Coordinators

Siegfried Nijssen
s.nijssen@liacs.leidenuniv.nl
http://www.liacs.leidenuniv.nl/~nijssensgr

Amr Ali-Eldin
a.m.t.ali-eldin@liacs.leidenuniv.nl
The Bachelor Class in a Nutshell

1) Overview of research groups and bachelor project topics

2) Hints & tips: how to write a thesis, how to manage your project, …

3) Progress reports:
 - Poster presentation about the problem you are studying
 - Intermediate presentation about how you are solving the problem
 - Final presentation about your results
Overview of the Bachelor Class

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>16 Nov</td>
<td>HCI</td>
<td>DaMi</td>
<td>Bklas</td>
<td>Coco</td>
<td>wCoco</td>
<td>CoC</td>
<td>HCl</td>
</tr>
<tr>
<td>48</td>
<td>23 Nov</td>
<td>HCI</td>
<td>DaMi</td>
<td>Bklas</td>
<td>pCoco</td>
<td>CoC</td>
<td>CoC</td>
<td>HCl</td>
</tr>
<tr>
<td>49</td>
<td>30 Nov</td>
<td>HCI</td>
<td>DaMi</td>
<td>Bklas</td>
<td>Coco</td>
<td>wCoco</td>
<td>CoC</td>
<td>oCoc</td>
</tr>
<tr>
<td>50</td>
<td>7 Dec</td>
<td>HCI</td>
<td>DaMi</td>
<td>Bklas</td>
<td>CoC</td>
<td>wCoco</td>
<td>CoC</td>
<td>CoC</td>
</tr>
<tr>
<td>51</td>
<td>14 Dec</td>
<td>T CoCo</td>
<td>T HCl</td>
<td>Bklas</td>
<td>CoC</td>
<td>wCoco</td>
<td>CoC</td>
<td>CoC</td>
</tr>
<tr>
<td>52</td>
<td>21 Dec</td>
<td>T HCl</td>
<td>T HCl</td>
<td>Bklas</td>
<td>CoC</td>
<td>wCoco</td>
<td>CoC</td>
<td>CoC</td>
</tr>
<tr>
<td>53</td>
<td>28 Dec</td>
<td>Gesloten</td>
<td>Gesloten</td>
<td>Gesloten</td>
<td>Gesloten</td>
<td>Gesloten</td>
<td>Gesloten</td>
<td>Gesloten</td>
</tr>
<tr>
<td>1</td>
<td>4 Jan</td>
<td>T DaMi</td>
<td>T DaMi</td>
<td>Bklas</td>
<td>CoC</td>
<td>wCoco</td>
<td>CoC</td>
<td>CoC</td>
</tr>
<tr>
<td>2</td>
<td>11 Jan</td>
<td>T DaMi</td>
<td>T DaMi</td>
<td>Bklas</td>
<td>CoC</td>
<td>wCoco</td>
<td>CoC</td>
<td>CoC</td>
</tr>
<tr>
<td>3</td>
<td>18 Jan</td>
<td>T DaMi</td>
<td>T DaMi</td>
<td>Bklas</td>
<td>CoC</td>
<td>wCoco</td>
<td>CoC</td>
<td>CoC</td>
</tr>
<tr>
<td>4</td>
<td>25 Jan</td>
<td>T DaMi</td>
<td>T DaMi</td>
<td>Bklas</td>
<td>CoC</td>
<td>wCoco</td>
<td>CoC</td>
<td>CoC</td>
</tr>
<tr>
<td>5</td>
<td>1 Feb</td>
<td>spb F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>6</td>
<td>8 Feb</td>
<td>F13</td>
<td>Diesviering</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>7</td>
<td>15 Feb</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>8</td>
<td>22 Feb</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>9</td>
<td>29 Feb</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>10</td>
<td>7 Mrt</td>
<td>H HCI</td>
<td>H CoCo</td>
<td>H DaMi</td>
<td>H DaMi</td>
<td>H DaMi</td>
<td>H DaMi</td>
<td>H DaMi</td>
</tr>
<tr>
<td>11</td>
<td>14 Mrt</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>12</td>
<td>21 Mrt</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>13</td>
<td>28 Mrt</td>
<td>Tweede Paasdag</td>
<td>tweede paasdag</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>14</td>
<td>4 Apr</td>
<td>F13</td>
<td>BLOD</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>15</td>
<td>11 Apr</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>16</td>
<td>18 Apr</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>17</td>
<td>25 Apr</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>18</td>
<td>2 Mei</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>19</td>
<td>9 Mei</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>20</td>
<td>16 Mei</td>
<td>Tweede Pinksterdag</td>
<td>tweede pinksterdag</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
<td>F13</td>
</tr>
<tr>
<td>21</td>
<td>23 Mei</td>
<td>T NC</td>
<td>T NC</td>
<td>Bklas</td>
<td>CoC</td>
<td>wCoco</td>
<td>CoC</td>
<td>CoC</td>
</tr>
<tr>
<td>22</td>
<td>30 Mei</td>
<td>T NC</td>
<td>T NC</td>
<td>Bklas</td>
<td>CoC</td>
<td>wCoco</td>
<td>CoC</td>
<td>CoC</td>
</tr>
</tbody>
</table>

- **Presentation of Topics**
- **Allocation of Topics**
- **Poster Presentations**
- **Howtos**
- **Presentations**
Detailed Information

Bachelorklas 2015-2016

Schedule

Information

Forms

Bachelorklas 2015-2016

Date

- 17 November 2015
- 1 December 2015
- 9 December 2015

More information

- Introduction to bachelor projects (1)
- Introduction to bachelor projects (2)
- Introduction to bachelor projects (3)
Rules for Participation

- Everybody is welcome to attend...
- Active participation is only allowed if:
 - You have finished your propedeuse
 - At the start of second semester, at most 2 courses from the second year and the first semester are missing

Contact Jeannette De Graaf or Ronniy Joseph for exceptions

- You have to participate in order to graduate, including attending all classes and giving all presentations
 - If your 2 missing courses are in the spring semester, you may get permission to finish your project in the autumn and skip the intermediate presentation. Contact Jeannette or Ronniy!
Rules for Participation

- If you cannot be present for a class, you should send a mail in advance providing a good motivation.

- After 2 missed classes for no good announced reason, you need to make an appointment with the study advisor.

- Every class, you need to put your name on an attendance form.
Bachelor Dossier

- Includes:
 - Spring seminar
 - Autumn seminar
 - Bachelor class
 - Bachelor thesis, presentation

- 18EC for informatica
- 16EC for bachelor thesis and bachelor class

- 16EC for informatica & economie
- 14EC for bachelor thesis and bachelor class
Choosing a Topic

- All research groups of LIACS will present topics till December 9

- The topics will be on the website; by December 20 you will need to rank at least 6 topics, from at least 3 different supervisors (→ link will be on the website)

- By January 20 we will finalize the allocation of students to supervisors

- By February 3 you have to hand in (on paper and online) a contract (→ document will be on the website) http://liacs.leidenuniv.nl/~nijssensgr/bachelorklas-2014-2015/contract.html
Research at LIACS

- **Algorithms and Software Technology (AST)**
 - Games
 - Formal methods
 - Optimization
 - Data science

- **Computer systems and Imagery & Media (CSI)**
 - Imaging, information retrieval
 - Bioinformatics
 - High performance computing
 - Embedded systems
AST: Games

- Walter Kosters, Hendrik Jan Hoogeboom, Aske Plaat, Jaap van den Herik
- Related to artificial intelligence, complexity
- Example projects:
 - Hanabi: A co-operative game of fireworks
 - Compact Decision Trees for Dou Shou Qi Tablebases
 - Predicting the Outcome of the Game Othello
 - Using Outcome Weights in Monte-Carlo Tree Search for Multiplayer 3D Hex
 - A Difficulty Measure for Light Up Puzzles
 - Strategies for Klondike Solitaire
 - Solving Jungle Checkers
 - Solving Jungle Checkers
- Popularity warning: typically, many students interested
AST: Formal Methods

- Marcello Bonsangue, Jetty Kleijn, Farhad Arbab, Frank de Boer, Rudy van Vliet, Luuk Groenenwegen

- Related to concepts of logic, programming languages, fundamentals of computer science, programming and correctness, software engineering, theory of concurrency

- Example projects:
 - Context Free Guarded Languages: A system for determining Guarded Strings
 - The Constraint-Relation Modelling Language and its relation to Petri Nets
 - Equivalence checking of regular expressions using non-deterministic finite automata
 - An On-Line Parsing Algorithm for conjunctive grammars
 - Reducing copying and network traffic in Reo circuits
 - Testing of Channel Based Service Connectors
AST: Optimization

- *Thomas Bäck, Michael Emmerich*
- Related to artificial intelligence, computational intelligence, natural computing
- Example projects:
 - Mining Bitcoins with Natural Computing Algorithms
 - An Evolutionary Algorithm for Finding Diverse Sets of Molecules with User-Defined Properties
 - Multi-objective Generation of Bicycle Routes
 - A Genetic Algorithm for the Travelling Salesman Problem with Area Constraints
CSI: High Performance Computing

- *Harry Wijshoff, Kristian Rietveld*
- Related to operating systems, networks, digital techniques, computer architecture, compiler construction
- Example projects:
 - Deploying Phenotype Analysis On LLSC
 - Deploying Single Particle Analysis on the LLSC
 - A Framework for Cross-Platform Dynamically Loaded Libraries
 - Implementing I/O Infrastructure Improvements for S.M.A.C.K.
CSI: Bioinformatics

- **Fons Verbeek, Kathy Wolstencroft, Sacha Goultiaev**

- Related to human computer interaction, data mining, topics from high computing, software engineering

- **Example projects:**
 - Deploying Phenotype Analysis On LLSC
 - Deploying Single Particle Analysis on the LLSC
 - Integrating data modeling with data analysis in Taverna workflows
 - Ontology viewer: from proof-of-concept to layered software
CSI: Embedded Systems

- Todor Stefanov

- Related to digital techniques, computer architecture, compiler construction

- Example projects:
 - Exploring scheduling alternatives for a Computer Vision application on embedded MPSoCs
 - Auto-vectorization using polyhedral compilation for an embedded ARM platform
CSI: Imaging & Media

- *Michael Lew, Erwin Bakker*
- Related to data mining, computer graphics, artificial intelligence
- Example projects:
 - An algorithm for morphing audio
 - Combined Neural Networks for Movie Recommendation
 - Image Similarity Using Color Histograms
 - Video rating and sorting with a genuine approach
 - A comparison of search engine user interfaces
 - Finding correspondence in stereo image pairs using an adaptive window comparison algorithm
 - Detailed crowd simulation and spatial hashing for large-scale collision detection
 - Video Recommendation, A comparison between collaborative filtering algorithms
- Popularity warning: typically, many students interested
AST: Data Science

- Joost Kok, Aske Plaat, Jaap van den Herik, Siegfried Nijssen, Peter Lucas, Stefan Manegold, Thomas Bäck, Michael Emmerich, Matthijs van Leeuwen, Frank Takes, Cor Veenman, Wojtek Kowalczyk, Arno Knobbe

- Related to data mining, databases, statistics, artificial intelligence

- Example projects:
 - Combining graph mining and deep learning in molecular activity prediction
 - Mining a scientific conference
 - Data mining the Peptide Sequenome
 - Analysis and Visualisation of Data of an Outdoor Sports Mobile Application
 - Inference in Markov Networks
 - Data triangulation: combining Ebola datasets for gaining retrospective insights
AST: Data Science Applications

- Industry (steel factories, car manufacturers, aircraft manufacturers)

 Michael Emmerich, Thomas Bäck, Matthijs van Leeuwen

- Banking, insurance

 Wojtek Kowalczyk, Arno Knobbe

- Sports

 Arno Knobbe, Joost Kok

- Biology, chemistry

 Siegfried Nijssen, Michael Emmerich

- Hospital

 Aske Plaat, Peter Lucas, Joost Kok, Siegfried Nijssen

- Law enforcement

 Aske Plaat, Cor Veenman

- Traffic

 Aske Plaat, Arno Knobbe, Siegfried Nijssen

- Social media

 Frank Takes, Aske Plaat, Siegfried Nijssen
AST: Data Science Fundamentals

- Database systems
 Stefan Manegold, Michael Emmerich

- Neural networks
 Wojtek Kowalczyk, Siegfried Nijssen, Walter Kosters

- Pattern mining algorithms (itemset mining, subgroup discovery)
 Siegfried Nijssen, Matthijs van Leeuwen, Arno Knobbe

- Supervised machine learning algorithms
 Siegfried Nijssen

- Gaussian processes
 Michael Emmerich

- Bayesian networks
 Peter Lucas

- Graph algorithms
 Frank Takes, Siegfried Nijssen
Siegfried Nijssen

- Master in computer science (Leiden, 2000)
- PhD in computer science (Leiden, 2006)
- Post doc in Leuven (KU Leuven)
- Docent (Leiden)

- Machine learning
- Data mining
- Artificial intelligence
Graph Mining
Graph Mining

- Can we efficiently predict whether a molecule as active?

Questions:
- How to represent molecules?
- How to search for features?
- Which classifier to use?

Requirements:
- An interest in efficient programming in C++
- An interest in graph theory
- An interest in data mining
Pattern Mining

Market basket data

<table>
<thead>
<tr>
<th>Customer</th>
<th>Pampers</th>
<th>Beer</th>
<th>Chips</th>
<th>Beans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

support() = 3
Pattern Mining

- Situation comparable to having a specialized system for each possible database query

<table>
<thead>
<tr>
<th>Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apriori</td>
</tr>
<tr>
<td>FP-Growth</td>
</tr>
<tr>
<td>Eclat</td>
</tr>
<tr>
<td>SD-Apriori</td>
</tr>
<tr>
<td>DDPMine</td>
</tr>
<tr>
<td>Gaston</td>
</tr>
<tr>
<td>gSpan</td>
</tr>
<tr>
<td>FFSM</td>
</tr>
<tr>
<td>TreeMiner</td>
</tr>
<tr>
<td>LCM</td>
</tr>
<tr>
<td>MaxMiner</td>
</tr>
<tr>
<td>DualMiner</td>
</tr>
<tr>
<td>Molfea</td>
</tr>
<tr>
<td>CorrMine</td>
</tr>
<tr>
<td>EclatV</td>
</tr>
<tr>
<td>Mafia</td>
</tr>
<tr>
<td>kDCI</td>
</tr>
<tr>
<td>ARMOR</td>
</tr>
<tr>
<td>AIM</td>
</tr>
<tr>
<td>COFI-tree</td>
</tr>
<tr>
<td>DCI closed</td>
</tr>
<tr>
<td>WinePI</td>
</tr>
<tr>
<td>MinePI</td>
</tr>
<tr>
<td>… … … …</td>
</tr>
</tbody>
</table>
A 4th Generation Language for Data Mining

- “An SQL for data mining”
A 4th Generation Language for Data Mining

(IBM's X10 language)
A 4th Generation Language for Data Mining

(Numberjack CP system)
A 4th Generation Language for Data Mining

• Apache Spark
A 4th Generation Language for Data Mining

- Can an effective declarative data mining system be built in Python, based on \textit{Numberjack}, \textit{X10}, or \textit{Apache Spark}?

- Requirements:
 - An interest in programming in developing and learning new languages
 - An interest in algorithms
 - An interest in artificial intelligence
 - An interest in data mining
Inference in Probabilistic Networks

Social network, protein interaction network, … with uncertain or unreliable links
Inference in Probabilistic Networks

Suppose we "infect" this node.

What is the probability that the infection reaches this node?

Social network, protein interaction network, … with uncertain or unreliable links
Inference in Probabilistic Networks

Which node should we infect to infect the largest number of people?

Social network, protein interaction network, … with uncertain or unreliable links
Inference in Probabilistic Networks

• Questions:
 – How to efficiently calculate probabilities?
 – How to efficiently find the state with the largest probability?
 – How to represent problems in networks?

• Requirements:
 – An interest in algorithms
 – An interest in probabilistic reasoning, artificial intelligence