TREE OF LIFE THEORY I. VISUALISATION II. ALGORITHMS

BACHELOR RESEARCH PROJECTS; LIACS

A de Bruin, D.J. Kornet, S.G.R. Nijssen, M. Zandee

Linnaeus' Systema Naturae (1735)

EVOLUTION

Darwin

(Origin of Species, 1859)

<u>Hierarchical Order</u> by differential birth rates among varieties

Origin of Varieties

small heritable changes Genetic (recombination, mutation, lateral transfer) Epigenetic (in gene expression): Evolutionary Novelties

> <u>Hierarchical Order</u> by historical process of **Reproduction &** Evolutionary Novelties

Tree of Life Theory development I (mid 19th century)

Darwin's (off the record) Tree of Life sketches

Tree of Life Theory development 2 (mid 20th Century)

Species: nodes in Tree of Life

<u>tree structure</u> is based on (permanent) cleavages in genealogical network (organismal DAG)

Hennig's Tree of Life theory

Tree of Life Theory development 3a (late 20th Century)

Internodons as equivalence classes

Kornet's Tree of Life Theory

Project II Algorithms

Tree of Life Theory: development here and now

(Arie de Bruin, Hendrik Jan Hoogeboom, Siegfried Nijssen)

Tree of Life Theory development 3b (late 20th Century)

Project I Visualisation

Project II Algorithms

Composite Species as equivalence classes (Kornet, McAllister)

Do you recognize yourself as ...

[regarding both projects]

- independent worker, as well as a teamplayer (theory under construction: interaction vital)
- talented designer, as well as skilled programmer
- flexible, rapid prototyper (adjusting specifications to emerging needs of users)
- attracted to multidisciplinary work with biologists (exchanging theories, concepts, results)

[regarding project I. Visualisation]

- loving Beauty as much as Truth
- kind to the users of your (interactive!) interface
 - I) academic reseachers exploring and testing theories and algorithms
 - 2) didactive users (classroom & public education)
- thinking BIG
 - I) visualisation for academic purposes: small size (printable) will do
 - 2) but for classroom & public education: megasize (walls) will do better

[regarding project II. Algorithms]

- possessing adequate graph theoretical knowledge
- not afraid to formulate and prove theorems
- experienced player with graph algorithms

... you are invited !