

- Natallia Kokash, Joost Kok
 - 1a. Visualization: tree mapping using nested rectangles
 - 1b. Visualization: generation of 3D schematic images for ontologies
- Siegfried Nijssen
 - 2a. Data mining: conference mining
 - **2b. Data mining:** declarative data mining
 - 2c. Data mining: visualization of binary matrices using mining algorithms
 - 2d. Data mining: mining graphs with labels

- Jan van Rijn, Jonathan Vis
 - 3a. Games: solving jungle checkers
- Arie de Bruin, Siegfried Nijssen
 - 4a. Visualization: tree of life
- Jonatha Vis, Joost Kok
 - 5a. Visualization: operations on strings
 Develop a visualization that shows how operations turn one string into another, with applications in bioinformatics

- Michael Emmerich
 - 6a. Natural computing: robust optimization
 - 6b. Natural computing: diversity optimization
 - 6c. Natural computing: applying recent insights in biological evolution in evolutionary algorithms
 - **6d. Natural computing:** gradients in multiobjective optimization
 - 6e. Natural computing: depot scheduling
 - 6f. Natural computing: bicycle routing

- Michael Emmerich
 - 6g. Natural computing: vehicle routing
 - 6h. Natural computing: portfolio selection in molecular databases
 - 6i. Natural computing: Design optimization
 - 6j. Natural computing: Evolutionary algorithms for SPAM filtering
 - 6k. Natural computing: Applying genetic algorithms and local search in Bitcoin mining
 - 61. Natural computing: Hypervolume subset selection

Computer Systems

- Todor Stefanov
 - 7a. Embedded systems: modeling embedded systems using networks, graphs
 - 7b. Embedded systems: analytical or simulation-based analysis of requirements
 - 7c. Embedded systems: optimize system-on-chip performance, power consumption, …
 - 7d. Embedded systems: program code analysis and transformations (parallelism)
 - 7e. Embedded systems: mapping code onto embedded systems (code generation, scheduling, ...)

Computer Systems

- Harry Wijshoff, Kristian Rietveld
 - General directions: compilers, high performance code, code porting, networks
 - 8a. HPC: Porting "SMACK" to an X86 architecture
 - 8b. HPC: Involvement in the "Leiden Zipper" connecting two cluster computers

Foundations of Software Systems

- Marcello Bonsangue, Jurriaan Rot
 - 9a. Formal languages: Kleene Algebra of Test extensions of regular expressions
 - 9b. Formal languages: Parsing Boolean Grammars
 - 9c. Formal languages: Transforming streams of numbers
 - 9d. Formal languages: Bisimulation for proving language equivalence
- Farhad Arbab
 - **10a. HPC:** adapt proto-runtime so that it operates on Kalray processors
 - **10b. HPC:** adapt V8 Javascript to proto-runtime
 - 10c. HPC: evaluate proto-runtime on Dutch supercomputer
 - 10d. HPC: use Rascal meta environment to implement parallel language
 - **10e. Editors:** Develop Eclipse GUI for Reo
 - 10f. Editors: Implement editor for constraints in Eclipse
 - 10g. Cloud computing: Develop Java library for deploying Jar files on Amazon—

Foundations of Software Systems

- Frank de Boer, Marcello Bonsangue
 - 11a. Checking: generate test input for Java programs
 - 11b. Checking: check recursive programs over finite data
- Farhad Arbab, Marcello Bonsangue
 - 12a. Checking: check programs at runtime (monitor), either coordination software, circuits, or Java
- Jetty Kleijn
 - 13a. Petri nets: algorithms for boundedness, finiteness and coverability of Petri nets
 - 13b. Petri nets: explore connections between set nets, developed for studying reaction systems, and petri nets
 - 13c. Petri nets: study petri nets as models for real-life phenomena
 - 13d. Team automata: implement compatibility checks
 - **13e. Languages:** development of a "Financial product Markup Language"
 - 13f. Languages: test the adequacy of "Business Process Modeling Notation"

Imagery & Media

- Kathy Wolstencroft
 - 14a. Biological workflows: integrate tools developed in workflow engines
 - 14b. Biological workflows: create user interfaces for the combination of Anni text mining, web services, and workflows
- Fons Verbeek
 - 15a. Visualization: visualising and navigating through biological models using cytoscape and systems biology graphical notation (SBGN)
 - 15b. HPC: mapping bioinformatics tools to cluster @ Leiden
 - **15c. Image processing:** develop infrastructure for 3D modeling
- Nies Huijsmans
 - 16a. Data mining: linking people in historical documents based on time and space attributes

Imagery & Media

- Michael Lew:
 - 17a. Data mining: video recommendation
 - 17b. Data mining: summarize posts on social media
 - 17c. Data mining: learn visual concepts interactively
 - 17d. Imaging: create 3D worlds of unlimited size
 - 17e. Imaging: create 3D worlds based on models of nature
 - 17f. Imaging: crowds in virtual worlds
 - 17g. Imaging (& data mining): image near copy detection
 - 17h. HPC: efficient cryptography for image downloading
 - 17i. Imaging: how to represent video for browsing
 - 17j. Imaging (& data bases): how to query in SQL for images?
 - 17k. Imaging (& Visualization): search for images in 3D

Technology & Innovation Management

- Bernhard Katzy, Christoph Stettina
 - 18a. Cloud computing: mobile services in the cloud
 - 18b. User interfaces: add a tour of The Hague to an app
 - 18c. Software engineering: how do organizations implement agile methods through coaching?
- Bernhard Katzy, Ozgur Dedehayir
 - 19a. Organizations: apply theories for intraorganizational relationships to interorganizational relationships
 - **19b. Organizations:** how do coalitions form?
 - 19c. Organizations: how is power acquired by interorganizational coalitions?
 - 19d. Organizations: what political tactics are employed by organizations in the interorganizational coalitions?