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FaST
- Focus on the formal semantic foundations of software 

composition and coordination: 

- Large software systems are difficult to construct and 
maintain due to their inherent complexity.

- Compositional techniques hold the key to breaking this 
complexity down to manageable levels. 

- Composing systems out of independent components or 
services requires coordination of their interactions.

- Considerations for concurrency, distribution, mobility, and 
dynamic reconfiguration of systems, e.g., to upgrade or 
adapt to their changing environment, add to the 
complexity of a system and its interaction protocols. 

- Coordination in Software Systems studies how complex 
systems can be constructed from independent components 
or services using a clear distinction between individual 
components or services, and the protocols for their 
coordinated interaction.
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Mission

 Development of formalisms, methods, techniques, 
and tools to design, analyze, and construct 
software systems out of components and services.

 Issues
 Concurrency
 Coordination
 Model

 Approach
 Formal methods
 Experimental systems
 Empirical studies

 Ingredients
 Classes/Objects
 Components
 Services

 Construction
 Composition
 Correctness 
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Areas
- Formal models of concurrent, distributed, object 

oriented, and component-based systems
- Formal semantics, process algebras and logics 

for reasoning about such systems
- Dynamically reconfigurable adaptable systems
- Concurrency on multi- and many-core platforms
- Testing, deductive verification, and model 

checking
- Software services and cloud computing
- Quality of service
- Empirical studies of the effects of methods and 

techniques on productivity and quality of 
industrial software development projects.
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Major challenge

Development of techniques for 
effectively establishing behavioral 
properties of dynamical systems
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Activities – F. Arbab

- Coordination models and languages
Coordinated composition of software intensive 
systems
Concurrency and interaction
Coordination language Reo 
Constraint automata 

- Use of coordination
Compositional QoS 
Code generation for multi-core systems 
Service oriented computing 
Testing 
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Activities – F.S. de Boer

- Software correctness

Programming logics
Deductive proof methods for the verification of programs

Object Orientation
Verification and Testing

Concurrency
Semantics

Integrated Formal Methods
Testing
Model Checking
Deductive Verification
Abstraction
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Activities – M. 
Bonsangue

- Formal Methods
Mathematically-based techniques for the 
specification, development and verification of 
software and hardware systems

Testing object-oriented languages 
Semantics and model checking of software connectors 
Semantics and verification of dynamical evolving systems 

- Algebra, Coalgebra and Logic
Mathematical frameworks for the specification 
of the reactive behaviour of systems 

Process algebra, regular expressions 
(Probabilistic, non-deterministic, …) automata 
Modal logics 
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Activities – J. Kleijn

- Formal Methods
Mathematical specification (of distributed behaviour)

Automata and languages
Concurrency Monoids (generalised traces)
Extended partial orders

- Modeling Concurrency 
Petri Nets

Theory
Biologically motivated models

membrane systems, reaction systems: analysis and synthesis

Biomodeling
Team Automata

cooperating components

Application: 
     Financial/business processes
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Current projects:

- 25 different projects



Leiden University. The university to discover.

12/03/13

Parallelism toolkit  on  Kalray processor 

Problem: Modify the proto-runtime toolkit so 
that it operates efficiently on the Kalray ultra 
low power, high performance embedded 
processor.

Required: Programming experience in C and 
assembly.

Supervisors: Sean Halle and F. Arbab
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Proto-runtime + V8 Javascript interpreter

Problem: Connect the proto-runtime toolkit 
to the high performance V8 javascript 
interpreter.

Required: Programming experience in C and 
Javascript.

Supervisors: Sean Halle and F. Arbab
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Proto-runtime on 
Dutch National Supercomputer 

Problem: Measure the performance of 
proto-runtime on the Netherland's national 
supercomputer, and experiment with ways to 
improve its performance.

Required: Programming experience in C and 
assembly.

Supervisors: Sean Halle and F. Arbab
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Implement your own parallel language 

Problem: Use the Rascal meta environment 
to write a simple source-to-source translator 
that translates your custom parallel syntax into 
calls to a parallel runtime system.

Required: C programming on Linux

Supervisors: Sean Halle and F. Arbab
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Eclipse GUI to run Reo applications

Problem: Develop an Eclipse GUI for the ECT 
to produce the executable files for a concurrent 
application.  This tool links various components 
and/or threads with the Reo coordinator code, 
produces a main program, and supplies it with 
its command-line parameters.  

Required: Java programming and Eclipse

Supervisors: S-S Jongmans and F. Arbab
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An editor for data constraints

Problem: Develop a basic editor (syntax 
highlighting, useful error messages, basic 
refactoring, etc.) for a simple constraint 
language in Eclipse, by using---and if necessary 
extending---an existing parser.  

Required: Java programming; (willingness to 
learn) Eclipse and Antlr

Supervisors: S-S Jongmans and F. Arbab
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Web service deployment in the cloud

Problem: Develop a Java library for 
deploying web services, as jar files, on Amazon 
EC2 virtual machines in the cloud, by using 
functionality from Amazon's AWS Toolkit for 
Eclipse.  

Required: Java programming; (willingness to 
learn) Eclipse, JAX-WS, AWS, AWS Toolkit for 
Eclipse

Supervisors: S-S Jongmans and F. Arbab 
19
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Test cases generation for Java 
classes

- Problem: Given a piece of Java code 
generate inputs so to test it “enough”. 

- Required: Knowledge of Java + P&C.

- Supervisors: F. de Boer and M. Bonsangue.

20

while ( low <= high ) { 
    int mid = (low + high ) / 2
}

while ( low <= high ) { 
    int mid = (low + high ) / 2
}



Leiden University. The university to discover.

12/03/13

Automata toolkit

- Problem: Implement novel techniques to
Minimize automata
Solve decision problems 

(language equivalence, minimality, inclusion)
Go from regular expression to automaton and back

- Required: knowledge of automata theory (FI2),

- Supervisors: M. Bonsangue and J. Rot
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Model checking recursive 
programs

- Problem: Recursive programs over finite data 
structures may have infinite state. Implement 
a way to check all of them against a property.
- Use of pushdown automata techniques.

- Required: knowledge of automata theory 
(FI2), logic and P&C

- Supervisors: F. de Boer, M. Bonsangue and J. 
Rot
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Proc P ==  …. call Q …
Proc Q == … call P ….
Proc P ==  …. call Q …
Proc Q == … call P ….
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Process equivalence 
checking

- Problem: Processes are abstract description 
of the behaviours of systems. They are 
subject to several equivalences: bisimulation, 
failure, ready, … Implement recent 
techniques to check equivalent processes. 

- Required: knowledge of automata theory 
(FI2).

- Supervisors: M. Bonsangue
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KAT partial derivatives

Problem: Develop the theory to associate a 
non-dtereministic finite automaton to a 
KAT expressions using partial derivatives. 

Required: knowledge of formal languages 
and automata theory (FI2).

Supervisors: M. Bonsangue and Jurriaan Rot
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Parsing Boolean grammars

Problem: Develop parsing technique for the 
Boolean grammar, and syntactic formats so to 
characterize regular languages.

Required: knowledge of formal languages 
and automata theory (FI2).

Supervisors: M. Bonsangue and Jurriaan Rot

 

25



Leiden University. The university to discover.

12/03/13

Music from streams

Problem: Build a system to transform 
stream definitions into musical note. The 
idea is to generate interactively a midi 
file from the number of the stream 
defined by an user.

Required: Programming in other languages 
than C++

Supervisors: M. Bonsangue and Jurriaan Rot
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Bisimulation-up-to for formal languages

Problem: Implement several 
bisimualtion-up-to techniques for 
language inclusion and equivalence. 

Required: Programming in other languages 
than C++; Running experiments

Supervisors: M. Bonsangue and Jurriaan Rot
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Monitoring circuits

- Problem: Automatic generation of monitors 
for simple hardware circuits to check their 
behaviors at run time. 

- Required: Knowledge of Logic and automata 
theory

- Supervisors: M. Bonsangue
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EnvironmentEnvironment

Specification
what the system should do

Monitor
generator
Monitor

generator

Monitor
Gt ⇒F〈f〉φ 

1. Observe
2. Check
3. Report

SystemSystem
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Monitoring sofware circuits

- Problem: Same as previous one, but now 
with coordination software instead of 
circuits.

- Required: Knowledge of Java

- Supervisors: F. Arbab and M. Bonsangue
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Monitoring Java

- Problem: Same as previous one, but now 
with Java.

- Required: Knowledge of Java

- Supervisors: F. de Boer and M. Bonsangue

 
Specification
what the system should do

Monitor
generator
Monitor
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Monitor
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1. Observe
2. Check
3. Report
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Coverability 
Problem: Overview of algorithms and 

constructions for boundedness, finiteness 
and coverability properties for different 
classes of Petri Nets.

Required: Theory of concurrency, 
algorithmic interest.

Supervisors: J. Kleijn
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Compatibility of Teams
- Problem: Implement compatibility checks 

for team automata: can components 
collaborate successfully?

- Required: theory of concurrency, 
automata

- Supervisors: J. Kleijn 
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Bio inspired Modeling

Problem: Set Nets, a Petri net model for 
reaction systems. Relation to classical net 
models.

Requirements: Theory of Concurrency. 

Supervisors: J. Kleijn
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Bio Modeling

various issues:

Petri nets as operational models for 
real-life phenomena

Feature modeling

Tools:

-Requirements: Theory of Concurrency. 

Supervisors: J. Kleijn and F.Verbeek
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Financial product 
Markup Language

Problem: The development of the domain 
specific language FpML: design and 
challenges

Required: Informatica en Economie

Supervisors: P. Kwantes and J. Kleijn
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Business Process 
Modeling Notation

Problem: The ontological adequacy of 
BMPN

Required: Informatica en Economie

Supervisors: P.Kwantes, J.Kleijn/F.Verbeek
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Treemaps
- Problem: Multi-scale visualisation of maps

- Required: Datastructures, SE, Imaging (?)

- Supervisors: N. Kokash and J.Kok
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