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Abstract

Many di�erent low�level feature detectors exist and it is widely agreed that the evaluation of

detectors is important� In this paper we introduce two evaluation criteria for interest points �

repeatability rate and information content� Repeatability rate evaluates the geometric stability

under di�erent transformations� Information content measures the distinctiveness of features�

Di�erent interest point detectors are compared using these two criteria� We determine which

detector gives the best results and show that it satis�es the criteria well�
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� Introduction

Many computer vision tasks rely on low�level features� A wide variety of feature detectors

exist� and results can vary enormously depending on the detector used� It is widely agreed

that evaluation of feature detectors is important 	�
�� Existing evaluation methods use ground�

truth veri�cation 	��� visual inspection 	�� ���� localization accuracy 	�� 
� �� ���� theoretical

analysis 	��� ��� �� or speci�c tasks 	��� �
��

In this paper we introduce two novel criteria for evaluating interest points � repeatability and

information content� Those two criteria directly measure the quality of the feature for tasks like

image matching� object recognition and �D reconstruction� They apply to any type of scene�

and they do not rely on any speci�c feature model or high�level interpretation of the feature�

Our criteria are more general than most existing evaluation methods �cf� section ����� They

are complementary to localization accuracy which is relevant for tasks like camera calibration

and �D reconstruction of speci�c scene points� This criterion has previously been evaluated for

interest point detectors 	�� 
� �� ����

Repeatability explicitly compares the geometrical stability of the detected interest points be�

tween di�erent images of a given scene taken under varying viewing conditions� Previous methods

have evaluated detectors for individual images only� An interest point is �repeated�� if the �D

scene point detected in the �rst image is also accurately detected in the second one� The repeata�

bility rate is the percentage of the total observed points that are detected in both images� Note

that repeatability and localization are con�icting criteria � smoothing improves repeatability but

degrades localization 	���

Information content is a measure of the distinctiveness of an interest point� Distinctiveness

is based on the likelihood of a local greyvalue descriptor computed at the point within the

population of all observed interest point descriptors� Descriptors characterize the local shape

of the image at the interest points� The entropy of these descriptors measures the information

content of a set of interest points�

In this paper several detectors are compared using these two evaluation criteria� The best
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detector satis�es both of these criteria well� which explains its success for tasks such as image

matching based on interest points and correlation 	���� In this context at least a subset of the

points have to be repeated in order to allow feature correspondence� Furthermore� if image�based

measures �e�g� correlation� are used to compare points� interest points should have distinctive

patterns�

��� Related work on the evaluation of feature detectors

The evaluation of feature detectors has concentrated on edges� Only a few authors have evaluated

interest point detectors� In the following we give a few examples of existing edge evaluation

methods and a survey of previous work on evaluating interest points� Existing methods can

be categorized into methods based on � ground�truth veri�cation� visual inspection� localization

accuracy� theoretical analysis and speci�c tasks�

����� Ground�truth veri�cation

Methods based on ground�truth veri�cation determine the undetected features and the false

positives� Ground�truth is in general created by a human� It relies on his symbolic interpretation

of the image and is therefore subjective� Furthermore� human interpretation limits the complexity

of the images used for evaluation�

For example� Bowyer et al 	�� use human marked ground�truth to evaluate edge detectors�

Their evaluation criterion is the number of false positives with respect to the number of un�

matched edges which is measured for varying input parameters� They used structured outdoor

scenes� such as airports and buildings�

����� Visual inspection

Methods using visual inspection are even more subjective as they are directly dependent on the

human evaluating the results� L�opez et al 	��� de�ne a set of visual criteria to evaluate the

quality of detection� They visually compare a set of ridge and valley detectors in the context of

medical images� Heath et al 	�� evaluate detectors using a visual rating score which indicates
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the perceived quality of the edges for identifying an object� This score is measured by a group

of people� Di�erent edge detectors are evaluated on real images of complex scenes�

����� Localization accuracy

Localization accuracy is the criterion most often used to evaluate interest points� It measures

whether an interest point is accurately located at a speci�c �D location� This criterion is sig�

ni�cant for tasks like camera calibration and the �D reconstruction of speci�c scene points�

Evaluation requires the knowledge of precise �D properties� which restricts the evaluation to

simple scenes�

Localization accuracy is often measured by verifying that a set of �D image points is coherent

with the known set of corresponding �D scene points� For example Coehlo et al 	�� compare the

localization accuracy of interest point detectors using di�erent planar projective invariants for

which reference values are computed using scene measurements� The scene contains simple black

polygons and is imaged from di�erent viewing angles� A similar evaluation scheme is used by

Heyden and Rohr 	���� They extract sets of points from images of polyhedral objects and use

projective invariants to compute a manifold of constraints on the points�

Brand and Mohr 	
� measure the localization accuracy of a model�based L�corner detector�

They use four di�erent criteria � alignment of the extracted points� accuracy of the �D recon�

struction� accuracy of the epipolar geometry and stability of the cross�ratio� Their scene is again

very simple � it contains black squares on a white background�

To evaluate the accuracy of edge point detectors� Baker and Nayar 	�� propose four global

criteria � collinearity� intersection at a single point� parallelism and localization on an ellipse� Each

of the criteria corresponds to a particular �very simple� scene and is measured using the extracted

edgels� Their experiments are conducted under widely varying image conditions �illumination

change and �D rotation��

As mentioned by Heyden and Rohr� methods based on projective invariants don�t require the

knowledge of the exact position of the features in the image� This is an advantage of such

methods� as the location of features in an image depends both on the intrinsic parameters of






the camera and the relative position and orientation of the object with respect to the camera

and is therefore di�cult to determine� However� the disadvantage of such methods is the lack of

comparison to true data which may introduce a systematic bias�

����� Theoretical analysis

Methods based on a theoretical analysis examine the behavior of the detectors for theoretical

feature models� Such methods are limited� as they only apply to very speci�c features� For exam�

ple� Deriche and Giraudon 	��� study analytically the behavior of three interest point detectors

using a L�corner model� Their study allows them to correct the localization bias� Rohr 	��

performs a similar analysis for L�corners with aperture angles in the range of  and �� degrees�

His analysis evaluates � di�erent detectors�

Demigny and Kaml�e 	��� use three criteria to theoretically evaluate four step edge detectors�

Their criteria are based on Canny�s criteria which are adapted to the discrete domain using

signal processing theory� Canny�s criteria are good detection� good localization and low responses

multiplicity�

����� A speci�c task

A few methods have evaluated detectors through speci�c tasks� They consider that feature

detection is not a �nal result by itself� but merely an input for further processing� Therefore� the

true performance criterion is how well it prepares the input for the next algorithm� This is no

doubt true to some extent� However� evaluations based on a speci�c task and system are hard

to generalize and hence rather limited�

Shin et al 	��� compare edge detectors using an object recognition algorithm� Test images are

cars imaged under di�erent lighting conditions and in front of varying backgrounds� In Shin et

al 	�
� the performance of a edge�based structure from motion algorithm is used for evaluation�

Results are given for two simple �D scenes which are imaged under varying �D rotations�
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��� Overview of the paper

Section � presents a state of the art on interest point detectors as well as implementation details

for the detectors used in our comparison� Section � de�nes the repeatability criterion� explains

how to determine it experimentally and presents the results of a comparison under di�erent

transformations� Section � describes the information content criterion and evaluates results for

di�erent detectors� In section � we select the detector which gives the best results according to

the two criteria� show that the quality of its results is very high and discuss possible extensions�

� Interest point detectors

By �interest point� we simply mean any point in the image for which the signal changes two�

dimensionally� Conventional �corners� such as L�corners� T�junctions and Y�junctions satisfy

this� but so do black dots on white backgrounds� the endings of branches and any location with

signi�cant �D texture� We will use the general term �interest point� unless a more speci�c type

of point is referred to� Figure � shows an example of general interest points detected on Van

Gogh�s sower painting�

Figure �� Interest points detected on Van Gogh�s sower painting� The detector is an improved

version of the Harris detector� There are ��� points detected�
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��� State of the art

A wide variety of interest point and corner detectors exist in the literature� They can be divided

into three categories � contour based� intensity based and parametric model based methods� Con�

tour based methods �rst extract contours and then search for maximal curvature or in�exion

points along the contour chains� or do some polygonal approximation and then search for inter�

section points� Intensity based methods compute a measure that indicates the presence of an

interest point directly from the greyvalues� Parametric model methods �t a parametric intensity

model to the signal� They often provide sub�pixel accuracy� but are limited to speci�c types of

interest points� for example to L�corners� In the following we brie�y present detection methods

for each of the three categories�

����� Contour based methods

Contour based methods have existed for a long time � some of the more recent ones are presented�

Asada and Brady 	�� extract interest points for �D objects from planar curves� They observe that

these curves have special characteristics � the changes in curvature� These changes are classi�ed

in several categories � junctions� endings etc� To achieve robust detection� their algorithm is

integrated in a multi�scale framework� A similar approach has been developed by Mokhtarian

and Mackworth 	���� They use in�exion points of a planar curve�

Medioni and Yasumoto 	��� use B�splines to approximate the contours� Interest points are

maxima of curvature which are computed from the coe�cients of these B�splines�

Horaud et al 	��� extract line segments from the image contours� These segments are grouped

and intersections of grouped line segments are used as interest points�

Shilat et al 	��� �rst detect ridges and troughs in the images� Interest points are high curvature

points along ridges or troughs� or intersection points� They argue that such points are more

appropriate for tracking� as they are less likely to lie on the occluding contours of an object�

Mokhtarian and Suomela 	�� describe an interest point detector based on two sets of interest

points� One set are T�junctions extracted from edge intersections� A second set is obtained using

a multi�scale framework � interest points are curvature maxima of contours at a coarse level and

�



are tracked locally up to the �nest level� The two sets are compared and close interest points

are merged�

The algorithm of Pikaz and Dinstein 	��� is based on a decomposition of noisy digital curves

into a minimal number of convex and concave sections� The location of each separation point

is optimized� yielding the minimal possible distance between the smoothed approximation and

the original curve� The detection of the interest points is based on properties of pairs of sections

that are determined in an adaptive manner� rather than on properties of single points that are

based on a �xed�size neighborhood�

����� Intensity based methods

Moravec 	��� developed one of the �rst signal based interest point detectors� His detector is based

on the auto�correlation function of the signal� It measures the greyvalue di�erences between a

window and windows shifted in several directions� Four discrete shifts in directions parallel to

the rows and columns of the image are used� If the minimum of these four di�erences is superior

to a threshold� an interest point is detected�

The detector of Beaudet 	�� uses the second derivatives of the signal for computing the measure

�DET� � DET � IxxIyy � I�xy where I�x� y� is the intensity surface of the image� DET is the

determinant of the Hessian matrix and is related to the Gaussian curvature of the signal� This

measure is invariant to rotation� Points where this measure is maximal are interest points�

Kitchen and Rosenfeld 	��� present an interest point detector which uses the curvature of planar

curves� They look for curvature maxima on isophotes of the signal� However� due to image noise

an isophote can have an important curvature without corresponding to an interest point� for

example on a region with almost uniform greyvalues� Therefore� the curvature is multiplied by

the gradient magnitude of the image where non�maximum suppression is applied to the gradient

magnitude before multiplication� Their measure is K �
IxxI�y�IyyI

�
x��IxyIxIy

I�x�I
�
y

�

Dreschler and Nagel 	�
� �rst determine locations of local extrema of the determinant of the

Hessian �DET�� A location of maximum positive DET can be matched with a location of

extreme negative DET � if the directions of the principal curvatures which have opposite sign
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are approximatively aligned� The interest point is located between these two points at the zero

crossing of DET � Nagel 	��� shows that the Dreschler�Nagel�s approach and Kitchen�Rosenfeld�s

approach are identical�

Several interest point detectors 	��� ��� ��� ��� are based on a matrix related to the auto�

correlation function� This matrix A averages derivatives of the signal in a window W around a

point �x� y� �

A�x� y� �

�
�����

P
�xk�yk��W

�Ix�xk� yk��
� P

�xk�yk��W
Ix�xk� yk�Iy�xk� yk�

P
�xk�yk��W

Ix�xk� yk�Iy�xk� yk�
P

�xk�yk��W
�Iy�xk� yk��

�

�
����� ���

where I�x� y� is the image function and �xk� yk� are the points in the window W around �x� y��

This matrix captures the structure of the neighborhood� If this matrix is of rank two� that is

both of its eigenvalues are large� an interest point is detected� A matrix of rank one indicates

an edge and a matrix of rank zero a homogeneous region� The relation between this matrix and

the auto�correlation function is given in appendix A�

Harris 	��� improves the approach of Moravec by using the auto�correlation matrix A� The

use of discrete directions and discrete shifts is thus avoided� Instead of using a simple sum� a

Gaussian is used to weight the derivatives inside the window� Interest points are detected if the

auto�correlation matrix A has two signi�cant eigenvalues�

F�orstner and G�ulch 	��� propose a two step procedure for localizing interest points� First

points are detected by searching for optimal windows using the auto�correlation matrix A� This

detection yields systematic localization errors� for example in the case of L�corners� A second

step based on a di�erential edge intersection approach improves the localization accuracy�

F�orstner 	��� uses the auto�correlation matrix A to classify image pixels into categories � region�

contour and interest point� Interest points are further classi�ed into junctions or circular features

by analyzing the local gradient �eld� This analysis is also used to determine the interest point

location� Local statistics allow a blind estimate of signal�dependent noise variance for automatic

selection of thresholds and image restoration�

Tomasi and Kanade 	��� motivate their approach in the context of tracking� A good feature
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is de�ned as one that can be tracked well� They show that such a feature is present if the

eigenvalues of matrix A are signi�cant�

Heitger et al 	��� develop an approach inspired by experiments on the biological visual system�

They extract �D directional characteristics by convolving the image with orientation�selective

Gabor like �lters� In order to obtain �D characteristics� they compute the �rst and second

derivatives of the �D characteristics�

Cooper and al 	�� �rst measure the contour direction locally and then compute image di�erences

along the contour direction� A knowledge of the noise characteristics is used to determine whether

the image di�erences along the contour direction are su�cient to indicate an interest point� Early

jump�out tests allow a fast computation of the image di�erences�

The detector of Reisfeld et al 	��� uses the concept of symmetry� They compute a symmetry

map which shows a �symmetry strength� for each pixel� This symmetry is computed locally by

looking at the magnitude and the direction of the derivatives of neighboring points� Points with

high symmetry are selected as interest points�

Smith and Brady 	��� compare the brightness of each pixel in a circular mask to the center

pixel to de�ne an area that has a similar brightness to the center� Two dimensional features can

be detected from the size� centroid and second moment of this area�

The approach proposed by Lagani�ere 	�
� is based on a variant of the morphological closing

operator which successively applies dilation�erosion with di�erent structuring elements� Two

closing operators and four structuring elements are used� The �rst closing operator is sensitive

to vertical�horizontal L�corners and the second to diagonal L�corners�

����� Parametric model based methods

The parametric model used by Rohr 	��� is an analytic junction model convolved with a Gaussian�

The parameters of the model are adjusted by a minimization method� such that the template

is closest to the observed signal� In the case of a L�corner the parameters of the model are the

angle of the L�corner� the angle between the symmetry axis of the L�corner and the x�axis� the

greyvalues� the position of the point and the amount of blur� Positions obtained by this method
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are very precise� However� the quality of the approximation depends on the initial position

estimation� Rohr uses an interest point detector which maximizes det�A� �cf� equation ���� as

well as the intersection of line segments to determine the initial values for the model parameters�

Deriche and Blaszka 	��� develop an acceleration of Rohr�s method� They substitute an ex�

ponential for the Gaussian smoothing function� They also show that to assure convergence the

image region has to be quite large� In cluttered images the region is likely to contain several

signals� which makes convergence di�cult�

Baker et al 	�� propose an algorithm that automatically constructs a detector for an arbitrary

parametric feature� Each feature is represented as a densely sampled parametric manifold in a low

dimensional subspace� A feature is detected� if the projection of the surrounding intensity values

in the subspace lies su�ciently close to the feature manifold� Furthermore� during detection the

parameters of detected features are recovered using the closest point on the feature manifold�

Parida et al 	��� describe a method for general junction detection� A deformable template

is used to detect radial partitions� The minimum description length principle determines the

optimal number of partitions that best describes the signal�

��� Implementation details

This section presents implementation details for the detectors included in our comparison� The

detectors are Harris 	���� an improved version of Harris� Cottier	��� Horaud 	���� Heitger 	���

and F�orstner 	���� Except in the case of the improved version of Harris� we have used the imple�

mentations of the original authors� with the standard default parameter values recommended by

the authors for general purpose feature detection� These values are seldom optimal for any given

image� but they do well on average on collections of di�erent images� Our goal is to evaluate

detectors for such collections�

The standard Harris detector 	��� ��Harris�� computes the derivatives of the matrix A �cf�

equation ���� by convolution with the mask 	 �� ��  � � �� A Gaussian �� � �� is used to weight

the derivatives summed over the window� To avoid the extraction of the eigenvalues of the matrix

A� the strength of an interest points is measured by det�A��� trace�A��� The second term is used
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to eliminate contour points with a strong eigenvalue� � is set to �
� Non�maximum suppression

using a �x� mask is then applied to the interest point strength and a threshold is used to select

interest points� The threshold is set to �� of the maximum observed interest point strength�

In the improved version of Harris ��ImpHarris��� derivatives are computed more precisely

by replacing the 	 �� ��  � � � mask with derivatives of a Gaussian �� � ��� A recursive

implementation of the Gaussian �lters 	��� guarantees fast detection�

Cottier 	�� applies the Harris detector only to contour points in the image� Derivatives for

contour extraction as well as for the Harris detector are computed by convolution with the

Canny�Deriche operator 	��� �� � �� � � ���� Local maxima detection with hysteresis

thresholding is used to extract contours� High and low thresholds are determined from the

gradient magnitude �high � average gradient magnitude� low � ��  high�� For the Harris

detector derivatives are averaged over two di�erent window sizes in order to increase localization

accuracy� Points are �rst detected using a �x� window� The exact location is then determined

by using a �x� window and searching the maximum in the neighborhood of the detected point�

Horaud 	��� �rst extracts contour chains using his implementation of the Canny edge detector�

Tangent discontinuities in the chain are located using a worm� and a line �t between the dis�

continuities is estimated using orthogonal regression� Lines are then grouped and intersections

between neighboring lines are used as interest points�

Heitger 	��� convolves the image with even and odd symmetrical orientation�selective �lters�

These Gabor like �lters are parameterized by the width of the Gaussian envelope �� ���� the

sweep which increases the relative weight of the negative side�lobes of even �lters and the orien�

tation selectivity which de�nes the sharpness of the orientation tuning� Even and odd �lters are

computed for 
 orientations� For each orientation an energy map is computed by combining even

and odd �lter outputs� �D signal variations are then determined by di�erentiating each energy

map along the respective orientation using �end�stopped operators�� Non�maximum suppression

��x� mask� is applied to the combined end�stopped operator activity and a relative threshold

���� is used to select interest points�

The F�orstner detector 	��� computes the derivatives on the smoothed image �� � ���� The
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derivatives are then summed over a Gaussian window �� � �� to obtain the auto�correlation

matrix A� The trace of this matrix is used to classify pixels into region or non�region� For ho�

mogeneous regions the trace follows approximatively a ���distribution� This allows to determine

the classi�cation threshold automatically using a signi�cance level �� � ���� and the estimated

noise variance� Pixels are further classi�ed into contour or interest point using the ratio of the

eigenvalues and a �xed threshold ����� Interest point locations are then determined by mini�

mizing a function of the local gradient �eld� The parameter of this function is the size of the

Gaussian which is used to compute a weighted sum over the local gradient measures �� � ���

� Repeatability

��� Repeatability criterion

Repeatability signi�es that detection is independent of changes in the imaging conditions� i�e� the

parameters of the camera� its position relative to the scene� and the illumination conditions� �D

points detected in one image should also be detected at approximately corresponding positions

in subsequent ones �cf� �gure ��� Given a �D point X and two projection matrices P� and Pi�

the projections of X into images I� and Ii are x� � P�X and xi � PiX� A point x� detected in

image I� is repeated in image Ii if the corresponding point xi is detected in image Ii� To measure

the repeatability� a unique relation between x� and xi has to be established� This is di�cult for

general �D scenes� but in the case of a planar scene this relation is de�ned by a homography 	��� �

xi � H�ix� where H�i � PiP
��
�

P��
� is an abusive notation to represent the back�projection of image I�� In the case of a planar

scene this back�projection exists�

The repeatability rate is de�ned as the number of points repeated between two images with

respect to the total number of detected points� To measure the number of repeated points� we

have to take into account that the observed scene parts di�er in the presence of changed imaging

conditions� such as image rotation or scale change� Interest points which can not be observed in
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Figure �� The points x� and xi are the projections of �D pointX into images I� and Ii � x� � P�X

and xi � PiX where P� and Pi are the projection matrices� A detected point x� is repeated if xi

is detected� It is ��repeated if a point is detected in the ��neighborhood of xi� In case of planar

scenes the points x� and xi are related by the homography H�i�

both images corrupt the repeatability measure� Therefore only points which lie in the common

scene part are used to compute the repeatability� This common scene part is determined by the

homography� Points !x� and !xi which lie in the common part of images I� and Ii are de�ned by �

f!x�g � fx� j H�ix� � Iig and f!xig � fxi j Hi�xi � I�g

where fx�g and fxig are the points detected in images I� and Ii respectively� Hij is the homog�

raphy between images Ii and Ij�

Furthermore� the repeatability measure has to take into account the uncertainty of detection� A

repeated point is in general not detected exactly at position xi� but rather in some neighborhood

of xi� The size of this neighborhood is denoted by � �cf� �gure �� and repeatability within this

neighborhood is called ��repeatability� The set of point pairs �!x�� !xi� which correspond within an

��neighborhood is de�ned by �

Ri��� � f�!x�� !xi� j dist�H�i!x�� !xi� � �g

The number of detected points may be di�erent for the two images� In the case of a scale

change� for example� more interest points are detected on the high resolution image� Only the

minimum number of interest points �the number of interest points of the coarse image� can be
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repeated� The repeatability rate ri��� for image Ii is thus de�ned by �

ri��� �
jRi���j

min �n�� ni�

where n� � jf!x�gj and ni � jf!xigj are the number of points detected in the common part of

images I� and Ii respectively� We can easily verify that  � ri��� � ��

The repeatability criterion� as de�ned above� is only valid for planar scenes� Only for such

scenes the geometric relation between two images is completely de�ned� However� the restriction

to planar scenes is not a limitation� as additional interest points detected on �D scenes are due

to occlusions and shadows� These points are due to real changes of the observed scene and the

repeatability criterion should not take into account such unreliable points 	��� ����

��� Experimental conditions

Sequences The repeatability rates of several interest point detectors are compared under di�er�

ent transformations � image rotation� scale change� illumination variation and viewpoint change�

We consider both uniform and complex illumination variation� Stability to image noise has also

been tested� The scene is always static and we move either the camera or the light source�

We will illustrate results for two planar scenes � �Van Gogh� and �Asterix�� The �Van Gogh�

scene is the sower painting shown in �gure �� The �Asterix� scene can be seen in �gure �� The

two scenes are very di�erent � the �Van Gogh� scene is highly textured whereas the �Asterix�

scene is mostly line drawings�

Estimating the homography To ensure an accurate repeatability rate� the computation of

the homography has to be precise and independent of the detected points� An independent� sub�

pixel localization is required� We therefore take a second image for each position of the camera�

with black dots projected onto the scene �cf� �gure ��� The dots are extracted very precisely

by �tting a template� and their centers are used to compute the homography� A least median

square method makes the computation robust�

While recording the sequence� the scene and the projection mechanism �overhead projector�
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Figure �� Two images of the �Asterix� scene� On the left the image of the scene and on the right

the image with black dots projected�

remain �xed� Only the camera or the light source move� The projection mechanism is displayed

in �gure ��

Figure �� Projection mechanism� An overhead projector casts black dots on the scene�

��� Results for repeatability

We �rst compare the two versions of Harris �section ������� The one with better results is then

included in the comparison of the detectors �section ����� � ����
�� Comparisons are presented

for image rotation� scale change� illumination variation� change of viewpoint and camera noise�

Results are presented for the �Van Gogh� scene � results for the �Asterix� scene are given in

appendix B� For the images used in our experiments� we detect between � and �� interest

points depending on the image and the detector used� The mean distance between a point and
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its closest neighbor is around � pixels� Measuring the repeatability rate with ����� or less� the

probability that two points are accidentally within the error distance is very low�

����� Comparison of the two Harris versions

Figure � compares the two di�erent versions of the Harris detector in the presence of image

rotation �graph on the left� and scale change �graph on the right�� The repeatability of the

improved version of Harris �ImpHarris� is better in both cases� The results of the standard

version vary with image rotation� the worst results being obtained for an angle of ���� This is

due to the fact that the standard version uses non�isotropic discrete derivative �lters� A stable

implementation of the derivatives signi�cantly improves the repeatability of the Harris detector�

The improved version �ImpHarris� is included in the comparison of the detectors in the following

sections�
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Figure �� Comparison of Harris and ImpHarris� On the left the repeatability rate for an image

rotation and on the right the rate for a scale change� � � ����

����� Image rotation

In this section� we compare all detectors described in section ��� for an image rotation� Image

rotations are obtained by rotating the camera around its optical axis using a special mechanism�

Figure 
 shows three images of the rotation sequence� The left image is the reference image�

The rotation angle for the image in the middle is ��� and for the image on the right ��
�� The

��



interest points detected for these three images using the improved version of Harris are displayed

in �gure ��

Figure 
� Image rotation sequence� The left image is the reference image� The rotation angle for

the image in the middle is ��� and for the image on the right ��
��

Figure �� Interest points detected on the images of �gure 
 using the improved version of Harris�

There are 
�� ��� and ��
 points detected in the left� middle and right images� respectively�

For a localization error � of ��� pixels the repeatability rate between the left and middle images

is ��� and between the left and right images ���

The repeatability rate for this rotation sequence is displayed in �gure �� The rotation angles

vary between � and ���� The graph on the left displays the repeatability rate for a localization

error � of �� pixels� The graph on the right shows the results for an error of ��� pixels� that is

the detected point lies in the pixel neighborhood of the predicted point�

For both localization errors the improved version of Harris gives the best results � results are

not dependent on image rotation� At � � ��� the repeatability rate of ImpHarris is almost ���

Computing Harris only on the image contours �Cottier� makes the results worse� Results of

the Heitger detector depend on the rotation angle� as it uses derivatives computed in several

�xed directions� Its results are worse for rotation angles between �� and ���� The detector of
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Figure �� Repeatability rate for image rotation� � � �� for the left graph and � � ��� for the

right graph�

F�orstner gives bad results for rotations of ���� probably owing to the use of anisotropic derivative

�lters� The worst results are obtained by the method based on the intersection of line segments

�Horaud��

Figure � shows the repeatability rate as a function of the localization error � for a constant

rotation angle of �� degrees� The localization error varies between �� pixels and � pixels� When

increasing the localization error� the results improve for all the detectors� However� the improved

version of Harris detector is always best and increases most rapidly� For this detector� good results

are obtained above a � pixel localization error�
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Figure �� Repeatability rate as a function of the localization error �� The rotation angle is ����
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����� Scale change

Scale change is investigated by varying the focal length of the camera� Figure � shows three

images of the scale change sequence� The left image is the reference image� The scale change

for the middle one is ��� and for the right one ���� The scale factors have been determined by

the ratios of the focal lengths� The interest points detected for these three images using the

improved version of Harris are displayed in �gure ���

Figure �� Scale change sequence� The left image is the reference image� The scale change for

the middle one is ��� and for the right one ����

Figure ��� Interest points detected on the images of �gure � using the improved version of Harris�

There are ���� ��� and � points detected in the left� middle and right images� respectively�

The repeatability rate between the left and middle images is ��� and between the left and right

images �� for a localization error � of ��� pixels�

Figure �� shows the repeatability rate for scale changes� The left graph shows the repeatability

rate for an � of �� and the right one for an � of ��� pixels� Evidently the detectors are very

sensitive to scale changes� For an � of �� ����� repeatability is very poor for a scale factor above
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Figure ��� Repeatability rate for scale change� � � �� for the left graph and � � ��� for the

right graph�

��� ���� The improved version of Harris and Cottier detectors give the best results� The results

of the other detectors are hardly usable� Above a scale factor of about ���� the results are mainly

due to artifacts� At larger scales many more points are found in the textured regions of the

scene� so accidental correspondences are more likely�

Figure �� shows the repeatability rate as a function of the localization error � for a constant

scale change of ���� Results improve in the presence of larger localization errors � the repeatability

rates of ImpHarris and Cottier increase more rapidly than those of the other detectors�
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Figure ��� Repeatability rate as a function of the localization error �� The scale change is ����
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����� Variation of illumination

Illumination can vary in many di�erent ways� In the following we consider both a uniform

variation of illumination and a more complex variation due to a change of light source position�

Uniform variation of illumination Uniform illumination variation is obtained by changing

the camera aperture� The change is quanti�ed by the �relative greyvalue� � the ratio of mean

greyvalue of an image to that of the reference image which has medium illumination� Figure ��

shows three images of the sequence� a dark one with a relative greyvalue of �
� the reference

image and a bright one with a relative greyvalue of ����

Figure ��� Uniform illumination variation � from left to right images with relative greyvalue �
�

� and ����

Figure �� displays the results for a uniform illumination variation� Even for a relative greyvalue

of � there is not �� repeatability due to image noise �two images of a relative greyvalue of

� have been taken� one reference image and one test image�� In both graphs� the repeatability

decreases smoothly in proportion to the relative greyvalue� The improved version of Harris and

Heitger obtain better results than the other detectors�

Complex variation of illumination A non�uniform illumination variation is obtained by

moving the light source in an arc from approximately ���� to ���� Figure �
 shows three images

of the sequence� The light source is furthest right for the left image �image " �� This image is

the reference image for our evaluation� For the image in the middle the light source is in front of

the scene �image " 
�� Part of this image is saturated� The light source is furthest left for the

right image �image " ����
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Figure ��� Repeatability rate for uniform illumination variation� � � �� for the left graph and

� � ��� for the right graph�

Figure �
� Complex illumination variation� The reference image is on the left �image " �� the

light source is furthest right for this image� For the image in the middle the light source is in front

of the scene �image " 
�� For the one on the right the light source is furthest left �image " ����

��



Figure �� displays the repeatability results� The improved version of Harris obtains better

results than the other detectors� For an � of ��� results slightly decrease as the light position

changes� For an � of ��� results are not modi�ed by a complex illumination variation� Illumination

direction has little e�ect on the results as the interest point measures are computed locally�
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Figure ��� Repeatability rate for complex illumination variation� � � �� for the left graph and

� � ��� for the right graph�

����� Viewpoint change

To measure repeatability in the presence of viewpoint changes� the position of the camera is

moved in an arc around the scene� The angle varies from approximately ��� to ��� The

di�erent viewpoints are approximately regularly spaced� Figure �� shows three images of the

sequence� The left image is taken at the rightmost position of the camera �image " �� For

the image in the middle the camera is in front of the painting �image " ��� This image is the

reference image for our evaluation� For the right image the camera is at its leftmost position

�image " ����

Figure �� displays the results for a viewpoint change� The improved version of Harris gives

results superior to those of the other detectors� The results degrade rapidly for � � ��� but

signi�cantly more slowly for � � ���� For this � the repeatability of ImpHarris is always above


� except for image � The ImpHarris detector shows a good repeatability in the presence of

perspective deformations�

�




Figure ��� Viewpoint change sequence� The left image is taken at the rightmost position of the

camera �image " �� For the middle image the camera is in front of the painting �image " ���

This image is the reference image for our evaluation� For the right image the camera is at its

leftmost position �image " ����
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Figure ��� Repeatability rate for the viewpoint change� � � �� for the left graph and � � ���

for the right graph�
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����� Camera noise

To study repeatability in the presence of image noise� a static scene has been recorded several

times� The results of this experiment are displayed in �gure �� We can see that all detectors

give good results except the Horaud one� The improved version of Harris gives the best results�

followed closely by Heitger� For � � ��� these two detectors obtain a rate of nearly ���
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Figure �� Repeatability rate for the camera noise� � � �� for the left graph and � � ��� for the

right graph�

��� Conclusion for repeatability

Repeatability of various detectors has been evaluated in the presence of di�erent imaging condi�

tions � image rotation� scale change� variation of illumination� viewpoint change and noise of the

imaging system� Two di�erent scenes have been used � �Van Gogh� and �Asterix�� The results

for these two sequences are very similar � the �Asterix� sequence �cf� appendix B� con�rms the

results presented above�

Results of the previous section show that a stable implementation of the derivatives improves

the results of the standard Harris detector� The improved version of Harris �ImpHarris� gives

signi�cantly better results than the other detectors in the presence of image rotation� This is due

to the rotation invariance of its image measures� The detector of Heitger combines computations

in several directions and is not invariant to rotations� This is con�rmed by Perona 	��� who has

��



noticed that the computation in several directions is less stable to an image rotation� ImpHarris

and Cottier give the best results in the presence of scale changes� Moreover� the computation of

these detectors is based on Gaussian �lters and can easily be adapted to scale changes� In the

case of illumination variations and camera noise� ImpHarris and Heitger obtain the best results�

For a viewpoint change ImpHarris shows results which are superior to the other detectors�

In all cases the results of the improved version of the Harris detector are better or equivalent

to those of the other detectors� For this detector� interest points are largely independent of the

imaging conditions � points are geometrically stable�

� Information content

��� Information content criterion

Information content is a measure of the distinctiveness of an interest point� Distinctiveness

is based on the likelihood of a local greyvalue descriptor computed at the point within the

population of all observed interest point descriptors� Given one or several images� a descriptor is

computed for each of the detected interest points� Information content measures the distribution

of these descriptors� If all descriptors lie close together� they don�t convey any information� that

is the information content is low� Matching for example fails� as any point can be matched to

any other� On the other hand if the descriptors are spread out� information content is high and

matching is likely to succeed�

Information content of the descriptors is measured using entropy� The more spread out the

descriptors are� the higher is the entropy� Section ��� presents a short introduction to entropy

and shows that entropy measures the average information content� In section ��� we introduce

the descriptors used for our evaluation� which characterize local greyvalue patterns� Section ���

describes how to partition the set of descriptors� Partitioning of the descriptors is necessary to

compute the entropy� as will be explained in section ���� The information content criterion of

di�erent detectors is compared in section ����

��



��� Entropy

Entropy measures the randomness of a variable� The more random a variable is the bigger

the entropy� In the following we are not going to deal with continuous variables� but with

partitions 	���� The entropy of a partition A � fAig is �

H�A� � �
X
i

pi log�pi� ���

where pi is the probability of Ai�

Note that the size of the partition in�uences the results� If B is a new partition formed by

subdivisions of the sets of A then H�B� � H�A��

Entropy measures average information content� In information theory the information content

I of a message i is de�ned as

Ii � log���pi� � �log�pi�

The information content of a message is inversely related to its probability� If pi � � the event

always occurs and no information is attributed to it � I � � The average information content

per message of a set of messages is then de�ned by �
P

i pi log�pi� which is its entropy�

In the case of interest points we would like to know how much average information content an

interest point �transmits�� as measured by its descriptor� The more distinctive the descriptors

are� the larger is the average information content�

��� Descriptors characterizing local shape

To measure the distribution of local greyvalue patterns at interest points� we have to de�ne a

measure which describes such patterns� Collecting unordered pixel values at an interest point

does not represent the shape of the signal around the pixel� Collecting ordered pixel values �e�g�

from left to right and from top to bottom� respects the shape but is not invariant to rotation�

We have therefore chosen to use local rotation invariants�

The rotation invariants used are combinations of greyvalue derivatives� Greyvalue derivatives

are computed stably by convolution with Gaussian derivatives� This set of derivatives is called

�



the �local jet� 	���� Note that derivatives up to Nth order describe the intensity function locally

up to that order� The �local jet� of order N at a point x � �x� y� for image I and scale � is

de�ned by �

JN 	I��x� �� � fLi����in�x� �� j �x� �� � I � IR� �n � � � � � � Ng

where Li����in�x� �� is the convolution of image I with the Gaussian derivatives Gi����in�x� �� and

ik � fx� yg�

To obtain invariance under the group SO��� ��D image rotations�� Koenderink 	��� and

Romeny 	��� compute di�erential invariants from the local jet� In our work invariants up to

second order are used �

	V	���� �

�
�����������

LxLx # LyLy

LxxLxLx # �LxyLxLy # LyyLyLy

Lxx # Lyy

LxxLxx # �LxyLxy # LyyLyy

�
�����������

���

The average luminance does not characterize the shape and is therefore not included� Note that

the �rst component of 	V is the square of the gradient magnitude and the third is the Laplacian�

��� Partitioning a set of descriptors

The computation of entropy requires the partitioning of the descriptors 	V � Partitioning is de�

pendent on the distance measure between descriptors� The distance between two descriptors 	V�

and 	V� is given by the Mahalanobis distance �

dM�	V�� 	V�� �
q
�	V� � 	V��T$���	V� � 	V��

The covariance matrix $ takes into account the variability of the descriptors 	V� i�e� their uncer�

tainty due to noise� This matrix $ is symmetric positive de�nite� Its inverse can be decomposed

into $�� � P TDP where D is diagonal and P an orthogonal matrix representing a change of

reference frame� We can then de�ne the square root of $�� as $���� � D���P where D��� is a

diagonal matrix whose coe�cients are the square roots of the coe�cients of D� The Mahalanobis

��



distance can then be rewritten as �

dM�	V�� 	V�� � kD���P �	V� � 	V��k

The distance dM is the norm of the di�erence of the normalized vectors �

	Vnorm � D���P 	V ���

Normalization allows us to use equally sized cells in all dimensions� This is important since the

entropy is directly dependent on the partition used� The probability of each cell of this partition

is used to compute the entropy of a set of vectors 	V�

��� Results for information content

In this section� we compute the information content of the detectors which are included in our

comparison� To obtain a statistically signi�cant measure� a large number of points has to be

considered� We use a set of � images of di�erent types � aerial images� images of paintings

and images of toy objects� The information content of a detector is computed as follows �

�� Extract interest points for the set of images�

�� Compute descriptors �cf� equation ���� for all extracted interest points ������

�� Normalize each descriptor �cf� equation ����� The covariance matrix takes into account the

variability of the descriptors�

�� Partition the set of normalized descriptors� The cell size is the same in all dimensions� it

is set to ��

�� Determine the probability of each cell and compute the entropy with equation ����

The results are presented in table �� It shows that the improved version of Harris produces

the highest entropy� and hence the most distinctive points� The results obtained for Heitger are

almost as good� The two detectors based on line extraction obtain worse results� This can be

��



explained by their limitation to contour lines which reduces the distinctiveness of their greyvalue

descriptors and thus their entropy�

Random points are included in our comparison � for each image we compute the mean number

m of interest points extracted by the di�erent detectors� We then select m random points

over the image using a spatially uniform distribution� Entropy is computed as speci�ed above

using this random point detector� The result for this detector ��random�� is given in table ��

Unsurprisingly� the results obtained for all of the interest point detectors are signi�cantly better

than those for random points� The probability to produce a collision is e����������� � ���
 times

higher for Random than for Harris�

detector information content

ImpHarris 
�����


Heitger �������

Horaud �������


Cottier ����
��

F�orstner ������
�

Random ����
�

Table �� The information content for di�erent detectors�

� Conclusion

In this paper we have introduced two novel evaluation criteria � repeatability and information

content� These two criteria present several advantages over existing ones� First of all� they are

signi�cant for a large number of computer vision tasks� Repeatability compares interest points

detected on images taken under varying viewing conditions and is therefore signi�cant for any

interest point based algorithm which uses two or more images of a given scene� Examples are

image matching� geometric hashing� computation of the epipolar geometry etc�

Information content is relevant for algorithms which use greyvalue information� Examples

��



are image matching based on correlation and object recognition based on local feature vectors�

Furthermore� repeatability as well as information content are independent of human intervention

and apply to real scenes�

The two criteria have been used to evaluate and compare several interest point detectors�

Repeatability was evaluated under various di�erent imaging conditions� In all cases the improved

version of Harris is better than or equivalent to those of the other detectors� Except for large

scale changes� its points are geometrically stable under all tested image variations� The results

for information content again show that the improved version of Harris obtains the best results�

although the Heitger detector is a close second� All of the detectors have signi�cantly higher

information content than randomly selected points� so they do manage to select �interesting�

points�

The criteria de�ned in this paper allow the quantitative evaluation of new interest point de�

tectors� One possible extension is to adapt these criteria to other low�level features� Another

extension would be to design an improved interest point detector with respect to the two eval�

uation criteria� Concerning repeatability� we have seen that detectors show rapid degradation

in the presence of scale change� To solve this problem� the detectors could be included in a

multi�scale framework� Another solution might be to estimate the scale at which the best results

are obtained� Concerning information content� we think that studying which kinds of greyvalue

descriptors occur frequently and which ones are rare will help us to design a detector with even

higher information content�
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A Derivation of the auto�correlation matrix

The local auto�correlation function measures the local changes of the signal� This measure is

obtained by correlating a patch with its neighbouring patches� that is with patches shifted by

a small amount in di�erent directions� In the case of an interest point� the auto�correlation

function is high for all shift directions�

Given a shift �%x�%y� and a point �x� y�� the auto�correlation function is de�ned as �

f�x� y� �
X

�xk�yk��W

�I�xk� yk�� I�xk #%x� yk #%y��� ���

where �xk� yk� are the points in the window W centered on �x� y� and I the image function�

If we want to use this function to detect interest points we have to integrate over all shift

directions� Integration over discrete shift directions can be avoided by using the auto�correlation

matrix� This matrix is derived using a �rst�order approximation based on the Taylor expansion �

I�xk #%x� yk #%y� � I�xk� yk� #
�
Ix�xk� yk� Iy�xk� yk�

�
�
BB	

%x

%y



CCA �
�

Substituting the above approximation �
� into equation ���� we obtain �

f�x� y� �
P

�xk�yk��W

�
BB	
�
Ix�xk� yk� Iy�xk� yk�

��BB	
%x

%y



CCA



CCA

�

�
�

%x %y

�
�
�����

P
�xk�yk��W

�Ix�xk� yk��
� P

�xk�yk��W
Ix�xk� yk�Iy�xk� yk�

P
�xk�yk��W

Ix�xk� yk�Iy�xk� yk�
P

�xk�yk��W
�Iy�xk� yk��

�

�
�����

�
BB	

%x

%y



CCA

�
�

%x %y

�
A�x� y�

�
BB	

%x

%y



CCA

���

The above equation ��� shows that the auto�correlation function can be approximated by the

matrix A�x� y�� This matrix A captures the structure of the local neighborhood�
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B Repeatability results for the �Asterix� scene

In this appendix the repeatability results for the �Asterix� scene are presented� Experimental

conditions are the same as described in section ��

B�� Comparison of the two Harris versions

Figure �� compares the two di�erent versions of the Harris detector in the presence of image

rotation �graph on the left� and scale change �graph on the right�� The repeatability of the

improved version of Harris version is better in both cases� Results are comparable to those

obtained for the �Van Gogh� scene �cf� section �������
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Figure ��� Comparison of Harris and ImpHarris� On the left repeatability rate for an image

rotation and on the right the rate for a scale change� � � ����

B�� Image rotation

Figure �� shows two images of the rotation sequence� The repeatability rate for the rotation

sequence is displayed in �gure ��� The improved version of Harris gives the best results as in

the case of the �Van Gogh� scene �cf� section ������� Figure �� shows the repeatability rate as a

function of the localization error � for a constant rotation angle of ����

�




Figure ��� Image rotation sequence� On the left the reference image for the rotation sequence�

On the right an image with a rotation angle of �����
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Figure ��� Repeatability rate for the sequence image rotation� � � �� for the left graph and �

� ��� for the right graph�
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Figure ��� Repeatability rate as a function of the localization error �� The rotation angle is ����
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B�� Scale change

Figure �� shows two images of the scale change sequence� The scale factor between the two

images is ���� The repeatability rate for the scale change sequence is displayed in �gure �
� The

improved version of Harris and the Cottier detector give the best results as in the case of the

�Van Gogh� scene �cf� section ������� Figure �� shows the repeatability rate as a function of the

localization error � for a constant scale change of ����

Figure ��� Scale change sequence� On the left the reference image for the scale change sequence�

On the right an image with a scale change of a factor ����
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Figure �
� Repeatability rate for the sequence scale change� � � �� for the left graph and � �

��� for the right graph�
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Figure ��� Repeatability rate as a function of the localization error� The scale change is ����

B�� Uniform variation of illumination

Figure �� shows two images of the uniform variation of illumination sequence� a dark one with

a relative greyvalue of �
 and a bright one with a relative greyvalue of ���� The repeatability

rate for a uniform illumination variation is displayed in �gure ��� ImpHarris and Heitger give

the best results as in the case of the �Van Gogh� scene �cf� section �������

Figure ��� Uniform variation of illumination sequence� On the left an image with a relative

greyvalue of �
� On the right an image with a relative greyvalue of ����
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Figure ��� Repeatability rate for the sequence uniform variation of illumination� � � �� for the

left graph and � � ��� for the right graph�

B�� Camera noise

The repeatability rate for camera noise is displayed in �gure �� ImpHarris and Heitger give the

best results�
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Figure �� Repeatability rate for camera noise sequence� � � �� for the graph on the left and �

� ��� for the graph on the right�
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