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Abstract

Severalalgorithms havealreadybeenimplemented
which combine associationrules with first order
logic formulas. Although this resultedin several
usablealgorithms, little attentionwaspayeduntil
recentlyto the efficiency of thesealgorithms. In
this paperwe presentsomenew ideasto turn one
important intermediate stepin the processof dis-
covering suchrules,i.e. thediscovery of frequent
item sets,more efficient. Usinganimplementation
that we coined FARMER, we show that indeeda
speed-up is obtainedandthat,usingtheseideas,the
performanceis muchmorecomparableto original
associationrulealgorithms.

1 Intr oduction
The formalism of associationrules was introduced by
Agrawal [1996] for the purposeof basket analysis. An im-
portant stepin thediscovery of suchrulesis theconstruction
of frequent item sets. Theseare,for instance,setsof items
thatarefrequently bought together in onesupermarket trans-
action. As this discovery stepis time critical, it is obliga-
tory that it is performedreasonably fast. Much researchhas
beendonein orderto develop efficient algorithms. A well-
known algorithm resultingfrom this researchis APRIORI , of
whichmany variantshavebeendeveloped, suchasAPRIORI-
TID [Agrawal et al., 1996] anda breadth-first algorithm in-
troducedby Pijls andBioch [1999].

On the otherhand, efforts have beendoneto extend the
usability of associationrulesbeyond the basiccaseof bas-
ket analysis.DehaspeandDe Raedt[1997] usethenotionof
atomsetsasa first order logic extensionof item sets.Thein-
corporationof techniquesfromInductiveLogic Programming
allows for more complex rules to be found which also take
into account background knowledge. Consequently, this also
allows datamining of datawhich is spreadover tableswhich
cannot reasonably be merged into onetable. An algorithm
was implemented basedon this notion, which was called
WARMR. Theusefulnessof this algorithm wasdemonstrated
in several real-world situations(see,for example, [Dehaspe
et al., 1998]). Theseexperiments,however, alsoshowedthe
majorshortcoming of thealgorithm: its efficiency provedto
bevery low, someexperimentseventakingseveral days.

We proposeto obtaina gain in efficiency by tackling two
propertiesof theWARMR algorithm:
� while still usingthefirst orderlogic notation,weremove

theneedfor PROLOG;
� by using a more sophisticateddatastructure borrowed

fromanimplementationof APRIORI, ouralgorithmdoes
notdepend ona timeconsuming testfor equivalence.

Thealgorithm thatweintroducehassomeressemblancewith
thealgorithm thatwasdeveloppedin [Blockeelet al., 2000].
Thatalgorithm however did not tackleoneof themosttime
consuming stepsof WARMR: a testfor equivalenceunder

�
-

subsumption. Ouralgorithmpaysspecialattentionto thisstep
andoffersanalternativesolution.Undersomerestrictionswe
will show thatouralgorithmis equivalent to WARM R. Exper-
imentswith ouralgorithm thenshow aconsiderablespeed-up
comparedto WARM R.

The paperis organizedas follows. In the secondsection
we summarizethe associationrule algorithm on which our
work is based.In the third sectionwe discusssomeimpor-
tantnotionsintroducedin theWARMR algorithm. Thefourth
sectionintroducesour modifications, which areverified by
giving resultsof experimentsin the fifth section. The sixth
sectionconcludes.

2 Breadth-first APRIORI

Ouralgorithm is basedonavariation of APRIORI thatwasin-
troducedby Pijls andBioch [1999]. Thealgorithm performs
the sametaskasAPRIORI. Givena database� which con-
tains subsets� of a set of items �����
	���
�	���
�������
�	���� the
algorithm discoversall frequent itemsets, whicharethesub-
sets ����� for which ���! 
 #"%$�&�'(�*)+�-,��.�0/1�2,3�4�5�6�7,
exceedsapredefinedthreshold. An itemsetof size 8 is called
a 8.9 itemset.An importantpropertyof �:�! 
 #"%$�&�'(�*) is:

�;�<�=�3�6>?���! � @"A$�&�'B�C��)7D����! � @"A$�&�'B�E��)�
 (1)

asevery subset� � of � � occurs in every transactionthatcon-
tains � � . This property turnsanefficient bottom-up levelwise
searchpossible:it canapriori bedeterminedthata 8GFIH -item
setis not frequentif a 8 -subsetis infrequent.

Thebreadthfirst-algorithm is sucha bottom-up levelwise
algorithm. It startswith candidatesof sizeone, after which
a processis repeatedof counting 8J9 candidate item setsand
of usingthemto obtaincandidate 8KF1H item sets.All these



32 4

3 4

1

32 4 4

Figure1: A smallexample of a trie datastructure

stepsareperformedon a trie datastructure, of which Figure
1 displaysan example. Every pathfrom the root to a node
correspondsto anitemset;all leafsat thedeepestlevel corre-
spondto candidateitem sets.Pathswhich do not reachuntil
thedeepestlevel aremaintained only whenthey correspond
to frequentitem setsandaredisplayedby dottedlinesfor the
sakeof clarity. Thetrie is usedin thefollowing fashion:� In thestepof candidatecounting, a treetraversalis per-

formed for every transaction,asfollows: if an item oc-
cursin a transaction, all its childrenarechecked recur-
sively. If a leaf is reached, thesupport count of thecor-
responding itemsetis increased.

� In the stepof candidate generation, for every frequent
itemsetnew childrenaregenerated,consistingof all fre-
quent right brothers. In theexample ��L*� is expandedby
its frequentright brothers M and N . This copying mech-
anismin combinationwith theorderof the itemstakes
careof generatingevery itemsetat mostonce.

In both steps,this mechanismdistinguishesitself from the
original APRIORI algorithm. Insteadof building a new tree
for eachround, thisprocedureefficiently constructsanew set
of candidatesby merelycopying nodes.Furthermore,during
thecounting phase,it passesthroughthetreeandchecks for
theexistenceof candidatesin thecurrenttransaction. This in
contrast to theoriginal algorithm, wherefor agiven subsetin
thetransaction, asearchin ahashnodeis performedto check
whetherthereis a candidate to be counted. It will appear
that thesebothcharacteristicsmake this variant of APRIORI
suitablefor ourpurposes.

3 WARMR

As afirst orderextension of itemsets,DehaspeandDeRaedt
[1997] usesetsof atoms,which they alsoreferto asqueries
whennearly all variablesareexistentiallyquantifiedandthe
setis ordered. Thefreevariablesarebound by a specialpur-
posekey predicate. The relationof the key andthequeryis
illustratedin thefollowing Hornclause:

8.'BOI)P Q�R S
key

T�U �*V��
'(OW
YX�
!Z:[%$C\ U "A]Y�^�!)�
E _$C": #`�$�&BVY'(OW
�a�"AV�[%ab)P Q�R S
query

(2)

In thisexamplethepredicate U �*V�� canbethought of asatable
which describes the productsthat clientsarebuying, while
the  J$C"; @`c$�&BV predicaterefersto a tablecontaining properties
of clients. In thesequelwe will useabbreviationssuchas U
for U �*V�� ,  for  _$C": #`�$�&BV and Z for Z:[A$;\ U "A]Y�^� . This example
shows how several tablescanbecombinedmoreelegantly in
a query thanin anitemset.

Thesupport of thequery is formalized usingthekey andis
definedto be thenumber of variablebindings for which the

key predicatecanbeproved.In thegivenexample thesupport
of � U '(OW
YXd
�Z�)c
e G'BOW
�ab)�� is thenumber of variable bindings
of O for which 8f'(OI) canbeprovedgiventheHornclausein
Formula (2) anda knowledgebasedefinedin PROLOG.

While for item setsthe definition of the searchspaceis
straightforward,this is not thecasefor atomsets.Apart from
thechoiceof predicate, therearealsomany possibilitiesfor
theusageof variablesin thequery. To definethebiasof the
searchspaceWARMR usesa refinement operator basedon
modedeclarations. Every mode declarationprescribes the
way in which a predicatecanbe addedto a query. The fol-
lowing is anexampleof a mode:

U 'gFd
�9h
�Z�)c� (3)

It statesthat predicateU may be addedto a querywhenthe
first parameter is bound to an existing variable, the second
parameter introducesa new variable and the last parameter
is bound to the constantZ . Theparameters arecalledmode
constraints; here, we will call F parametersandconstant pa-
rametersinput parameters and 9 parameters output parame-
ters. Oftenan integer is associatedwith every modeto indi-
catehow many timesat mostthemodemaybeappliedin the
samequery.

The usageof atomsinsteadof items turns it more diffi-
cult to createan efficient APRIORI-like algorithm: it is no
longer reasonable to usethe subsetrelationto expressrela-
tions betweenatomsets. As replacement for the subsetre-
lation,andasapproximationof logical implication, WARM R
uses

� 9 subsumption. An atomset i subsumesanatomset
� , denotedby ikj�� , if thereis a substitution

�
suchthat

i � �=� . The
�
-subsumption relationinducesanequivalence

relation l , thatis definedasfollows: iml4� if f injo� and
�pj0i . It canbeshown thata property similar to Formula
(1) alsoholdsfor

�
-subsumption onatomsets:

�;�<j=�3�6>?���! � @"A$�&�'B�C��)7D����! � @"A$�&�'B�E��)�� (4)

For a setof frequentqueriesof size 8 (denotedby q6r ) anda
setof infrequentqueries of size 8 (denotedby � r ), WARM R
usesthisalgorithm to generateanew setof candidatequeries
isrct � :

warmr -gen
i r�t � = u ;
for all Zv/wqxr do

for all refinements Z%y of Z do
Add Z y to i r�t � unless:

(a) thereis a `z/W{K|B} r � |�~ `zj2Z�y , or
(b) thereis a `h/�{K|B} r q |Y� isr�t � ~ `�l�Z�y .

Restriction(a) removesquerieswhichareapriori determined
to beinfrequent.Restriction(b) removesquerieswhich have
thesamemeaning aspreviously consideredfrequentqueries
or candidates. We will illustrate this on a small example.
Considerthefollowing setof modedeclarations:

� U 'BFd
(���*	bZ:`�
�96)�
�&�'BFd
�Z�)c
�&�'gFd
!`�a�`:Zc&B$C"A]Y	bZg J�*$:��`!)��
Thismayleadto thesetwo queries:

U 'BOW
b�@
YXJ��)�
�&�'%XJ�A
!Z!)�
 U 'BOW
b�@
YXY��)�
�&�'%X_�%
!`�)U 'BOW
b�@
YXJ��)�
�&�'%XJ�A
!`�)�
 U 'BOW
b�Y
@XY�A)c
�&�'�XY�A
�Z�)



Theseclauseshowever have thesamemeaning andlogically
imply� eachother.

A major problemsof WARMR is that it heavily depends
on a goodimplementationof

� 9 subsumption. This is pro-
hibitive as

�
-subsumption is anNP-completeproblem [Kietz

andLübbe,1994].

4 FARMER

We proposetwo modifications of WARMR in orderto make
this algorithm moreefficient. Eachof thefollowing two sub-
sectionswill discussoneof them.

4.1 Knowledgebase
When taking a closerlook at the modedeclarations, it can
easily be seenthat they can be mapped to procedures. As
an example, considerthe following facts: U '3H�
�[A]_[%]_[A��
!Z!) ,U 'EH�
(���*	bZ:`�
�`�) . Given mode U 'gFd
:��
:Fv) , this mode could
be associatedwith a procedure which returns &B$��@` for
'EH

b�Y
!`�) andreturns �c[Aa���` for '3H�
![@
!Z!) . Furthermore,a modeU 'BFd
�9h
�96) could be associatedwith a procedurewhich for
input H returns ��';[#
�Z�)c
�'��@
!`�)�� . In FARMER this ideais incor-
porated by binding all modedeclarations to a procedure of
oneof thesetwo types:
� booleanprocedures,whichfor aninput vectorreturn true

or false;
� outputting procedures,which for an input vectorreturn

asetof output vectors.Of course,thissetmaybeempty
andneednot be computed entirely before all elements
areused.

Thefirst kind of proceduresshouldbeusedin modeswhich
do not have outputparameters. The secondkind is usedin
outputting modes.

A datastructurefor a knowledge baseof PROLOG facts
is createdandaccessedby procedures,asfollows: for every
modedeclarationa multidimensionalmatrix is allocated; ev-
eryelementin thematrixcorresponds to a setof inputvalues
andcontains a truth valueor a list of outputvalues.Whena
fact for a predicateis read,all correspondingmode matrices
areupdatedaccordingly. Theadvantageof thismechanism is
that it takesa constantamount of time to determine thetruth
of an atom,especiallyin our current implementation which
storesthe matricesin corememory1. Knowledge canhow-
everonly bespecifiedusingfactsor ad-hoc procedures.

4.2 Search
The searchwhich FARMER performs differs in two aspects
from theoriginal WARM R algorithm:� it doesnotuse

�
-subsumption;� it manipulatesatrie datastructureto generatethequeries

whicharedefinedby thebias.
The trie datastructure is a treewhich containsall candidate
queries asa pathfrom theroot to a leaf. An example of such
a trie is givenin Figure2. Thetreeis usedfor bothcounting
andgeneratingcandidates.

1For large datasets,this could be a disadvantage. However, as
our algorithmfits within thelearningfrom interpretationsapproach,
similarargumentshold whenpartof a databaseis on disk.
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Figure2: A trie in FARMER

Counting
Wewill describethealgorithmbygivingpseudo-code. In this
pseudo-code,we usethefollowing notation:
� a capital � refersto anatomin thetree;
� acapital � refersto asetof variableassignments,which

is a setcontaining a mapping from variables to values;
� �J'g�v
:��) is aninterpretationfunction,whichreturns true

if anatom � canbeprovedusingassignment � . In this
function, oneof theaforementionedproceduresis used;

��� 'B�h
:�z) is anassignment function. Theassignmentset
� givesa valueto somevariables occuring in � . For
the remaining unboundvariables, this function returns
all setsof possibleassignments. The aforementioned
outputting procedureis usedhere.

For all valuesof thekey variables,thetreeis traversedrecur-
sively, asfollows:

Count(A,B)
if �J'g�v
:��)��2&B$��@` then

if � is a leaf then
disable�
increasesupport �
return true

else
for all ��ys/ � 'B�h
:�z) do
\ ~ ��&($��@`
for all �6yf/ childrendo

if ��y notdisabledthen
\ ~ � Count(�6y , � � �zy ) ��\

if d = truethen
disable�
return &($��@`

return �c[%a���`
Initially all nodesareenabled. For agivennodeall valuesfor
the outputs arechecked as long astherearechildrenwhich
have not beensatisfied. A similar idea is also applied in
[Blockeeletal., 2000]. Weshow theintegration of theproce-
duresandmodedeclarations here.

Candidategeneration algorithm
Wewill first introducethemechanismof candidategeneration
by giving the algorithm. Afterwards we will compare this
generationmechanismwith the

�
-subsumption basedmethod

of WARMR.
Thegenerationmechanism is basedon thefollowing idea:

whenanatomwith an input variableis moved to thebegin-
ning of a query, that variablecould becomean outputvari-
able,hereby violating the mode declarations. However, for



every atomin a querythereis onefirst positionat which it
canoccur� without violation. All atomsthatcanbeadded to
the endof a querycanbe subdivided in the following three
classes:

1. atomsthat could not have beenaddedat an earlierpo-
sition, as they useat leastonenew variable of the last
atomin thequery; we call thesedependentatoms;

3. atomsthatareacopy of thelastatomin thequery, except
for thenamesof theoutput variables;

2. otheratomsthatcouldhavebeenaddedat anearlierpo-
sition.

Examples of theseclassesare given by the superscripts in
Figure2.

Duringtheconstructionof thetreethissubdivision is used.
Givena trie andanorderedsetof modedeclarations,thetrie
is expandedasfollows:

Expand(A)
if � is internalthen

for all �6yf/ childrendo
Expand ( �<y )

elseif � is frequentthen
addaschild from left to right:

1. all dependentatomsof �
2. all frequentright brothersof �
3. a copy of � with new output variables,

if allowed
else

remove �
Thetreein Figure2 is obtainedusingthis mechanism when
it is assumedthatall queriesof thefollowing (typed)biasare
frequent:

� U 'BFh�h
![@
�9<��)�
e �'BFh�h
b�@
�9<�z)c
�&�'gFh��
!Z!)�
�&�'BFh�+
!`�):� (5)

Thesuperscripts alsoin this casedenote themechanismthat
wasusedto createa node.

The first mechanism serves the purpose of introducing
atomswhich could not be addedpreviously. The atomsare
introducedin thesameorderasthecorresponding modedec-
larationsandadeterministic mechanismis usedto gothrough
all theinputvariables.

The dependentatomsarebrothersof eachother; the sec-
ondmechanismtakescarethatall subsetsaregeneratedafter-
wards– if not infrequent. By keeping thechildrenin order,
everysubsetis generatedonlyonce,or, equivalently, onlyone
permutationoutof a setof dependentatomsis considered. If
necessary, thesecondmechanismgivesnew namesto output
variablesto makesurethey remainoutputs.

The third mechanismis intentionally separatedfrom the
othertwo. Generationof repeatingnodesis not desirablein
many situationsandshouldin any casebebound to a maxi-
mum.In oursettings,thebiasshouldexplicitely statewhether
duplication of anatomis allowed.

Atomsof thethird kind do not fit very well in thedistinc-
tion thatwasintroduced.A repeatingnodecouldin any case
be exchangedwith its parent. It would however not be effi-
cient to introducea setof identicalnodesto overcomethis
problem. Later on, we will alsoseesomeadditional disad-
vantagesof theseatoms.

Candidategeneration discussion
Due to the absenceof

�
-subsumption, it caneasilybe seen

that FARMER doesnot prune as many queries as WARM R
does.In this sectionwe will show which restrictionsshould
beappliedto thebiasin order to makesurethatFARMER will
generatethesameoutput.

In WARMR
�
-subsumption is usedfor two purposes:� to pruneinfrequentqueriesbeforecounting;

� to remove querieswhich “mean the same” as other
queries.

Only the
�
-subsumption relationthatis usedfor thelatterpur-

posewill beconsideredhere, asonly this relationinfluences
the setof queries that is found. Infrequentqueries will not
occurin theresultsevenif they arenotpruned.

The
�
-subsumption equivalence relation is only one

method for determining that queries mean the same. A
lessstrict relationis theequalityrelationunder substitution,
whichwewill denotewith � hereandis definedfor two (un-
ordered) setsof atomsas follows: i���� if f thereexist
substitutions

� � and
� � suchthat i � ���k� and � � ����i .

Thecorrespondencebetweentheserelationscanbeexpressed
usingPlotkin’s reducedclauses.

Definition 4.1 A clause� is calledreducediff i���� and
iml�� imply i4�m� . [Plotkin,1969]

Theorem4.1 Let i and � be reducedsetsof atoms.Then
im��� iff i�lm� .

Proof ” > ”: this is clearas i � � �o� and � � � ��i .
” � ”: as ikj�� , i � ����� , andas ��j�i , i � � � ����i .
Let i6y ��i � � � � . Becausei<y¡�0i and i � � � ���0i6y , also
i�l�i6y holds(by definition), andthen i���i�y because i
is reduced.Thus i � � � � �¢i . In thesameway, � � y� � y� �m� .
As ,bi � ��,
��,bid, and i � �v��� , , �£,#Dn,bid, . As , � � y� ,���, �£, ,,bid,�D0, �w, , andfinally , �£,s��,¤iK, . By combining ,bi � �
,s�
, �£, and i � � �0� , i � � ��� is shown. This proves that
�¥�¢i . ¦
Fromthistheoremit alsofollowsthatif atomsetsarereduced,
they canneverbesubsumptionequivalent whenthey differ in
length.

We will show that for a restrictedbias, FARMER will al-
ways generate reduced atomsets. Thenwe will show that
FARMER doesnot generatetwo different atomsetsthat are
substitutionequivalent. Fromthis we concludethat,givena
restrictedbias, FARMER will not generatequeriesthat sub-
sumeeachother.

Definition 4.2 A redundancyrestrictedbiasshouldobey the
followingrules:

1. no functionsmaybeused;

2. repetitionof an atomby an attomwhich differs only in
thenameof theoutputvariablesis notallowed;

3. notwomodesfor thesamepredicatemayexist for which
theconstraint parameters differ, unlessthecorrespond-
ing parameters arebothconstantparameters.

The second rule prevents queries such as U 'B�v
�[#
�� � ) ,U 'B�v
�[#
����A) from being generated. The third rule disal-
lows the biases ' U 'BFd
�[#
�96) , U 'gFd
�9h
�96)3) and ' U 'BFd
�[#
�96) ,
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Figure3: A partialorderfor aquery

U 'BFd
![@
:Fv) , &�'BFd
�96)C) , andconsequentlyqueries' U 'B�h
![@
:� � ) ,U 'B�v

i � 
�� � )3) and ' U 'B�h
![@
:� � ) , &�'B� � 
:� � ) , U 'B�v
�[#
�� � )C) ).
Query U 'g�v
�[#
��¡�!)�
�&�'B�7�A
�Z�)c
 U 'B�h
b�@
�����) remains possible.

Theorem4.2 For a redundancyrestrictedbiasFARMER will
alwaysgeneratereduced atomsets.

Proof Assumethat � is a queryin thetrie, obtainedby us-
ing a redundancy restrictedbias. We will show that for any
subseti�§m� , � � �¨i cannever betrue. In order for this,
theremustat leastbe two atoms �h� and �6� in � which are
mapped to the sameatomin i : � � � �k� � � . For any pair
we will try to constructsucha substitution. By definitionof
the bias,both atomsmusthave inputs at the samepositions
(restriction2), while theinputvariablesmustbedifferent (re-
striction 1 in combination with the treebuilding procedure,
wheresuchatomscouldonly begeneratedasbrothers).Con-
structa substitutionwhich unifies �z� and ��� . This substitu-
tion will alwaysmapvariables to variables, asno functions
areallowedandnomodeswith constantsandvariablesat the
sameparameters. Apply

�
to thewholequery. Considerthe

setof atomsthatintroducedthevariablesusedin ��� and ��� ,
thentherearetwo possibilities:

1. Thissetcontainsoneatomwhichhastwo outputtingpa-
rameters. By

�
theseare bound to the samevariable.

Suchan atomcannever be generatedaccording to the
modemechanism usedby FARMER;

2. This sethasat leasttwo differentatoms.Of bothatoms
anoutput is bound to thesamevariable by

�
. In whatever

ordertheseatomsareplaced, oneof themhasnow anin-
put at a positionwherean output occured. This would
require another mode,which is not allowed in this re-
strictedbias.

Thustherecannotexist redundantqueries. ¦
Theorem4.3 Givena redundancyrestrictedbias, FARMER
will never generate two queriesthat are substitutionequiva-
lent.

Proof We first remarkthat for ordered atom sets,suchas
queries,adeterministicvariablenumberingcanbeused.Fur-
thermore we notethat two queriesmustbeof equalsizeand
that thesubstitioncanonly mapfrom variables to variables.
Thus,to determinewhethertwo queriessubstitutionequalea-
chother, it sufficesto find a permutation of atoms,followed
by avariable renumbering,thatmakestwo queriesequal.We
will show thatFARMER generatesonepermutation.

The restrictedbias is such that for every atom in an
(unordered) atom set, there is only one possible mode
declaration. The usageof input and output parameters

determines a partial order on the atoms, which can be
depictedin a graph such as in Figure 3 for the atom set
� U 'B�h
![@
:� � )c
 U 'B�h
b�@
�� � )c
�&�'g� � 
!Z!)�
c��'B�v
�� � 
:� � )�� and the
bias ' U 'gFh�v
�[#
�9<�z)�
 U 'gFh�v
(�@
�9<��)�
�&�'BFh�+
!Z!)�
c��'BFh�v
�Fh��

Fh�z)C) . Usethis strategy to order thenodes in aquery © :

order(A)
add � to theendof ©ª

:= nodes with incoming arrow from � and
no incoming arrow from outside ©

order
ª

according to mode declarationsand
adeterministicinput variable numberingstrategy

for all �6y./ ª in orderdo
order( �<y )

Theorderobtainedby this strategy correspondsto theorder
of FARMER: the set

ª
corresponds to the setof dependent

nodes; thetreebuilding mechanism which placesnew nodes
beforecopiednodes takescareof therecursionby actingasa
sortof LIFO queue. ¦
Corollary 4.1 Givena redundancyrestrictedbias FARMER
will nevergeneratequeriesthat

�
-subsumeeachother.

5 Experimental results
We have comparedFARMER and WARMR on two datasets.
We shouldremark that in our experimentswe usedan im-
plementation of WARM R that did not yet usethe treedatas-
tructure discussedin [Blockeel et al., 2000]; a comparison
of both algorithms is therefore not completely fair. Experi-
mentsin [Blockeelet al., 2000] revealedspeed-upsof 20 for
WARMR in somesituations.

Bongard
The Bongard dataset[Bongard, 1970] containsdescriptions
of artificial images. The task is to discover patterns in the
images.Every imageconsistsof several figures that canbe
included into eachother. No redundancy restrictedbiascan
beused.

In Figure 4 the resultsof the experiments are depicted.
Figure4(a)shows thenumberof queriesthateachalgorithm
finds.Thenumberof FARMER is higher in all cases,which is
alsoexpected for thisbias.In Figure4(b) theexecution times
of thealgorithmsarecompared2. Payingattentionto thefact
that the scaleis logarithmic, the speed-ups areconsiderable
for thisdataset.

Frequentitemsets
In this experimentwe comparetheperformanceof FARMER
to a specialpurposealgorithm. As test casea binary digit
datasetis usedwhich contains1000 binary codednumbers.
The specialpurposealgorithmwhich is usedascomparison
is thebreadth-first implementationof APRIORI by [Pijls and
Bioch,1999]. FARMER usesmany of themechanismsintro-
ducedin that algorithm and shouldperform comparable to
thatalgorithm.

In Figure5 theresultsof theexperimentsaredepicted. A
characteristic of thedatasetis given in Figure5(a).Thenum-
berof frequent itemsetsappearsto increaserapidlywhenthe

2Experiments were carried out on a Sun Enterprise 450
4x400MHz UltraSPARC2 CPUw/4MB E-cache4GB RAM.
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Figure4: A comparisonof FARMER andWARMR ontheBon-
garddataset.(a)Thenumberof queriesin theoutput.(b) Ex-
ecutiontimesin seconds.Notethatthescalesaredifferent.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0.001 0.01 0.1 1

nu
m

be
r 

of
 it

em
se

ts

­

minimum support

(a)

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1

tim
e 

(s
)¬

minimum support

WARMR
FARMER

Apriori

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1

tim
e 

(s
)/

ite
m

se
t

®

minimum support

WARMR
FARMER

Apriori

(b) (c)

Figure 5: Comparisonof resultsfor the digit dataset. (a)
Thenumber of frequent itemsetsfor eachminimumsupport.
(b) Theexecution timesof thealgorithms. (c) Theexecution
timesconsumed for eachitemset.Notethatthescaleis loga-
rithmic onbothaxis.

minimum support is beneath̄#�°H . In Figure5(b)theexecution
timesof thealgorithmsaregiven. Thetimegraph of FARMER
is comparableto thatof APRIORI , althoughstill exponentially
larger. WARMR hasa completely differentbehaviour than
bothotheralgorithmsandhadsuchhighexecutiontimesthat
noexperimentswerecarriedout for low supports.

In Figure 5(c) bothpreviousgraphs arecombined andthe
execution time for eachitemsetis shown. It makesclearhow
thealgorithmsreactwhentheamount of solutionsthey have
to find increases.While the execution timesof WARMR in-
crease,thetimesof theotheralgorithms decrease.Although
the overheadfor eachitemsetis larger in FARMER, which
could be explained by the additional mechanisms that are
hookedin, thedifferenceis acceptable. Thedecreasingtrend
can be explained by the increasing number of overlapping
evaluationswhenthenumberof itemsetsincreases.

6 Conclusionsand further work
We introducedanefficient algorithm for discovering queries.
It usesatreedatastructurebothto count queriesasto generate
queries. We showed that for a restrictedtype of bias, this

algorithm is equivalentto apreviousalgorithm, WARMR, and
performsmuchbetter.

Although we believe that our restrictedbiasalreadyadds
considerable expressive power to propositional association
rules,we arelooking at somepossibilitiesto overcomethese
restrictions. It appears that in casethe secondrestrictionis
lifted, therangeof possiblerulesalreadyincreasesconsider-
ably. We areinvestigating the possibility of usingthe order
of the treein combinationwith a more sophisticateddefault
orderof queries.

Furthermore,we plan to perform more experiments. We
successfullyperformedsomeexperimentsonadatabasewith
onemillion records, but moreexperimentsarenecessaryto
find out thebehaviour of FARMER ondatasetsof thissize.

References
[Agrawal et al., 1996] Rakesh Agrawal, Heikki Mannila,

Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri
Verkamo. Fastdiscovery of associationrules.In Advances
in Knowledge Discovery and Data Mining., pages 307–
328. AAAI/MIT Press,1996.

[Blockeeletal., 2000] H. Blockeel,L. Dehaspe,B. Demoen,
G. Janssens,J. Ramon,andH. Vandecasteele.Executing
query packs in ilp proceedingsof ilp2000 - 10th interna-
tionalconferenceon inductive logic programming, 2000.

[Bongard, 1970] M. Bongard. PatternRecognition. Hayden
BookCompany (SpartanBooks),1970.

[DehaspeandDeRaedt,1997] L. DehaspeandL. De Raedt.
Mining association rules in multiple relations. In
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