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Abstract

Severalalgorithis have alreadybeenimplemente
which comline associationrules with first order
logic formulas. Although this resultedin several
usablealgorithrs, little attentionwas payeduntil
recentlyto the efficiengy of thesealgoithms. In
this paperwe presentsomenew ideasto turn one
important intermedate stepin the processof dis-
covering suchrules,i.e. thediscovery of frequent
item sets,more efficient. Usinganimplementation
that we coined FARMER, we shav that indeeda
speed-p is obtairedandthat,usingtheseideas the
perfamanceis muchmorecomparableto original
associationule algoithms.

1 Intr oduction

The formalism of associationrules was introdwced by
Agrawal [19%] for the purposeof baslet analysis. An im-
portart stepin the discovery of suchrulesis the corstruction
of frequentitem sets. Theseare, for instance setsof items
thatarefrequently boughttogetterin onesupernarket trans-
action. As this discovery stepis time critical, it is obliga
tory thatit is perfamedreasonhly fast. Much researcthas
beendonein orderto develop efficient algoiithms. A well-
known algorithm resultingfrom this researchs APRIORI, of
whichmary variantshave beendeveloped suchasAPRIORI-
Tip [Agrawal et al., 1996 anda breadthfirst algorithm in-
trodwcedby Pijls andBioch [1999)].

On the otherhand efforts have beendoneto extendthe
usability of associatiorrules beyond the basiccaseof bas-
ket analysis.DehaspendDe Raedt[1997] usethe notionof
atomsetsasalfirst orde logic extensionof item sets.Thein-
corpaationof technigiesfrom Indudive Logic Progranming
allows for more comgex rulesto be found which alsotake
into account baclgrourd knowledge. Conseqantly, this also
allows datamining of datawhichis spreadover tableswhich
cannot reasoably be memged into onetable. An algorithm
was implemened basedon this notion which was called
WARMR. Theusefunessof this algoithm wasdemanstrated
in several real-world situations(see,for exanple, [Dehaspe
etal., 1999). Theseexpeiments,however, alsoshavedthe
major shortconmg of the algorithm its efficiency provedto
beverylow, someexperimentseventaking several days.

We proposeto obtaina gan in efficiency by tacklingtwo
propertiesof the WARMR algorithm

o while still usingthefirst orderlogic notation,we remove
theneedfor PROLOG;

e by using a more sophsticated datastructte borrowed
fromanimplementationof APRIORI, ouralgaithm does
notdepernl onatime consunng testfor equivalence.

Thealgoiithm thatwe introducehassomeressemblanceith
the algoithm thatwasdeveloppedin [Blockeeletal., 2000].
Thatalgorithm however did not tackle oneof the mosttime
consuning stepsof WARMR: atestfor equivalenceunder ¢-
subsumpon. Ouralgorithmpaysspeciahttentiorto this step
andoffers analternatve solution.Undersomerestrictionsve
will show thatouralgorithmis equivdlentto WARMR. Expé-
imentswith ouralgorithm thenshav a consideablespeed-p
compredto WARMR.

The paperis organizedasfollows. In the secondsection
we summarizethe associatiorrule algoithm on which our
work is based.In the third sectionwe discusssomeimpor-
tantnotionsintroducedin the WARMR algoithm. Thefourth
sectionintroduces our modificatims, which are verified by
giving resultsof experimentsin the fifth section. The sixth
sectionconcludes.

2 Breadth-first APRIORI

Ouralgoithm s basednavariation of APRIORI thatwasin-
troduwcedby Pijls andBioch [1999. Thealgoithm perfams
the sametaskas APRIORI. Givena databaseD which con-
tains subsetsT of a setof itemsZ = {i1,iz,...,in} the
algorithm discoversall frequen item sets which arethe sub-
setsI C Z for which support(I) = |{T € D|I C T}|
exceed aprecefinedthreshold An item setof sizek is called
ak—itemset.An importantproperty of support(I) is:

I C L = support(Li) > support(L), 1)

asevely subsetl; of I, occusin every transactiorthatcon-
tains L. This property turnsanefficient bottomup levelwise
searclpossible:it canapriori bedeterninedthata k + 1-item
setis notfrequentif a k-subsefs infrequent.

The breadthfirst-algoithm is sucha bottomup levelwise
algorittm. It startswith candidate®f size ong after which
aprocessds repeatedf countirg k—candidée item setsand
of usingthemto obtaincanddatek + 1 item sets.All these



Figurel: A smallexanple of atrie datastrature

stepsare perfamedon a trie datastructug, of which Figure
1 displaysan examge. Every pathfrom therootto a node
correspndsto anitemset;all leafsatthedeepestevel corre-
spondto candidatatem sets. Pathswhich do not reachuntil
the deepestevel are maintaine only whenthey corresppnd
to frequentitem setsandaredisplayedby dottedlinesfor the
sale of clarity. Thetrie is usedin thefollowing fashion:

¢ In thestepof candidhitecourting, atreetraversalis per
formed for every transactionasfollows: if anitem oc-
cursin atransactia, all its childrenare checled recur
sively. If aleafis reachedthe suppat cownt of the cor
resporling item setis increased.

¢ In the stepof candid#ée generatio, for every frequent
itemsetnew childrenaregereratedconsistingof all fre-
quert right brothes. In theexamge {2} is expardedby
its frequentright brathers3 and4. This copying mech
anismin combinationwith the orderof the itemstakes
careof geneatingeveryitem setat mostonce.

In both steps,this mechanisndistingushesitself from the
original APRIORI algorithm. Insteadof building a new tree
for eachround this procedireefficiently constructanew set
of candicitesby merelycopying nodes. Furthemore,during

the countirg phase, it passeshroughthetreeandchecls for

the existenceof candidgesin the currenttransactionThisin

contrast to theorigind algorithm, wherefor a given subsein

thetransactiopa searchin ahashnodeis perfamedto check
whetherthereis a canddate to be counted It will apper
thattheseboth characteristicgnake this variart of APRIORI

suitablefor our purposes.

3 WARMR

As afirst orderextension of item sets DehaspandDe Raedt
[1997] usesetsof atoms,which they alsoreferto asqueaies
whennealy all variablesareexistentially quantifiedandthe
setis ordeed. Thefree vaiiablesarebound by a specialpur-
posekey predcate. Therelationof the key andthe queryis
illustratedin thefollowing Hornclause:

kE(X) « buys(X, Y, cardbonus), property(X, loyal) (2)
— ~ -~ s
key query

In thisexanplethepredicde buys canbethoudt of asatable
which descriles the productsthat clients are buying, while
the property predicaterefersto atable contaning properties
of clients. In the sequelwe will useabbeviationssuchasb
for buys, p for property andc for cardbonus. This exampge
shavs how several tablescanbe comlinedmoreelegartly in
aquey thanin anitemset.

Thesupprt of thequey is formalized usingthekey andis
definedto be the numker of variablebindings for which the

key predcatecanbeproved. In thegivenexampe thesuppat
of {b(X,Y,¢),p(X,1)} is thenumter of varialle bindings
of X for whichk(X) canbeprovedgiventheHornclausein
Formua (2) anda knowledgebasedefinedin PROLOG.

While for item setsthe definition of the searchspaceis
straightfoward,this is notthe casefor atomsets.Apartfrom
the choiceof predicae, therearealsomary possibilitiesfor
the usageof variablesin the quey. To definethe bias of the
searchspaceWARMR usesa refinemat operato basedon
modedeclamtions Every moce declarationprescibes the
way in which a predicatecanbe addedto a quer. Thefol-
lowing is anexanple of amode:

b(+,—,¢). 3)

It statesthatpredicateb may be addedto a querywhenthe
first paraneteris bourd to an existing variable the second
paraneter introducesa new varialle andthe last paraméer
is bourd to the constantc. The parametes arecalledmode
constrints, here we will call + paranetersandconstahpa-
rametersnput parametes and— parametesoutpu parame-
ters. Oftenaninteger is associateavith every modeto indi-
catehow mary timesat mostthemodemaybeappliedin the
samequery
The usageof atomsinsteadof items turns it more diffi-

cult to createan efficient APRIORI-like algaithm: it is no
longe reasombleto usethe subsetrelationto expressrela-
tions betweenatomsets. As replacemat for the subsetre-
lation, andasapproxmation of logicalimplication WARMR
usesf—subsumtion. An atomset C' subsunesanatomset
D, dendedby C > D, if thereis a substitutiond suchthat
CO C D. Thed-subsumptia relationinducesanequivalence
relation~, thatis definedasfollows: C ~ D iff C' = D and
D = C. It canbeshavn thata property similar to Formua
(1) alsoholdsfor #-subsumtion on atomsets:

L = L, = support(L) > support(h). (4)

For a setof frequentqueies of sizek (dendedby L) anda
setof infrequent queies of sizek (derotedby 1), WARMR
useghis algorithm to geneatea new setof candichitequeries
Ck+1:
warmr-gen
Cry1 =0;
forall ¢ € Ly do
for all refinemets ¢’ of ¢ do
Add ¢’ to Cr41 unless:
(@)thereisae € |J,<, I; : e > c',or
(b)thereisae € J;«f Li U Cry1 e~ .

Restriction(a) remoresqueieswhich areapriori determine
to beinfrequent. Restriction(b) remoresquerieswhich have
the samemearing aspreviously consideredrequentqueries
or candicaites. We will illustrate this on a small examge.
Considetthefollowing setof modedeclaratios:

{b(+, juice, —), t(+, ¢), t(+, electronicpurse) }
This mayleadto thesetwo queries:

b(X,j, Yl)vt(ylvc)vb(ijv Y2)7t(Y27e)
b(X,j, Yl)at(ylae)ab(Xaja Y2)at(Y2aC)



Theseclauseshowever have the samemearing andlogically
imply eachdher.

A major prablemsof WARMR is thatit heaily depenls
on a goodimplementation of 6—subsurmption. This is pro-
hibitive as#-subsumpion is an NP-compete problem [Kietz
andLubbe,1994.

4 FARMER

We proposetwo modifications of WARMR in orderto make
this algorithm moreefficient. Eachof the following two sub-
sectionswill discussoneof them.

4.1 Knowledgebase

Whentaking a closerlook at the modedeclaratios, it can
easily be seenthat they canbe mapped to proedures. As
an exanple, considerthe following facts: b(1, ananas, c),
b(1, juice, e). Given moce b(+, #,+), this mode coud
be associatedwith a procedure which returns true for
(1,4, e) andretuns false for (1, a, ¢). Furthernore,a moce
b(+,—, —) could be associatedvith a procelure which for
input1 returrs {(a, ¢), (j, )}. In FARMER thisideais incor
poratel by bindng all modedeclaratios to a procedire of
oneof thesetwo types:

e boolea proedureswhichfor aninput vectorretumtrue
or false;

e outputing proeedureswhich for aninput vectorretun
asetof output vedors. Of couse,this setmaybeempty
andneednot be compued entirely before all elements
areused.

Thefirst kind of proeduresshouldbe usedin modeswhich
do not have outputparaméers. The secondkind is usedin
outputing modes.

A datastructurefor a knowledge baseof PRoLOG facts
is createdandaccessethy procalures,asfollows: for every
modedeclaratiora multidimersionalmatrix is allocated ev-
ery elementn thematrix correspond to a setof inputvalues
andcontairs a truth valueor a list of outputvalues.Whena
factfor a predcateis read,all correspading modce matrices
areupdatedaccodingly. Theadwartageof thismecharsmis
thatit takesa constantamount of time to determire the truth
of anatom, especiallyin our currert implemenation which
storesthe matricesin corememoy*. Knowledge canhow-
ever only be specifiedusingfactsor ad-toc procedures.

4.2 Search

The searchwhich FARMER perfams differs in two aspects
from theoriginal WARMR algoiithm:

e it doesnotusef-subsumpon;

¢ it manipulatesatrie datastructre to gereratethequeries
which aredefinedby thebias.

The trie datastructue is a tree which cortainsall candidate
gueries asa pathfrom therootto aleaf. An examge of such
atrie is givenin Figure2. Thetreeis usedfor bothcountirg
andgeneatingcandidhtes.

1For large datasetsthis could be a disadwantag. However, as
our algorithmfits within the learningfrom interpretationsapprach,
similar agumentshold whenpartof a databasés on disk.

koX)*
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1 1 2 3 1 1 3
t(Y1,c) t(Y1,e) b(X,j,Y2) b(X,a,Y2 ) t(Y1,C) t(Y1,e) b(XY2 )

Figure2: A triein FARMER

Counting
Wewill descritethealgorithmby giving pseu@-cock. In this
pseudecode we usethefollowing notation:

e acapital A refersto anatomin thetree;

e acapital B refersto asetof variableassignmentsyhich
is asetcontaining amappng from variables to values;

e I(A, B) is aninterpretationfunction, whichreturrs true
if anatom A canbe provedusingassignmenB. In this
function, oneof the aforenentionedproceduress used;

e B(A, B) is anassignmenfunction. Theassignmenset
B givesa valueto somevarialdes occuing in A. For
the remainng unbound variables, this function returns
all setsof possibleassignmets. The aforamentionel
outputing procedireis usedhere.

For all valuesof thekey varialies, thetreeis traversedrecur
sively, asfollows:

Count(A,B)
if I(A, B) = true then
if Aisaleafthen
disabled
increasesuppot A
return true
else
forall B' € B(4, B) do
d = true
for all A’ € childrendo
if A’ notdisablecthen
d := Count@’,BU B") Ad
if d=truethen
disable4
return true
return false

Initially all nodesareenalted. For agivennode all valuesfor
the outpus are checled aslong asthereare childrenwhich
have not beensatisfied. A similar ideais also apgied in
[Blockeeletal., 2000]. We shawv theintegration of the proce-
duresandmodedeclaratios here.

Candidate generaion algorithm

Wewill firstintroducethemechanisnof canddategereration
by giving the algorithm Afterwards we will compae this
geneationmechaismwith thed-subsumpon basednethal
of WARMR.

Thegeneationmecharsmis basedn thefollowing idea:
whenan atomwith aninput variableis moved to the begin-
ning of a quew, thatvariablecould becomean outputvari-
able, herdoy violating the mode declaations. However, for



every atomin a querythereis onefirst positionat which it
canoccurwithou violation. All atomsthatcanbe added to
the endof a querycanbe subdvidedin the following three
classes:

1. atomsthat could not have beenaddedat an earlier po-
sition, asthey useat leastone new varialde of the last
atomin thequery, we call thesedeperentatoms

3. atomghatareacopy of thelastatomin thequesy, except
for thenamesof the output variabes;

2. otheratomsthatcouldhave beenaddedat anearlierpo-
sition.
Exampes of theseclassesare given by the supescriptsin
Figure2.

Duringthe corstructionof thetreethis subdvisionis used.
Givenatrie andanordeedsetof modedeclaratios, thetrie
is expardedasfollows:

Expand(A)
if A isinternalthen
for all A’ € childrendo
Expard (A’)
elseif A is frequentthen
addaschild from left to right:
1. all depenlentatomsof A
2. all frequentright brothersof A
3. acopy of A with new outpu varialdes,
if allowed
else
remove A

Thetreein Figure2 is obtainedusingthis mecharsm when
it is assumedhatall queiesof thefollowing (typed)biasare
frequent:

{b(+A7 a, _B)ap(+A7J7 _B)> t(+B7 C), t(+B7 6)} (5)
The supersdpts alsoin this casedende the mechaismthat
wasusedto createa noce.

The first mecharsm senes the purpose of introdwcing
atomswhich could not be addedpreviously. The atomsare
introducedin the sameorderasthe corresponéhg modedec-
larationsanda determiristic mechamsmis usedo gothrough
all theinputvariables.

The dependentatomsare brathersof eachotler; the sec-
ondmechaismtakescarethatall subset@aregeneatedafter
wards—if notinfrequent. By keepng the childrenin order,
everysubsets geneatedonly onae, or, equivalently, only one
permuationout of a setof depenientatomsis consideed. If
necessarythe secondnechaism givesnenv namedo output
variadesto make surethey remainoutpus.

The third mechanismis intentiorally separatedrom the
othertwo. Generatiorof repeatinghodesis not desirablein
mary situationsandshouldin arny casebebourd to a maxi-
mum. In oursettingsthebiasshouldexplicitely statewhetter
duplicaion of anatomis allowed.

Atoms of thethird kind do not fit very well in the distinc-
tion thatwasintroduced.A repeatingnodecouldin ary case
be exchangedwith its paren. It would howvever not be effi-
cientto introducea setof identical nodesto overcomethis
prodem. Lateron, we will alsoseesomeadditioral disad-
vantagsof theseatoms.

Candidate generaion discussion
Dueto the absenceof 8-subsumgion, it caneasily be seen
that FARMER doesnot prune as mary queres as WARMR
does.In this sectionwe will shav which restrictionsshoud
beappliedto thebiasin orde to make surethatFARMER will
geneatethesameoutput.

In WARMR 6#-subsumpion is usedfor two purpcses:

e to pruneinfrequentqueriesbefae counting

e to remove querieswhich “mean the same” as other
queries.

Only the@-subsumpon relationthatis usedfor thelatterpur
posewill be consideedhere asonly this relationinfluences
the setof queiesthatis found Infrequentqueieswill not
occurin theresultsevenif they arenot prunal.

The 6-subsurption equialence relation is only one
method for determiniry that quefes meanthe same. A
lessstrict relationis the equalityrelationunde substitution
whichwe will denotewith ~ hereandis definedfor two (un-
ordeed) setsof atomsasfollows: C ~ D iff thereexist
substitutiond); andf, suchthat C6; = D andD6, = C.
Thecorresponéncebetweertheserelationscanbeexpressed
usingPlotkin’s redwedclauses.

Definition 4.1 A clauseD is calledreducedff C C D and
C ~ D imply C = D. [Plotkin,1969

Theorem4.1 Let C and D bereducedsetsof atoms. Then
C~Diff C ~D.

Prodf "=": thisisclearasC8, C D andD#f, C C.

"«" asC = D, C6, C D,andasD = C, C0.6, C C.
Let C' = C6,0,. BecauseC' C C and (6,6, C C', also
C ~ (' holds(by definition) andthenC = C' becase C
isredwced. ThusC616, = C. In thesameway, D66, = D.
As|C6,| = |C|andC6, C D, |D| > |C|. As |D#¢}| = |D|,
|C| > |D|, andfinally |D| = |C|. By combning |C6:| =
|D| and C6; C D, C8; = D is shavn. This provesthat
D~ C. O

Fromthistheoemit alsofollowsthatif atomsetsarereduced
they cannever be subsurption equivalert whenthey differ in
length.

We will shav that for a restrictedbias, FARMER will al-
ways geneate reducel atomsets. Thenwe will shav that
FARMER doesnot generatgwo different atomsetsthat are
substitutionequvalent. Fromthis we condudethat, givena
restrictedbias, FARMER will not gen&ate queriesthat sub-
sumeeachotkr.

Definition 4.2 A redundacyrestrictedbias shouldobey the
followingrules:

1. nofunctimsmaybeused,;

2. repetitionof an atomby an attomwhich differs only in
thenameof the outputvariablesis notallowed;

3. notwo modedor thesamepredicatemayexistfor which
the constrint parametes differ, unlessthe correspond
ing parametes are bothconstaniparametes.

The secondrule prevents queies such as b(4, a, By),
b(A, a, By) from being geneated. The third rule disal-
lows the biases(b(+, a, —), b(+,—,—)) and (b(+, a,—),



b(A,a,B1 ) t(B1,C)

k(A)

b(A,j,B2) s(A,B1,B2)

Figure3: A partialorderfor aquery

b(+, a,+), t(+,—)), andconseqentlyqueriesb(4, a, B1),
b(A7 017 BZ)) and (b(A) a, Bl)r t(BIJ BQ)! b(A7 a, B2)))
Queryb(A, a, By), t(Bi, ¢), b(A, j, Bx) remairs possible.

Theorem4.2 For aredundncyrestrictedbias FARMER will
alwaysgenemtereduce atomsets.

Prod Assumethat D is a queryin thetrie, obtainedby us-

ing aredurdang restrictedbias. We will shav thatfor ary

subsetC C D, DA = C canneverbetrue. In order for this,

theremustat leastbe two atomsA; and A, in D which are
mapped to the sameatomin C: A0 = A.6. For ary pair
we will try to constructsucha substitution By definition of

the bias, both atomsmusthave inputs at the samepositions
(restriction2), while theinputvariables mustbedifferent (re-

striction 1 in comhination with the tree building procedire,

wheresuchatomscouldonly begeneatedasbrothers).Con-

structa substitutiorwhich unifies A1 and A,. This substitu-
tion will alwaysmapvarialdes to variables, asno functions
areallowedandno modeswith constantandvariablesatthe

sameparaméers. Apply 6 to thewhole quer. Considerthe

setof atomsthatintroducedthevariabesusedin 4; and A,

thentherearetwo possibilities:

1. Thissetcontairs oneatomwhich hastwo outputting pa-
rameters. By # theseare bourd to the samevariale.
Suchan atomcannever be geneatedaccordim to the
modemecharsm usedby FARMER,;

2. This sethasat leasttwo differentatoms.Of bothatoms
anoutputis bourd to thesamevarialle by 6. In whatever
ordertheseatomsareplaced oneof themhasnow anin-
put at a positionwherean outpu occued. This would
requile anotler mode,which is not allowed in this re-
strictedbias.

Thustherecannot exist redundantqueries. m|

Theorem4.3 Givena redurdancyrestrictedbias, FARMER
will never genegate two queriesthat are substitutionequiva
lent.

Prod We first remarkthat for ordeed atom sets,suchas
queries, adeterministiovariablenumberingcanbeused.Fur-
thermae we notethattwo queies mustbe of equalsizeand
thatthe substitioncanonly mapfrom variabdesto variables.
Thus,to determire whethertwo queriessubstitutiorequalea-
chotter, it sufiicesto find a permuation of atoms,followed
by avarialde renumlering,thatmakestwo queriesequal.We
will shav thatFARMER generatesnepermuation.

The restricted bias is such that for every atomin an
(unadered atom set, there is only one possible moce
declaratim. The usageof input and outpu paraneters

determires a partial order on the atoms, which can be
depictedin a graph suchas in Figure 3 for the atom set
{b(A, a, Bl), b(A,], BQ), t(Bl, C), S(A, Bl, BQ)} and the
bias (b(+4,a,-B),b(+A4,j,—B),t(+B,c),s(+4,+B,
+B)). Usethis stratey to orde thenodesin aquery Q:
order(A)
add A totheendof @
S := nodes with incoming arrow from A and
noincomirg arranv from outsideq)
orderS accordig to mock declaratimsand
adeterministianput variade numteringstratey
forall A’ € S in orderdo
ordeA4’)

The orderobtaired by this strateyy correspondgo the order
of FARMER: the set S correspond to the setof deperent
nodes; the treebuilding mechaism which placesnen nodes
before copiednodes takescareof therecusionby actingasa
sortof LIFO queue. O

Corollary 4.1 Givena redurdancyrestrictedbias FARMER
will never genematequeriesthat#-subsumeadather.

5 Experimental results

We have compmred FARMER and WARMR on two datasets.
We shouldremak thatin our experimentswe usedan im-
plemertation of WARMR thatdid not yet usethe tree datas-
tructure discussedn [Blockeel et al., 200d; a comgarison
of both algoithms is therefae not competely fair. Expei-
mentsin [Blockeelet al., 2000] revealedspeeddpsof 20 for
WARMR in somesituations.

Bongard
The Bongad dataset{Bongad, 1970] containsdescriptims
of artificial images. The taskis to discover patterrs in the
images. Every imageconsistsof severalfigures thatcanbe
included into eachothe No redundang restrictedbias can
beused.

In Figure 4 the resultsof the experiments are depicted
Figure4(a) shavs the nunmberof queriesthateachalgorithm
finds. Thenumter of FARMER is higherin all caseswhichis
alsoexpectel for thisbias.In Figure4(b) theexecuion times
of thealgolithmsarecommred. Payingattentionto thefact
thatthe scaleis logarithmic, the speed-up are considerale
for thisdataset.

Frequentitemsets
In this experimentwe comparethe perfomanceof FARMER
to a specialpurposealgoithm. As testcasea binary digit
dataseis usedwhich contains100 binary codednumkers.
The specialpumposealgorithmwhich is usedas comparison
is the breadh-firstimplemantationof APRIORI by [Pijls and
Bioch,1999. FARMER usesmary of the meclanismsintro-
ducedin that algoithm and should perfam compaable to
thatalgorithm

In Figure5 theresultsof the exparimentsaredepicted A
charactsastic of thedatasets given in Figure5(a). Thenum:
berof frequent itemsetsappeargo increasaapidly whenthe

2Experiments were carried out on a Sun Enterprise 450
4x400MHz UltraSRARC2 CPUW/4MB E-cache4GB RAM.
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Figure 5;: Comparisonof resultsfor the digit dataset. (a)
Thenumter of frequant itemsetsfor eachminimum suppot.
(b) The exeaution timesof the algotithms. (c) The execution
timesconsumd for eachitemset.Notethatthe scaleis loga
rithmic onbothaxis.

minimum suppat is bereath0.1. In Figure5(b)theexecution
timesof thealgorithmsaregiven Thetime gragh of FARMER
is comprableto thatof APRIORI, althowghstill exponentially
large. WARMR hasa competely differentbehaiour than
bothotheralgoithmsandhadsuchhigh executiontimesthat
no experimentswerecarriedout for low suppats.

In Figure 5(c) both previous grapts arecombinal andthe
execuion time for eachitemsetis shavn. It makesclearhow
the algorittmsreactwhenthe amoun of solutionsthey have
to find increases While the execuion timesof WARMR in-
creasethetimesof the otheralgorithis decreaseAlthough
the overheadfor eachitemsetis larger in FARMER, which
could be explained by the additimal mechaismsthat are
hooledin, thedifferenceis acceptale. The decreaingtrend
can be explainad by the increasing numter of overlapping
evaluatimswhenthe nunberof itemsetsncreases.

6 Conclusionsand further work

We introducedan efficient algoiithm for discoveling queries.

It usesatreedatastructre bothto court queiesasto geneate
queriss. We shaved that for a restrictedtype of bias, this

algorittmis equvalentto a previousalgorithm, WARMR, and
perfamsmuchbetter

Although we believe that our restrictedbias alreadyadds
consideable expressive power to propgsitional association
rules,we arelooking at somepossibilitiesto overcomethese
restrictions. It appeas thatin casethe secondrestrictionis
lifted, therangeof possiblerulesalreadyincreasesonside-
ably. We areinvestigaing the possibility of usingthe order
of thetreein combinationwith a more sophisticatedlefault
orderof queres.

Furthemore, we plan to perform more experiments. We
successfullyperfamedsomeexpeimentson a datalasewith
one million records, but more experimentsare necessaryo
find outthebehaiour of FARMER on dataset®f this size.
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