumeration strategies [15, 16, 2, 13]. We
wish to repeat one property here: every prefix of a canonical
depth sequence is also the canonical depth sequence of the
subtree that it represents. This property guarantees that
the enumeration is still complete if one enumerates canon-
ical depth sequences only and one refines these sequences
only by adding a tuple at the back. Moreover, one can show
that at most two tuples in a depth sequence —which corre-
spond to two nodes in the tree— define which tuples may
be added to the back of the sequence:

1. a new node must have a connecting edge label and a
node label which sort lower or equal to those of its left
sibling node;

2. the tuple which is appended at the back of the se-
quence must be equal to or lower than that of the next
prefiz tuple; the position of this tuple in the sequence
is defined by the so-called lowest prefiz node, which is
the node with the lowest depth on the rightmost path
for which the depth sequence of the subtree is a prefix
of the depth sequence of its left sibling’s subtree.

If one adds a depth tuple to a depth sequence, one can
show that the position of the next prefix tuple in the result-
ing depth sequence can be computed in constant time from
the position of this node in the previous sequence.

An important property of this enumeration strategy is the
following. Consider a rooted tree and one of its allowable
refinements which connects to a node v in that tree. Then
this refinement is an allowable refinement of all ancestors



trees in the partial order which also contain the node v. We
will omit the proof (using depth sequences) here.

3.2.3 Depth sequencesfor freetrees

The concepts at the basis of our enumeration strategy for
free trees are most easily understood for the class of bicen-
tred free trees in which the two backbone strings are not
equal. Each such free tree can be constructed in two phases
by first constructing a rooted tree for the lowest backbone
string, and by subsequently —independently— constructing
a rooted tree for the second backbone string. The prob-
lem of enumerating free trees then reduces to the problem
of enumerating all rooted trees that contain a certain path
and that satisfy the backbone constraints (among which the
maximal depth constraint).

We approach this as follows. Given an alphabet of labels,
we define the order w(£) of each label £ € £ to be the number
of labels in the alphabet that is lexicographically lower. For
a given backbone string (vi)€(e1)€(v2) - - - £(Vn—1), we now
define the following function g which maps depth tuples to
other depth tuples:

(1, |£] = w(6r), || = 7(£2))
(1, |£] = w(tr), |£] — 7(£2))
(@ 1L+ 1,12 +1)

if 61 # £(es);
if €2 # L(viy1);
otherwise.

2)
Note that this function is in fact a bijective mapping. It
maps original labels to new labels with a different order,
depending on the depth at which the label occurs. Given
a depth sequence for a rooted tree that contains the given
backbone, after application of g a new valid depth sequence
results. Let us consider the canonical depth sequences for
the new alphabet, then each canonical sequence must start
with the following sequence: OAL1LL2LL3LL - - - mLL, where
m is the length of the backbone string and L = |£|+1. This
can easily be seen by observing that one can never obtain a
string with a prefix of higher labels.

We can now use the enumeration strategy of the previous
section to enumerate all depth sequences for the alterna-
tive alphabet, where the enumeration is started from the se-
quence OAL1LL2LL3LL ---mLL. Each of the enumerated
depth sequences uniquely corresponds to a depth sequence
for the original alphabet. During the enumeration, one can
efficiently check that the backbone constraints are not vi-
olated for the tree in the original alphabet; thus, we have
obtained an efficient strategy for uniquely enumerating all
possible trees with a certain backbone string.

Given a certain tree for the first backbone, if the sec-
ond backbone string is different from the first one, the same
procedure can be repeated to enumerate trees for the sec-
ond backbone string. If the second backbone string equals
the first backbone string, special care must be taken that
the same free tree is not enumerated twice. To solve this
problem the depth sequences can be used. As the backbone
strings are equal, also the relabeling function g is the same
for both trees; the relabeled depth sequences of both trees
can be compared lexicographically. If one makes sure that
the depth sequence for the second backbone string is never
higher than that of the first backbone tree, unique enumera-
tion is guaranteed. To check this in constant time, both re-
labeled depth sequences can be put into one depth sequence
and the same constant-time lowest prefix node procedure as
for single rooted trees can be used. We omit the details.

The situation is more complicated for trees with one cen-

g(i’elaZQ) =

tre. Here we have to enumerate single trees that contain
two backbone strings uniquely. First consider the case that
the two backbone strings are unequal. We observe that in
such a free tree, only one adjacent node of the root is con-
tained in a path for the lowest backbone string. We start
the enumeration by first enumerating the subtree for that
particular node. We do so by removing the first node from
the lowest backbone string, and by then enumerating all
trees that contain the remaining string using the previously
discussed method. Within this first subtree growing pro-
cedure, the backbone constraints for the first backbone are
constantly checked. After that this subtree is grown for
the first backbone, we enumerate all subtrees for the entire
second backbone while constantly checking the refinements
against the backbone constraints for the second backbone.
Note that during this enumeration also paths of maximal
length may be grown which start in the root of the tree. As
none of this paths can however be equal to the first backbone
(every path of maximal length in the second three must be
lower than or equal to the second backbone), we need not
to worry that a new subtree may grow from the root which
could also have been grown from the first backbone. If both
backbones are equal, again we first enumerate the subtree
for one of the adjacent nodes of the root, and then enumer-
ate the remaining part of the tree: as the relabeling function
for both tree enumerations is equal, we can lexicographically
compare the depth sequence of the newly grown trees with
that of the first backbone to make sure that no tree is grown
which is higher than the first grown subtree. Also here, by
putting the entire tree in a depth sequence and by updating
the lowest prefix node in constant time for each refinement
of the tree, one can perform this lexicographical comparison
in constant time.

An important property for this free tree enumeration strat-
egy is that any valid refinement of a free tree, is also a valid
refinement of an ancestor free tree in the partial order, as
long as that ancestor tree contains the node to which the
refinement node connects.

3.3 General Graph enumeration

For cyclic graphs, a method for efficient duplication-free
enumeration currently does not exist. All existing cyclic
graph miners —including ours— have to resort to a generate-
and-test method. In frequent graph mining algorithms, the
problem is usually approached by defining new normal forms
for graphs, for example using DFS codes (gSpan, [21]) or
adjacency matrices (FSG [11], FFSM [7] and AcGM [9]).
Once a new graph is generated in a certain encoding, these
algorithms use a special-purpose exhaustive procedure to
determine whether or not a lower encoding exists for the
graph. Graphs for which such an encoding indeed exists,
are discarded.

We approach the problem differently. Although the worst
case performance of graph normalisation is exponential, for
most practical graphs an excellent normalisation performance
can be achieved by using so-called graph invariants. Instead
of developing yet another normalisation procedure ourselves,
we decide to rely on Nauty [12], which is a well-known, pub-
licly available graph normalisation algorithm with excellent
performance.

The idea is as follows. Once a cycle closing refinement is
applied to a free tree or a path, this structure becomes a
cyclic graph. From this moment on, we only allow further
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Figure 5: A graph and the embeddings of all its ancestors in two graphs in a database

cycle closing refinements, similar to the approach that was
suggested in [6]. In this way, graphs are only allowed to
grow from a spanning tree of that graph. Each graph that
is obtained by a cycle closing refinement, is normalised with
Nauty and searched for in a hash structure. The graph is
discarded if it turns out that the graph has already been
enumerated, otherwise the graph is stored in the hash table
and may be refined further.

At first sight, this strategy may not seem very promising
as the number of possible cycle closing edges can be very
large. The following observations may reduce the problem.
First, by considering the order in which the nodes are intro-
duced in a tree or path, all nodes in a tree or path can be
numbered uniquely. This is illustrated in Figure 5(a). Every
possible cycle closing edge can be identified uniquely by a
tuple of two node numbers and an edge label ((1,4, —) for
edge 6. and (4,5, —) for edge 7. in the example); the cycle
closing tuples can be ordered first on lowest node number,
then on highest node number and finally on the edge label.
For a given spanning tree, we therefore obtain a set of tu-
ples of which —in principle, at least— all possible subsets
have to be enumerated. For this enumeration, we use similar
mechanisms as in item set algorithms to enumerate subsets
uniquely. Please keep in mind that cycle closing refinements
may lead to graphs that are pruned because of isomorphism;
the completeness of the search is however not affected by the
set enumeration approach as any edge which can be added
to a pruned graph can also be added to all its isomorphic
graphs.

Second, although in theory the number of edges can be
very large, in practice this number can be limited using an
efficient scheme for frequency based pruning that we will
discuss in the next section.

Third, although in general enumeration strategies which
require that all previous structures are stored, are undesir-
able, our enumeration strategy is part of a data mining al-
gorithm which has as explicit task to store discovered struc-
tures.

To hash a graph in the hash table, we use the following
hash values: first, the number of nodes in the graph, then,
the number of edges and finally the product of the degrees
of all nodes. Then, we perform a binary search on (1) the
node labels that are used, (2) the edge labels that are used,
(3) the number of times that labels are used and (4) the
normal form of the graph as determined by Nauty.

4. FREQUENCY EVALUATION

Just like frequent item set miners, frequent structure min-
ers can be subdivided into two classes: breadth first [8, 11]
and depth first miners [19, 21, 7, 6, 3, 1, 22, 15, 16, 2, 17].
At the expense of additional main memory, the latter class

of mining algorithms is widely known to yield better per-
formance. Also in our algorithm we will use a depth-first
strategy. The advantage of a depth first strategy is that it
makes it feasible to store additional information with each
structure regarding its embeddings in the database. One
can use that information to speed up the determination of
embeddings of the refined structures.

Building on this principle, there is still a large variety in
the amount of additional embedding information that can be
stored with each structure. For trees approaches have been
studied that store a subset of all possible embeddings [15,
2]. The idea is that one structure can often be embedded in
multiple ways in the same set of nodes of another structure
and space can be saved by only storing embeddings for dif-
ferent sets of nodes. Prior to the development of our graph
miner, we performed an experimental comparison between
a rooted tree miner in which a subset of all embeddings is
stored [15], and an approach in which all embeddings are
stored. We found out that the latter approach did not only
have a better time performance, but also that it required
less main memory. In practice, the number of multiple em-
beddings for the same subset of nodes was so low that the
overhead of keeping track of them was too high. Also our ap-
proach is built on the idea of maintaining all embeddings of
a graph in main memory, but we developed memory saving
data structures to avoid the allocation of too much memory.

The following efficient data structure is used to store all
embeddings of a structure and its ancestors in the partial
order. For the root of the partial order —which corresponds
to a single label— we store an embedding list of all occur-
rences of that label in the database. For a structure lower
down the partial order which is obtained by a node refine-
ment, we store an embedding list of embedding tuples which
consist of (1) a pointer to an embedding tuple of the par-
ent structure in the partial order and (2) the identifier of a
graph in the database and a node in that graph. We de-
note the respective components of an embedding tuple ¢ by
t.parent, t.graph and t.node. If a structure is obtained by a
cycle closing refinement, the embedding list consists solely
of pointers to embedding tuples of its parent structure. The
data structure is maintained such that of each structure all
embeddings can be obtained by scanning its embedding list,
and by following the parent pointers of each tuple in that
list. The frequency of a structure is determined from the
number of different graphs in its embedding list.

The embedding lists are illustrated in Figure 5(b), with
the following notation. Each row in the table denotes the
embedding list of an ancestor of the graph of Figure 5(a);
the ancestors of a structure in the partial order are num-
bered such that 1. is the oldest ancestor and the root of the
partial order. Each tuple in an embedding list has a unique



position (or index) in that list, as given by the number of
the column of the table. The indexes are used in the em-
bedding tuples of the refined structure to encode pointers.
The only embedding of graph Figure 5(a) in the database
is underlined. Note that the parent tuple of an embedding
tuple not necessarily belongs to an adjacent node.

Apart from the embedding list of the current structure, we
also store a, possibly large, set of additional embedding lists
for possible refinements of that structure. The embedding
list for a refinement consists of exactly the same list that
would result if that refinement would be applied to the cur-
rent structure. The idea is to use these embedding lists later
on to determine the embedding lists of further refined struc-
tures. In detail, we store embedding lists for the following
refinements, if the refinement leads to a frequent structure:
For paths: all possible node refinements, including refine-
ments which would lead to a non-canonical path; all possible
cycle closing refinements, including the refinements which
would lead to a graph that has already been enumerated.
The rationale of also storing node refinements that lead to
non-canonical paths is that such refinements may still later
be used during the construction of free trees; the reason for
also determining isomorph cycle closing refinements is that
such refinements may not lead to isomorphic graphs later
on.

For free trees: all canonical node refinements and all pos-
sible cycle closing refinements; during our discussion of free
tree enumeration, we have pointed out that a non-canonical
refinement of a free tree can never be applied to a later free
tree to obtain a canonical tree;

For cyclic graphs: all cycle closing refinements, includ-
ing those that lead to a graph isomorph to an earlier cyclic
graph.

Each frequent refinement for which the embedding list is
also stored, we call a leg of that structure, following the ter-
minology introduced by Chi et al. in FreeTreeMiner [3]. The
idea however also closely corresponds to that of maintaining
suboptimal CAMs in FFSM [7], and the idea of maintaining
right siblings in FARMER [17].

In Figure 6 we present the outline of the GASTON algo-
rithm. It shows how the legs are maintained during the
depth-first run of our algorithm. The main idea is that all
embedding lists of all frequent legs of a certain structure can
be computed from the embedding lists of legs of its prede-
cessor structure in the partial order, except for those legs
that connect to a node that was added by a node refine-
ment. Next we will provide some comments on the code of
our algorithm as given in Figure 6.

In lines (2) a new graph is constructed from the previous
one; in line (4) the embedding list of each leg of the new
structure is computed, either by an extension algorithm or
by a list join algorithm that takes one of the legs of the an-
cestor structure as input. All legs of the ancestor structure
are considered, including the ones that cannot actually be
added to the current path to avoid duplicates. The situation
is different for free trees. In line (12) only legs are added
for the new node that could immediately be used as refine-
ment for the current tree. Likewise in line (13) only those
legs are joined which are immediate valid refinements for the
current tree. In line (19) only those cycle closing legs are
copied in which higher numbered nodes are involved; still,
some of these legs may lead to a graph which is isomorphic to
an earlier graph, and may not be considered for immediate

further refinement in line (17).

In line (24) of the join procedure all embedding tuples are
combined which extend a common parent embedding of the
predecessor structure in the partial order, such to obtain
embedding tuples for the leg of the new structure. For joins
of cycle closing legs and node closing legs, as well as joins
of cycle closing legs and cycle closing legs, the procedure
is similar; for joins of two cycle closing legs the procedure
comes down to the computation of an intersection of two
lists of integer index lists.

In line (31) and line (33) by a ‘corresponding’ leg we
mean the following. Consider an embedding of the current
structure in a graph in the database; then each node in the
embedding corresponds to a node in the current structure.
Each node which is adjacent to a node v in the current em-
bedding, but which is not part of the current embedding
itself, would be part of the embedding of the refined struc-
ture which is obtained by connecting an edge to the node
corresponding to v.

In line (29) for each embedding tuple the parent pointers
are followed to determine whether an adjacent node does
not already occur in the embedding to which this tuple cor-
responds. The procedure restricted-extend which is called
in line (12) differs from the normal extend procedure in the
sense that only for those candidate refinements which may
immediately be added to the current structure embedding
lists are constructed.

5. DISCUSSION

In section 3.2, we stated that breadth first enumeration
strategies have practical disadvantages. We come back to
that statement now. We stressed that within our free tree
enumeration strategy only embedding lists are built for node
legs that can immediately be used as refinement. As such,
no redundant node refinement legs are ever evaluated during
the procedure for discovering free trees. This is not the case
for breadth first normal forms. The algorithm which was
developped by Chi et al. for searching frequent free trees
[3] requires that every bicentred free tree is evaluated two
times, once for each tree that is obtained by choosing one of
the bicentres as the root.

Although we eliminated the redundancy for the free tree
enumeration phase, for the other two phases still some legs
are evaluated that are not used as immediate refinement.
For paths, this is a small problem, as the case in which a
leg is never actually used as a refinement is rare. Only legs
which occur at the end of a path which cannot be extended
further in that direction, may be redundant if their label
is so low that they cannot be used without violating the
backbone constraints.

For graphs, the problem of evaluating redundant legs may
be larger, especially if the number of frequent patterns with
many cycles is large. Within our algorithm, the evaluation
of redundant legs is required to guarantee the completeness
of the search. There are two reasons for this problem: (1)
we require redundant legs as we do not take into account
the automorphisms of the graph: the addition of two differ-
ent edges to one graph may lead to two isomorphic graphs;
the joint addition of two edges could however yield a graph
that is not obtainable otherwise; (2) to take into account
the automorphisms, we need a different normalisation than
the one provided by Nauty. We are not convinced that this
change would lead to a better performance: if the number of



Find Paths (A path P, a set of legs L)
) for each allowable refinement leg ! in L do
) G’:= l.refinement applied to P
) if l.refinement is a node refinement do
) L':= extend (I)U{join(l,l') | #1 € L}
) if G’ is a path then Find Paths ( G/, L' )
) else Find Trees (G', L')
) else L' := L' U {join(L,) |l #1 € L}
) Find Cyclic Graphs (G', L')

Find Trees (A tree T', a set of legs L)
(9) for each allowable refinement leg [ in L do
(10)  G':= l.refinement applied to T'
(11)  if L.refinement is a node refinement do

(12) L':= restricted-extend (1)

(13) L' == L' U {join(,,/) | € L,V allowable in G'}
(14) Find Trees (G', L')

(15)  else L’ := L' U {join(l,I') |I' #1 € L}

(16) Find Cyclic Graphs (G’, L')

Find Cyclic Graphs (A graph G, a set of legs L)
(17) for each allowable refinement leg [ in L do
(18)  G@’:= l.refinement applied to G
(19) L' :=L'U {join(L,l") | I > 1€ L}
(20)  Find Cyclic Graphs (G’, L)

Join (legs I1 and [2)
(21) ! .refinement := ly.refinement
22) I' .embeddinglist := {(k,?;.graph,t;.node
j j
23 tr € li.embeddinglist, t; € l2.embeddinglist,
j
(24) ty.parent = t;.parent }
(25) if I’ is frequent then return [’ else return ()

Extend (leg !)
(26) C: set of candidate legs
(27) for each t; € l.embeddinglist do
(28)  for each adjacent node v’ of t.node in t.graph do

(29) if v’ occurs in the embedding of ¢; do

(30) append index k to c.embeddinglist of the

(31) corresponding cycle closing leg ¢ € £

(32) else append (k,?’,t.graph) to c.embeddinglist of the
(33) corresponding node refinement leg ¢ € £

(34) return {c|c € C,c is frequent}

Figure 6: Outline of the Gaston algorithm

PTE: Runtimes in seconds

MinSup % 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30%
MinSup Abs. 7 10 14 17 20 24 27 31 34 68 102
#freq. graphs 136949 22758 5935 3608 2326 1770 1323 977 844 190 68
FHreq. trees 119378 20481 5514 3376 2172 1644 1230 909 779 177 62
gSpan 980 203 63 34 20 14 10 08 06 03 02
FFSM - >64 >16 >08 - - - - - - -

- <113 <31 K19 - - - - - - -
Gaston (FreeTrees) 8.1 19 08 05 04 03 0303 02 02 01
Gaston (Nolsomorph.) 10.0 24 09 06 04 03 03 03 03 02 01
Gaston (Nauty) 14.2 27 09 06 04 04 03 03 03 02 02
FSG 307.4 439 110 63 40 29 24 18 16 06 03
FARMER - 572 172 93 54 37 28 20 17 6 4
WaRrMR - - - - - - - 11351 733 172

Figure 7: Results for the PTE dataset

Name Contents

S5 10.000 artificial trees [22]
L10 100.000 artificial trees [22]
Multicast 1.000 multicast trees [3]
DTP 421 molecules [21]
PTE 340 molecules [21]
CAN2DA99  32.557 molecules [14]
AID2DA99 42.689 molecules [14]
NCI 250.251 molecules [14]

Figure 8: Summary of datasets

graphs with cycles is large, within our approach a larger set
of redundant legs has to be evaluated; in the other approach,
we would have to rely heavily on a special-purpose normal-
isation procedure which is most likely not as as efficient as
that of Nauty.

The setup that we presented in this paper is not only the
description of one algorithm, it is also the proof of a con-
cept. The “quickstart” idea can also be applied further:
although in this paper, trees are refined into general graphs,
one can imagine several phases in between trees and general
graphs, for example phases in which planar and outerpla-
nar graphs are grown first. Also for planar and outerplanar
graphs polynomial normalisation procedures exist, just like
for free trees. Using the quickstart principle, the part of
the partial order which is enumerated using exponential al-
gorithm can be narrowed down to a very tiny part of all
possible frequent structures.

6. EXPERIMENTAL RESULTS

An overview of the results of our experiments can be found
in Figures 7, 9 and 10, a description of the datasets in Ta-
ble 8. Unless noted otherwise, all experiments were per-
formed on an Athlon XP1600+ with 512MB main mem-
ory, running Mandrake Linux 9.1; the algorithm was imple-
mented in C++ using the STL and compiled with the -O3
compilation flag. We tried to compare our algorithm with
a wide range of functionally comparable frequent structure
miners. The graph miners gSpan and FSG, and the free
tree miner FTM [Riickert] [19]) were provided to us as bi-
naries. FTM [Chi] [3]) was provided as source code and
compiled under exactly the same circumstances as our algo-
rithm. ! Some of the binaries provided to us had restrictions
regarding the number of labels or were restricted to molecu-
lar databases. For these algorithms we only publish limited
results.

As our algorithm contains a specialized free tree min-
ing procedure, our first experiment is intended to deter-
mine its performance on tree shaped datasets. The S5 and
L10 datasets were obtained using a slightly modified version
of an artificial dataset generator kindly provided by Mo-
hammed Zaki. To a certain extent, the artificial datasets
mimic datasets that could be constructed from webserver
access logs [22]. S5 is a small dataset obtained by sampling
10k trees of maximal depth 5 from a master tree of 10k
nodes with 3 node labels and fan-out 20. L10 is larger and
obtained by sampling 100k trees of maximal depth 10 from a
master tree of 10k nodes with 3 node labels and fan-out 20.
On S5 our algorithm is 6 times faster for support 0.5% than
the second best algorithm; for L10 our algorithm is 7 times
faster for support 3%. The Multicast dataset was provided
to us by Yun Chi [3]. Although our algorithm keeps a good
performance downto a support of 70%, for lower supports its
performance degrades. This is due to the dense structure of
this dataset. Closed structure mining are reported to obtain

'Note to the reviewers: much to our regret, our attempts
to obtain the FFSM graph miner before the SIGKDD
deadline have failed. This is also a disappointment to
us, as the comparison with FFSM would be the most
interesting one. For one dataset (PTE) we tried to
extrapolate the performance of FFSM as reported in
[7] to our algorithm. We however acknowledge that
this is not good practice. More details can be found on

http://www.liacs.nl/home/snijssen/farmer/results.html.
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Figure 9: Results of our experiments

better performance [3].

Our remaining experiments regard molecular databases.
The first dataset which we consider is the Predictive Toxi-
cology dataset (PTE) which can be downloaded from
http:://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/PTE/. The dataset was first used in an experi-
ment with WARMR [4] in 1998. We transform the dataset
into graphs using the procedure given in [21]. The table
in Figure 7 gives a detailed insight into the performance
of several algorithms on this dataset. Both FARMER and
WARMR are multi-relational data mining algorithms which
are not really suited for the mining tasks discussed here.
We run GASTON in three different setups. In the first setup,
GASTON Free Trees, we disable the cycle closing phase of
GASTON such that only frequent free trees are discovered.
In the second setup, GASTON No Isomorphism, we disable
the Nauty isomorphism chech such that the same cycled
graph may be generated multiple times. In the third setup
Nauty is enabled. Our experiments reveal that in this small
dataset, the cost of evaluating a redundant set of graphs us-
ing the embedding lists is actually cheaper than removing
those redundant graphs from the search.

The other datasets were obtained from the National Can-
cer Institute [14]. In the DTP AIDS program 42.689 com-

pounds (dataset AID2DA99) were classified into three classes:

CI (confirmed inactive), CM (confirmed moderately active)
and CA (confirmed active). The latter class consists of 422
molecules (dataset DTP). For these datasets the speedup of
GASTON in comparison with gSpan is lower, 2 to 3 times.
Similarly, in the DTP Human Tumor Cell Line Screen 32.557
compounds were classified (dataset CAN2DA99). Also here
GASTON improves on gSpan. Our statement that free trees
constitute a significant part of the results of graph mining
algorithms, is confirmed by the experiments. In most exper-
iments, 90% of the frequent structures are free trees, which
justifies our choice to concentrate on efficient free tree dis-
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Figure 10: Results for frequency mining on the NCI

covery. Experiments on similar datasets were reported in [7,
21].

To test the scale-up properties of our algorithm, we have
also run our algorithm on the database of all 250.251 com-
pounds in the NCI’99 release. In this transformation, some
atom types were subdivided into several classes according to
their position in the molecule to obtain labels. The main dis-
advantage of our algorithm revealed itself here, as we had to
resort to a computer with more main memory than 512MB.
Results in Figure 10 for the NCI database were obtained on
a Sun Enterprise Server with 4 processors of 400Mhz and
4GB main memory. As far as we are aware of, no other
comparable results have yet been published for the whole
NCT’99 database.

To exploit the classification of compounds into three classes
in CAN2DA99 and ATD2DA99, in [10, 18, 19, 6] it was pro-
posed to use an approach using version spaces. Algorithms
are proposed which output only those frequent molecules in
the active part of the dataset which have a low support in
the inactive part, as these structures may be a good clas-
sifier for the activity of a compound. We modified our al-
gorithm to allow for similar experimental results which in-
volve two datasets and have investigated the idea of emerg-
ing patterns [5], which is closely related. If one assumes that



Minimum Support Run time Frequent graphs with
> 10% support difference

15% 246.67s 3637
10% 295.77s 12283
5% 596.21s 12751

Table 1: The difference between AID2DA99-active
and all compounds in NCI’99

the entire NCI database is representative for a broad range
of molecules, it can be interesting to discover which sub-
molecules of a database of active compounds have a support
in the active dataset which is significantly different from the
support in the entire NCI database. We performed this ex-
periment for known active compounds of AID2DA99. For
a minimum difference threshold of 10%, results are summa-
rized in table 1. Most time is spent to evaluate the support
of a graph in the NCI database. 2

7. CONCLUSIONS

In this paper, we introduced GASTON, a new efficient fre-
quent graph mining algorithm. We observed that most fre-
quent substructures in practical graph databases are actu-
ally free trees, and used this observation to implement an
algorithm that “quickstarts” its search by using a highly ef-
ficient enumeration strategy for enumerating the frequent
free trees first. Experiments confirm that our algorithm is
competitive with existing frequent graph miners. To show
that our algorithm also scales up to large databases, we per-
formed experiments on the entire NCI’99 database. An ex-
tension of our algorithm which makes it possible to specify
maximum frequency constraints or frequency difference con-
straints was successfully shown.
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