
Leiden University. The university to discover.

Farhad Arbab

LIACS

Leiden Institute of Advanced Computer Science

Bachelorklas December 3, 2013

Foundations Software
Technology

(FaST)

Leiden, Nov 2012

FaST

Leiden University. The university to discover.

12/03/13

FaST Members

Joost Kok (also Algorithms)

Farhad Arbab (CWI)
Frank de Boer (CWI)

Grzegorz Rozenberg (also Alg)

Marcello Bonsangue (also CWI)
Michel Chaudron
Luuk Groenewegen
Jetty Kleijn

PostDoc

Natallia Kokash

PhD Students

Stijn de Gouw
Michiel Helvenstein
Sung-Shik Jongmans
Jurriaan Rot
Pieter Kwantes (ext)
Narges Khakpour (ext)
Behnaz Changizi (ext)
B. Pourvatan (ext)
J. Winter (ext)
…

Leiden University. The university to discover.

12/03/13

FaST
- Formal semantic foundations of

software composition and
coordination

- Software Engineering

- Theoretical Computer Science

Leiden University. The university to discover.

12/03/13

FaST
- Focus on the formal semantic foundations of software

composition and coordination:

- Large software systems are difficult to construct and
maintain due to their inherent complexity.

- Compositional techniques hold the key to breaking this
complexity down to manageable levels.

- Composing systems out of independent components or
services requires coordination of their interactions.

- Considerations for concurrency, distribution, mobility, and
dynamic reconfiguration of systems, e.g., to upgrade or
adapt to their changing environment, add to the
complexity of a system and its interaction protocols.

- Coordination in Software Systems studies how complex
systems can be constructed from independent components
or services using a clear distinction between individual
components or services, and the protocols for their
coordinated interaction.

Leiden University. The university to discover.

12/03/13

Mission

 Development of formalisms, methods, techniques,
and tools to design, analyze, and construct
software systems out of components and services.

 Issues
 Concurrency
 Coordination
 Model

 Approach
 Formal methods
 Experimental systems
 Empirical studies

 Ingredients
 Classes/Objects
 Components
 Services

 Construction
 Composition
 Correctness

Leiden University. The university to discover.

12/03/13

Areas
- Formal models of concurrent, distributed, object

oriented, and component-based systems
- Formal semantics, process algebras and logics

for reasoning about such systems
- Dynamically reconfigurable adaptable systems
- Concurrency on multi- and many-core platforms
- Testing, deductive verification, and model

checking
- Software services and cloud computing
- Quality of service
- Empirical studies of the effects of methods and

techniques on productivity and quality of
industrial software development projects.

Leiden University. The university to discover.

12/03/13

Major challenge

Development of techniques for
effectively establishing behavioral
properties of dynamical systems

7

Leiden University. The university to discover.

12/03/13

Activities – F. Arbab

- Coordination models and languages
Coordinated composition of software intensive
systems
Concurrency and interaction
Coordination language Reo
Constraint automata

- Use of coordination
Compositional QoS
Code generation for multi-core systems
Service oriented computing
Testing

Leiden University. The university to discover.

12/03/13

Activities – F.S. de Boer

- Software correctness

Programming logics
Deductive proof methods for the verification of programs

Object Orientation
Verification and Testing

Concurrency
Semantics

Integrated Formal Methods
Testing
Model Checking
Deductive Verification
Abstraction

Leiden University. The university to discover.

12/03/13

Activities – M.
Bonsangue

- Formal Methods
Mathematically-based techniques for the
specification, development and verification of
software and hardware systems

Testing object-oriented languages
Semantics and model checking of software connectors
Semantics and verification of dynamical evolving systems

- Algebra, Coalgebra and Logic
Mathematical frameworks for the specification
of the reactive behaviour of systems

Process algebra, regular expressions
(Probabilistic, non-deterministic, …) automata
Modal logics

Leiden University. The university to discover.

12/03/13

Activities – J. Kleijn

- Formal Methods
Mathematical specification (of distributed behaviour)

Automata and languages
Concurrency Monoids (generalised traces)
Extended partial orders

- Modeling Concurrency
Petri Nets

Theory
Biologically motivated models

membrane systems, reaction systems: analysis and synthesis

Biomodeling
Team Automata

cooperating components

Application:
 Financial/business processes

Leiden University. The university to discover.

12/03/13

Current projects:

- 25 different projects

Leiden University. The university to discover.

12/03/13

Parallelism toolkit on Kalray processor

Problem: Modify the proto-runtime toolkit so
that it operates efficiently on the Kalray ultra
low power, high performance embedded
processor.

Required: Programming experience in C and
assembly.

Supervisors: Sean Halle and F. Arbab

13

Leiden University. The university to discover.

12/03/13

Proto-runtime + V8 Javascript interpreter

Problem: Connect the proto-runtime toolkit
to the high performance V8 javascript
interpreter.

Required: Programming experience in C and
Javascript.

Supervisors: Sean Halle and F. Arbab

14

Leiden University. The university to discover.

12/03/13

Proto-runtime on
Dutch National Supercomputer

Problem: Measure the performance of
proto-runtime on the Netherland's national
supercomputer, and experiment with ways to
improve its performance.

Required: Programming experience in C and
assembly.

Supervisors: Sean Halle and F. Arbab

 15

Leiden University. The university to discover.

12/03/13

Implement your own parallel language

Problem: Use the Rascal meta environment
to write a simple source-to-source translator
that translates your custom parallel syntax into
calls to a parallel runtime system.

Required: C programming on Linux

Supervisors: Sean Halle and F. Arbab

 16

Leiden University. The university to discover.

12/03/13

Eclipse GUI to run Reo applications

Problem: Develop an Eclipse GUI for the ECT
to produce the executable files for a concurrent
application. This tool links various components
and/or threads with the Reo coordinator code,
produces a main program, and supplies it with
its command-line parameters.

Required: Java programming and Eclipse

Supervisors: S-S Jongmans and F. Arbab

17

Leiden University. The university to discover.

12/03/13

An editor for data constraints

Problem: Develop a basic editor (syntax
highlighting, useful error messages, basic
refactoring, etc.) for a simple constraint
language in Eclipse, by using---and if necessary
extending---an existing parser.

Required: Java programming; (willingness to
learn) Eclipse and Antlr

Supervisors: S-S Jongmans and F. Arbab

18

Leiden University. The university to discover.

12/03/13

Web service deployment in the cloud

Problem: Develop a Java library for
deploying web services, as jar files, on Amazon
EC2 virtual machines in the cloud, by using
functionality from Amazon's AWS Toolkit for
Eclipse.

Required: Java programming; (willingness to
learn) Eclipse, JAX-WS, AWS, AWS Toolkit for
Eclipse

Supervisors: S-S Jongmans and F. Arbab
19

Leiden University. The university to discover.

12/03/13

Test cases generation for Java
classes

- Problem: Given a piece of Java code
generate inputs so to test it “enough”.

- Required: Knowledge of Java + P&C.

- Supervisors: F. de Boer and M. Bonsangue.

20

while (low <= high) {
 int mid = (low + high) / 2
}

while (low <= high) {
 int mid = (low + high) / 2
}

Leiden University. The university to discover.

12/03/13

Automata toolkit

- Problem: Implement novel techniques to
Minimize automata
Solve decision problems

(language equivalence, minimality, inclusion)
Go from regular expression to automaton and back

- Required: knowledge of automata theory (FI2),

- Supervisors: M. Bonsangue and J. Rot

21

1 0
0

1

Leiden University. The university to discover.

12/03/13

Model checking recursive
programs

- Problem: Recursive programs over finite data
structures may have infinite state. Implement
a way to check all of them against a property.
- Use of pushdown automata techniques.

- Required: knowledge of automata theory
(FI2), logic and P&C

- Supervisors: F. de Boer, M. Bonsangue and J.
Rot

22

Proc P == …. call Q …
Proc Q == … call P ….
Proc P == …. call Q …
Proc Q == … call P ….

Leiden University. The university to discover.

12/03/13

Process equivalence
checking

- Problem: Processes are abstract description
of the behaviours of systems. They are
subject to several equivalences: bisimulation,
failure, ready, … Implement recent
techniques to check equivalent processes.

- Required: knowledge of automata theory
(FI2).

- Supervisors: M. Bonsangue

23

Leiden University. The university to discover.

12/03/13

KAT partial derivatives

Problem: Develop the theory to associate a
non-dtereministic finite automaton to a
KAT expressions using partial derivatives.

Required: knowledge of formal languages
and automata theory (FI2).

Supervisors: M. Bonsangue and Jurriaan Rot

24

Leiden University. The university to discover.

12/03/13

Parsing Boolean grammars

Problem: Develop parsing technique for the
Boolean grammar, and syntactic formats so to
characterize regular languages.

Required: knowledge of formal languages
and automata theory (FI2).

Supervisors: M. Bonsangue and Jurriaan Rot

25

Leiden University. The university to discover.

12/03/13

Music from streams

Problem: Build a system to transform
stream definitions into musical note. The
idea is to generate interactively a midi
file from the number of the stream
defined by an user.

Required: Programming in other languages
than C++

Supervisors: M. Bonsangue and Jurriaan Rot

26

Leiden University. The university to discover.

12/03/13

Bisimulation-up-to for formal languages

Problem: Implement several
bisimualtion-up-to techniques for
language inclusion and equivalence.

Required: Programming in other languages
than C++; Running experiments

Supervisors: M. Bonsangue and Jurriaan Rot

27

Leiden University. The university to discover.

12/03/13

Monitoring circuits

- Problem: Automatic generation of monitors
for simple hardware circuits to check their
behaviors at run time.

- Required: Knowledge of Logic and automata
theory

- Supervisors: M. Bonsangue

28

EnvironmentEnvironment

Specification
what the system should do

Monitor
generator
Monitor

generator

Monitor
Gt ⇒F〈f〉φ

1. Observe
2. Check
3. Report

SystemSystem

Leiden University. The university to discover.

12/03/13

Monitoring sofware circuits

- Problem: Same as previous one, but now
with coordination software instead of
circuits.

- Required: Knowledge of Java

- Supervisors: F. Arbab and M. Bonsangue

29

C1C1A B
E

C2C2
C

ConnectorConnector

Specification
what the system should do

Monitor
generator
Monitor

generator

Monitor
Gt ⇒F〈f〉φ

1. Observe
2. Check
3. Report

Leiden University. The university to discover.

12/03/13

while (low <= high) {
 int mid = (low + high) / 2
}

while (low <= high) {
 int mid = (low + high) / 2
}

Monitoring Java

- Problem: Same as previous one, but now
with Java.

- Required: Knowledge of Java

- Supervisors: F. de Boer and M. Bonsangue

Specification
what the system should do

Monitor
generator
Monitor

generator

Monitor
Gt ⇒F〈f〉φ

1. Observe
2. Check
3. Report

Leiden University. The university to discover.

12/03/13

Coverability
Problem: Overview of algorithms and

constructions for boundedness, finiteness
and coverability properties for different
classes of Petri Nets.

Required: Theory of concurrency,
algorithmic interest.

Supervisors: J. Kleijn

31

Leiden University. The university to discover.

12/03/13

Compatibility of Teams
- Problem: Implement compatibility checks

for team automata: can components
collaborate successfully?

- Required: theory of concurrency,
automata

- Supervisors: J. Kleijn

Leiden University. The university to discover.

12/03/13

Bio inspired Modeling

Problem: Set Nets, a Petri net model for
reaction systems. Relation to classical net
models.

Requirements: Theory of Concurrency.

Supervisors: J. Kleijn

Leiden University. The university to discover.

12/03/13

Bio Modeling

various issues:

Petri nets as operational models for
real-life phenomena

Feature modeling

Tools:

-Requirements: Theory of Concurrency.

Supervisors: J. Kleijn and F.Verbeek

Leiden University. The university to discover.

12/03/13

Financial product
Markup Language

Problem: The development of the domain
specific language FpML: design and
challenges

Required: Informatica en Economie

Supervisors: P. Kwantes and J. Kleijn

Leiden University. The university to discover.

12/03/13

Business Process
Modeling Notation

Problem: The ontological adequacy of
BMPN

Required: Informatica en Economie

Supervisors: P.Kwantes, J.Kleijn/F.Verbeek

Leiden University. The university to discover.

12/03/13

Treemaps
- Problem: Multi-scale visualisation of maps

- Required: Datastructures, SE, Imaging (?)

- Supervisors: N. Kokash and J.Kok

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

