
Porter’s stemming algorithm for Dutch

Wessel Kraaij and Renée Pohlmann

Abstract

A stemming algorithm provides a simple means to enhance Recall in Text Re-
trieval systems. The paper describes the development of a Dutch version of the
Porter stemming algorithm. The stemmer was evaluated using a method inspired
by Paice (Paice, 1994). The evaluation method is based on a list of groups of mor-
phologically related words. Ideally, each group must be stemmed to the same root.
The result of applying the stemmer to these groups of words is used to calculate the
Understemming and Overstemming Index. These parameters and the diversity of
stem group categories that could be generated from the CELEX database enabled a
careful analysis of the effects of each stemming rule. The testsuite is extremely fit for
a qualitative comparison of different (versions of) stemmers.

1 Introduction

In state of the art IR systems the most salient problem is to improve recall rates while
retaining a high precision. A simple recall enhancing technique which can be useful for
even the simplest boolean retrieval systems is stemming. It’s obvious that an information-
seeker who is looking for texts about say dogs is probably interested in a text which
contains the word dog. An algorithm which maps different morphological variants to
their base form (stem) is called a stemming algorithm. The underlying assumption for a
fruitful usage of such a stemmer, is that morphological variants of words are semantically
related. This is obviously not always true. In information retrieval, the use of stemming is
controversial (Harman, 1991). However several authors (Frakes and Baeza-Yates, 1992;
Krovetz, 1993; Popovic̆ and Willett, 1992) report favourable results

�

.

The UPLIFT project
�

investigates whether linguistic tools can improve the performance
of an Information Retrieval system for Dutch Texts. As a first step we will adapt and test
two common stemming techniques for Dutch text. The first option which is quite popular
in several experimental and commercial IR systems is suffix stripping. Suffix stripping
is a pragmatic approach, the algorithms are small and efficient and are not hampered by
linguistic claims. Efficiency is an important property of every subpart of an IR system,

�

See section 2 for a more elaborate discussion.
�

UPLIFT (Utrecht Project: Linguistic Information for Free Text retrieval) is sponsored by the NBBI,
Philips Research, the Foundation for Language Technology, the Ministry of Education and Science and the
Ministry of Economic Affairs.

167



especially for modern interactive systems. However the simple architecture of such al-
gorithms has its drawbacks, because it is easy to introduce errors. The second option:
Stemming based on morphological analysis requires more complex resources. This ap-
proach tries to exploit linguistic knowledge about the internal structure of wordforms. A
necessary component for such a morphological analysis is a dictionary. In general, each
word which has to be stemmed will involve dictionary lookup and therefore this stemming
technique will be considerably slower than suffix stripping. On the other hand, a careful
morphological analysis can eliminate most errors and the analysis can be useful for higher
interpretation levels like a Noun Phrase indexing module.

This paper describes the development and evaluation of a suffix stripper for Dutch. We
have chosen to modify the stemming algorithm developed by Porter (Porter, 1980) because
it is well known and is frequently used in experimental IR systems.

2 Suffix stripping

The core of every suffix stripper is a set of rules which test whether a word ends with a
certain character sequence and subsequently delete this sequence. However some strippers
are are a bit more sophisticated. Instead of deleting a suffix, they can also replace it by
another (shorter) suffix or modify the stem itself.

Harman (Harman, 1991) compared three well-known stemming algorithms for English:

� S–stemmer: a simple stemmer removing the plural s

� Lovins (Lovins, 1968): a longest match stemmer consisting of 260 suffixes with a
list of exceptions

� Porter (Porter, 1980): a multi-step stemmer without exception list

In Harman’s experiments, stemming (i.e. suffix stripping) did not yield any significant
improvement. Recall did improve but precision was degraded by stemming. Harman
suggested that the latter effect could possibly be prevented by a more elaborate, dictionary
based, stemming algorithm which checks whether the resulting stem is semantically related
to the original term. The latter approach has been investigated by Krovetz (Krovetz, 1993).

Maybe the negative results from Harman can be attributed to the rather simple English mor-
phology. Experiments with a Porter-like stemmer for the Slovene Language by Popovic̆
and Willett (Popovic̆ and Willett, 1992), containing 5276 suffixes, show a significant
improvement in precision (at fixed retrieval of the 10 most highly ranked documents).
Popovic̆ did an interesting control experiment. The Slovene test corpus was translated
to English and the same experiment was repeated. This control experiment confirmed
Harman’s conclusion that stemming does not improve retrieval for English documents.
This supports the hypothesis that the effectiveness of stemming in an IR system depends
on the morphological complexity of a language.

168



3 A Dutch version of Porter

3.1 Introduction

Porter’s algorithm is based on a series of steps that each remove a certain type of suffix by
way of substitution rules. These rules only apply when certain conditions hold, e.g. the
resulting stem must have a certain minimal length.

Most rules have a condition based on the so-called measure. The measure is the number of
vowel-consonant sequences (where consecutive vowels or consonants are counted as one)
which are present in the resulting stem. This condition must prevent that letters which
look like a suffix but are just part of the stem will be removed. Other simple conditions
on the stem are:

� Does the stem contain a vowel?

� Does the stem end with a consonant?

Out of several implementations of Porter for English we chose the version that was
published by Frakes ((Frakes and Baeza-Yates, 1992)). This version has the advantage
of a clear separation between substitution rules and procedures which test the attached
conditions.

3.2 Extensions to Frakes’ Implementation

Most Dutch past participles introduce the pre- or infix ge. Because this affix can easily
be recognised, the algorithm has been extended to handle pre- and infixes. The original
Porter only treats suffixes.

Another special case is the use of the compounding hyphen. In Dutch it is easy to create
new words by compounding, sometimes hyphens are applied as glue. This hyphen is
employed in a sometimes rather ad-hoc manner although strict rules apply for the official
Dutch spelling. A stemmer without a dictionary is unable to do compound analysis,
so three approaches are possible: treat the hyphen as a normal character, remove every
hyphen between words or replace it by a blank, having the effect of separating words. For
our testcorpus the second option yielded the best results.

Finally the stemmer was extended to handle characters with diacritics such as diaeresis,
accents. The Dutch Porter can handle the ISO-latin1 character set, the orthographic rules
for the placement of these diacritics for various inflectional forms are respected by the
affix rules which will be described in the next paragraph e.g creëren - creëer but variëren
- varieer.

169



3.3 Affix-rules for Dutch

The affix-rules for Dutch were written based on information in Morfologisch Handboek
van het Nederlands (de Haas and Trommelen, 1993), Algemene Nederlandse Spraakkunst
(Geerts et al., 1984) and Woordfrequenties in Geschreven en Gesproken Nederlands
(Uit den Boogaart, 1975).

Several criteria were taken into consideration while defining the coverage of the rule
clusters, the following being the most important:

� Inflectional morphology should be covered as fully as possible

Inflectional affixes (e.g. plural endings, verbal inflection etc.) do not affect the
basic meaning of the underlying stem and can therefore be removed without risk of
losing too much information.

� Only those derivational affixes which do not substantially affect the information
conveyed by the term should be removed

Affixes like, for instance, -heid (-ness) can be removed without losing too much
information. On the other hand, removal of an affix like on- (un-), would result in
the loss of valuable information.

� The most frequent affixes should be covered

Since the number of rules influences the efficiency of the stemming algorithm we
restricted ourselves to removing only the most frequent affixes.

Taking these considerations into account, six rule clusters were created for the Dutch
Porter stemmer. Each cluster represents a particular class of affixes and the rules within
a class are ordered and mutually exclusive, i.e. the first rule that matches is applied, no
other rules in the same cluster are tried. The affix-clusters are defined by the level at
which the affixes occur in the word formation process. For instance, inflectional suffixes
which occur on the outside of words are ordered before derivational suffixes e.g. werk +
ing (derivational) + en (inflectional)

�

. Complex affixes are thus removed in consecutive
steps.

In addition to the affix-rules, a number of special conditions had to be designed to cover
some specific phenomena. Examples of these conditions are, for instance, EndsWithV/C,
i.e. the remaining stem should end in a vowel or consonant. DupV is a special case.
Long vowels in Dutch are spelled single in open syllables and double in closed ones
(e.g. schaap - schapen). After removal of some affixes (e.g. adjective -e (rode - rood),
infinitival -en for verbs (lopen - loop) etc.) the stem vowel needs to be doubled to render
an orthographically correct stem. The rules which remove these affixes are marked for
the DupV procedure. DupV identifies closed syllables and subsequently duplicates the
vowel, otherwise the vowel is left unchanged. This works reasonably well for a, o and u

�

In some cases this basic ordering could not be adhered to because of interaction between rules, for
instance, the rule removing -d (verbal inflectional suffix) had to be ordered after the rule removing -end
(adjective-forming derivational suffix).

170



(i is never doubled) but e poses a special problem since an e in spelling can also stand for
an unaccented schwa which is never doubled. DupV tries to “guess” the status of the e
based on information about the spelling of the word in which it is contained, e.g. if e is
the only vowel in the word it is not a schwa, but without information about word stress it
is impossible to consistently predict the status of e correctly, e.g. kantélen (“battlements”)

� kanteel v.s. kántelen (“to turn over”) � kantel.

The affix-rules have the following general form:

suffix � substitution measure-condition � additional conditions � � DupV �

The first cluster of rules covers the inflectional morphology of nouns, adjectives and verbs,
e.g.

"en" � � measure � 0 EndsWithC DupV (-en plural)
"e" � � measure � 0 EndsWithC DupV (adjective -e)

The second cluster covers the diminuitive suffix of nouns e.g.

"etj" � � no measure-condition EndsWithC (-etje � )
"tj" � � no measure-condition None (-tje

The third cluster contains noun-forming derivational suffixes e.g.

"heid" � � measure � 0 None (-heid)
"ing" � � measure � 0 None DupV (-ing)

The fourth cluster contains adjective-forming derivational suffixes e.g.

"baar" � � measure � 0 None (-baar)
"ig" � � measure � 0 None DupV (-ig)

The fifth cluster covers a special case: the affix ge which occurs as a prefix (regular) or
infix (separable verbs) in Dutch participles.

"ge-" � � no measure-condition None (ge-)
"-ge-" � � measure � 0 None (-ge-)

The final cluster contains rules that tidy up the result of previous rule applications e.g.

"v" � "f" no measure-condition None (-v � -f)
"pp" � "p" no measure-condition None (-pp � -p)

Porter reports a reduction of about a third in vocabulary size after application of his
stemmer to a vocabulary of 10.000 different wordforms ((Porter, 1980), p. 137). We
repeated this test using a larger vocabulary for both the Dutch and the English Porter (as
implemented by Frakes):

NL Porter EN Porter
Original number of wordforms 148.601 104.216
After stemming 64.035 49.323
reduction 57 % 53 %

�
final -e has already been removed.

171



The results of this test show that the behaviour of both stemmers is comparable in this
respect. Although vocabulary reduction can be used as a global indication of the effective-
ness of the stemming algorithm, other evaluation measures are necessary to reveal specific
error patterns. This information can subsequently be used to improve the algorithm where
possible. Some error types, however, are inherent to the suffix-stripping method and with-
out the additional information provided by, for instance, a dictionary, these errors cannot
be avoided.

The following are examples of these types of errors:

� Linguistically incorrect stems

Some stems which are generated by the Porter algorithm are not linguistically
correct. This may not be a problem if the resulting “stem” is unique and consistent
for a semantically related group of words, but if the resulting stem is identical to a
stem that is not semantically related this will result in retrieval errors.

� Homographs

Homographs are words which are spelled identically but nevertheless have a different
meaning, e.g. kust (3rd person singular of the verb kussen (to kiss) or a noun meaning
‘coast’). Because the Porter algorithm does not have access to information about,
for instance, word categories, the different senses of these types of words are not
distinguished.

� Irregular verbs

Some verbs exhibit irregularities in the formation of past tense, past participle
or both, e.g. drinken dronk gedronken, zien zag gezien (base vowel alternation).
Others, like zijn (to be), are almost completely irregular. For obvious reasons, a
simple suffix-stripper will never be able to map the different forms of these types of
verbs onto a single stem.

Generally speaking, the different types of errors introduced by suffix-stripping algorithms
like the Porter algorithm can be divided into two classes:

1. Over-stemming errors

“Over-stemming errors” are those errors which result in the conflation of semanti-
cally unrelated words.

2. Under-stemming errors

The term “under-stemming errors” is used for those errors where a failure to conflate
semantically related words is concerned.

In section 4 below we will describe a method developed by Paice to calculate an over-
stemming and under-stemming index for stemming algorithms and the results we obtained
by applying his method to our Dutch version of the Porter algorithm.

172



4 Performance evaluation

4.1 Paice’s stemmer evaluation method

In this paper we will present an evaluation method which is proposed by Paice (Paice,
1994). Paice has compared different English stemming algorithms isolated from the
context of an IR system. He did not use the traditional precision/recall parameters.
Instead he introduced two new parameters: the over- and understemming index (UI and
OI) and their ratio, the stemming weight (SW), in order to make a qualitative comparison
between different stemmers. A prerequisite of this method is a list of groups of words
which are semantically related. An ideal stemmer should stem all words in a group to the
same stem. If a stemmed group contains more than one unique stem, the stemmer has
made understemming errors. In an IR system this corresponds with a negative effect on
recall. If a stem of a certain group also occurs in other stemmed groups the stemmer has
made overstemming errors, which degrade precision. A good stemmer should therefore
produce as few under- and overstemming errors as possible. Note however that there
is a tradeoff here. If suffix stripping rules are added or modified in order to reduce
the understemming errors, these modifications will likely introduce more overstemming
errors. The development of rules is based on a thorough analysis of stemming errors. The
method described in 4.3 can be of great help in finding an optimal balance.

It is not trivial to create a large file of grouped words. Paice started from the CISI corpus
(consisting of titles and abstracts), filtered out 9757 unique wordforms and produced a
group file in a semi-automatic manner. A grouping program made the “obvious” decisions
and referred to the user in the difficult cases. One rule of thumb that Paice used was that
words must have at least two letters in common. He did not want to penalize the stemmer’s
ignorance concerning irregular verbs like “to be” or “go”. Paice also experimented with
a tight and loose grouping process. This meant that some tight groups were unified into
loose groups, reflecting a more remote semantical relationship.

We have taken a different approach to produce a group file for Dutch. The group file has
been produced by a suite of small computer programs which exploit the morphological
information of the CELEX database (Baayen et al., 1993). For our purpose we used the
wordforms database covering Dutch inflection and a database of lemmas which gives all
possible segmentations of derivational forms and compounds. The wordform database
lists a lemma for each wordform. Finding a root form for derivational or compound
forms is a bit more complicated. We have decided not to use the compound segmentation
information since compound analysis is beyond the scope of a suffix stripper. But we did
use the segmentation information about derivational lemmas e.g. verrader+lijk. All
words with the same root form (lemma) were joined in a group. A prerequisite of Paice’s
evaluation method is that the collection of words which is taken as input for the grouping
process does not contain duplicates. Therefore ambiguous wordforms (i.e. homographs)
were removed. A lot of Dutch verbs are separable e.g. “ophalen”. All inflected forms of
these verbs which have separate lexemes (e.g. “haalt op”) were removed as well, because
adequate stemming would require syntactic analysis.

Here are some examples of the resulting groups:

173



1. malloot mallotig malloterigheid malloterig mallotigheid malloten malloterigheden mal-
lotigheden malloterige malloteriger malloterigere malloterigst malloterigste mallotige mal-
lotiger mallotigere mallotigst mallotigste

2. manoeuvreren gemanoeuvreerd gemanoeuvreerde manoeuvreer manoeuvreerde manoeu-
vreerden manoeuvreert manoeuvrerend manoeuvrerende manoeuvreerbaar manoeuvreer-
baarder manoeuvreerbaardere manoeuvreerbaarst manoeuvreerbaarste manoeuvreerbare

3. verraden verraad verraadde verraadden verraadt verradend verradende verried verrieden ver-
raderlijkheid verraderij verrader verraadster verraderlijk verraadsters verraders verraderijen
verraderlijke verraderlijker verraderlijkere verraderlijkst verraderlijkste

4. geboren geboorte geboorten

5. boren boorde boorden boort borend borende geboord geboorde boorden

Processing the example by the Dutch Porter yields:

1. malloot malloot malloot malloot malloot malloot malloot malloot malloot malloot malloot
malloot malloot malloot malloot malloot malloot malloot

2. manoeuvreer manoeuvreer manoeuvreer manoeuvreer manoeuvreer manoeuvreer manoeu-
vreer manoeuvreer manoeuvreer manoeuvreer manoeuvreer manoeuvreer manoeuvreer ma-
noeuvreer manoeuvreer

3. verraad verraad verraad verraad verraad verraad verraad verried verried verrader verraad
verraad verraad verrader verraad verraad verraad verrader verrader verrader verrader ver-
rader

4. boor boor boor

5. boor boor boor boor boor boor boor boor boor

This example displays errors of two different kinds:

1. Group 3 is not conflated to a single root form. This is an example of Unachieved
merges (understemming).

2. Group 4 and 5 are conflated to one single root form creating a potential source of
“noise” in an IR system. This is an example of Unwanted merges (overstemming).

The under- and overstemming index can be computed from four parameters:

1. GDMT: The Global Desired Merge Total

2. GDNT: The Global Desired Non-Merge Total

3. GUMT: The Global Unachieved Merge Total

4. GWMT: The Global Wrongly Merged Total

174



For each group � the desired merge total is equivalent to the total number of different
possible wordform pairs in the particular group. On the other hand, the desired non-
merge total for a group can be computed by counting the possible wordform pairs that
are composed by a member and a non-member wordform from the group. This can be
expressed in the following definitions, where ��� denotes the number of words in a group
and � is the total number of words.

���	� ��

�
 ����������� ���

(1)

����� ��

�
 ������� ����� � (2)

For each stemmed group the Unachieved Merge Total (UMT) can be calculated by counting
the number of merges between individual words that were not achieved. Suppose a group
of size ��� contains � distinct stems after stemming and that the number of instances of
these stems are � � , � � , ... � � respectively. The number of understemming errors for that
group is then given by:

!"�#� �$

�


%&
�(' �

� �)�����*�+� � � (3)

An extra operation is needed to compute the Wrongly Merged Total (WMT). An inverted
group file is created by grouping all identical stems labelled with their original concept
group index. Now we can compute the Wrongly-Merged Total for each inverted group
by comparing the indexes. If an inverted group contains only identical indexes, then there
are no overstemming errors and the WMT value for that group is zero. However if an
inverted groups contains different indexes this means that semantically unrelated words
are conflated to the same stem. In this case the WMT can be computed by counting the
number of possible combinations of two words with different indexes within an inverted
group. Suppose a stem group of size � % contains , different indices which means that the
stems in this group originate from , different concept groups. The numbers of each original
concept group (labelled with the same index) within this stem group are represented by- � , - � ,... -/. . The number of overstemming errors for this group (WMT) is then defined by:

� �	� % 

�


.&
�0' �

- �1�2� % � - � � (4)

The “Global” values of DMT, DNT, UMT and WMT are simply summations over all
groups.

Here are the inverted groups for the example

3 malloot: malloot(1) malloot(1) malloot(1) malloot(1) malloot(1) malloot(1) malloot(1)
malloot(1) malloot(1) malloot(1) malloot(1) malloot(1) malloot(1) malloot(1) malloot(1)
malloot(1) malloot(1) malloot(1) WMT = 0

175



3 manoeuvreer: manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) manoeu-
vreer(2) manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) manoeuvreer(2)
manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) WMT =
0

3 verraad: verraad(3) verraad(3) verraad(3) verraad(3) verraad(3) verraad(3) verraad(3) ver-
raad(3) verraad(3) verraad(3) verrader verraad(3) verraad(3) verraad(3) WMT = 0

3 verried: verried(3) verried(3) WMT = 0

3 verrader: verrader(3) verrader(3) verrader(3) verrader(3) verrader(3) verrader(3) WMT = 0

3 boor: boor(4) boor(4) boor(4) boor(5) boor(5) boor(5) boor(5) boor(5) boor(5) boor(5)
boor(5) boor(5) WMT = 27

The GDMT and GDNT values are used to normalize the number of over- and under-
stemming errors to a fraction of 1:

!�� 
�� ! �	��� � ���	�
, the overstemming index is� � 
�� � �	��� � � � �

. The stemming weight is defined as: 	 � 
 � �
� !�� . SW gives
some indication whether a stemmer is weak (low value) or strong (high value.

4.2 A comparison with Paice’s results

Paice has compared three English stemmers: Lovins, Paice/Husk and Porter with the
truncate “stemmer”. The trunc(n) stemmer reduces a word to its first n characters.

We replicate the results of Paice’s analysis in table 1 so that we can compare our results.
We selected the results for tight grouping in which strict semantic rules were applied
for the grouping process. We think that this corresponds well with our CELEX-based
automatic grouping method.

stemming algorithm UI
� ��� ����
� 	 � � ��
�

�
trunc(4) 0.062 81.4 131.00
trunc(5) 0.18 26.2 14.80
trunc(6) 0.34 7.3 2.18
trunc(7) 0.53 2.8 0.54
trunc(8) 0.70 1.2 0.17
Lovins 0.33 6.3 1.93
Paice/Husk 0.12 11.8 9.80
Porter 0.37 2.8 0.74

Table 1: Comparison of English stemmers (Paice)

Because we did not have another stemmer for Dutch at our disposal, we decided to run
tests with the truncate “stemmer” as well, just as Paice did for English. We also ran some
tests to investigate the effect of varying the number of rule clusters that were applied:
Porter with only the first cluster of rules (inflection) , Porter with clusters 1 and 2, etc.
The results of these tests are presented in table 2.

176



stemming algorithm UI
� ��� ����
� 	 � � ��
�
�

trunc(4) 0.200 80.00 410.00
trunc(5) 0.290 23.60 81.10
trunc(6) 0.390 7.23 18.60
trunc(7) 0.510 2.15 4.20
trunc(8) 0.620 0.92 1.47
trunc(9) 0.723 0.44 0.61
Porter (1 cluster) 0.827 0.05 0.06
Porter (2 clusters) 0.815 0.06 0.08
Porter (3 clusters) 0.621 0.17 0.28
Porter (4 clusters) 0.425 0.36 0.84
Porter (all clusters) 0.310 0.51 1.67

Table 2: Comparison of Porter and trunc(n)

The performance of the Dutch Porter is consistent with the English version i.e. it is a rather
cautious or “weak”

�
stemming algorithm. The tendency for understemming is however

not so obvious when the stemmed group files are inspected: the Dutch stemmer deals
very well with verbal inflection or derivation. A possible cause for this understemming
tendency in comparison with the English stemmers could be the language difference, or a
different coverage of the language. One way to compare the two group collections is to
compare the average group size. We started from 286461 words extracted from CELEX
which were split into 74625 groups i.e. 3.8 words per group. Paice’s corpus consists
of 5101 different groups (tight grouping procedure) which makes the average group size
1.9 words per group. The Dutch groups contain every possible inflection resulting in
large concept groups which expand from a verbal concept. Our stemmer is not able to
stem inflectional forms of “strong verbs” to one identical stem. These errors amount
immediately to a large UMT value just because of the large average “verbal group” size.

Figure 1 shows the effect of removing rule clusters. Note that the experiments with Porter
with only 1,2, 3 or 4 rule clusters did include the final cluster with tidy-up rules. The plot
can be interpreted as follows: better stemmers are closer to the origin, no stemming at all
yields the coordinates (1,0). Unfortunately UI and OI cannot be compared in an absolute
sense so it is difficult to define an ideal stemming weight or to express the total error rate
in one parameter like e.g. the length of the vector. It appears that especially rule cluster 3
and 4 (which remove derivational suffixes) are quite effective.

4.3 Fine-tuning the stemmer

In addition to applying Paice’s evaluation method to different stemmers, we also applied
his method to different versions of our Dutch stemmer.

The rich lexical information in the CELEX database enabled us to create group files for
a number of distinct lexical categories. This made it possible to assess the merits of the
Dutch Porter on different aspects of Dutch morphology in a very precise way.

�

A weak stemmer produces more understemming than overstemming errors and a strong stemmer vice
versa.

177



0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

O
I x

 1
0e

-5

UI

n=7

n=8

n=9
n=10

1 cluster
2 clusters3 clusters

4 clusters
all clusters

truncate(n)
Dutch Porter

Figure 1: UI x OI plot

The CELEX lexical database distinguishes between inflectional and derivational morphol-
ogy. We have evaluated nearly all inflectional categories. Infinitive, positive and noun
singular were excluded from the list of inflectional categories because these forms are
root forms in CELEX and have no inflection.

�

Because the Dutch Porter only tries to
remove inflectional and derivational affixes, we only isolated derivational wordforms and
their root forms from CELEX and did not decompose compounds. So compound forms
without any inflectional or derivational affixes were treated as root forms. The categories
“deriv+affixsub” and “deriv+allomorf” (which are subsets of “derivations”) exhibit irreg-
ular morphology. Allomorphy is the phenomenon when stems within words are different
from their generally accepted stem form e.g. aanspreek + -elijk yields aansprakelijk.
Affix Substitution is the process whereby part of the stem is replaced when stem and affix
are joined together e.g. emigreer + -atie yields emigratie.

For each isolated category, a group file was produced by taking the wordform and its lemma
(provided by CELEX), each group containing two words. Aggregate group files were
produced by merging inflectional categories from the same syntactical category. ‘all verb
forms’ contains all verbal inflectional forms , ‘all nouns’ contains singular, plural nouns
and diminuitives, ‘all adjectives’ contains ‘positive’, ‘comparative’ and ‘superlative’.
Subsequently we ran the UI/OI analysis on all these group files which represent a particular
lexical category with corresponding morphological characteristics.

The merit of this detailed analysis is that the effects of small changes in a particular
rule cluster (aimed at the removal of a certain inflectional or derivational suffix) can be
evaluated in a precise way. It is easy to see whether the change has effect on the particular

�

The Dutch Porter however considers the first person singular present tense as the root form for verbal
inflection instead of the infinitive. This discrepancy however does not affect the evaluation method.

178



suffix category at which it is aimed and also important, whether it does not deteriorate the
performance on other categories. The scripts can also automatically generate and sort all
over and understemming errors. We think that this method is an important support for a
pure trial and error approach to rule development.

Category code # groups # words
!�� � � � �� � �

	 � � ��
� �

1st pers sing pres 9448 18930 0.253 2.80 11.0
2nd pers sing pres 11001 26854 0.281 3.32 11.8
3rd pers sing pres 10955 21923 0.310 2.75 8.9
present participle 11240 33516 0.190 2.19 11.4
past tense 11752 50687 0.265 6.12 23.1
past participle 11100 29342 0.295 4.72 16.0
participial adjective 11622 30370 0.299 5.57 18.6
all verb forms 12810 94459 0.305 6.65 21.8
plural nouns 60288 123191 0.189 2.47 13.1
diminuitives 4034 10608 0.159 20.20 127.0
all nouns 58253 127854 0.245 1.51 6.2
genitive 91 183 0.505 0.00 0.0
dative 54 108 0.167 0.00 0.0
positive 11984 31182 0.302 11.00 36.3
comparative 5501 17544 0.225 16.30 72.7
superlative 5406 17247 0.204 17.60 86.6
all adjectives 12441 55494 0.210 14.50 69.3
derivations 14755 36524 0.388 4.46 11.5
deriv+affixsub 1648 3757 0.665 0.00 0.0
deriv+allomorf 375 793 0.939 0.00 0.0

Table 3: End results of the Dutch Porter

Table 3 shows that the understemming index is within the same order of magnitude for
all categories. UI is high for the irregular derivational categories as could be expected.
The overstemming index is low (zero) for these categories because the Dutch Porter treats
these words as having regular morphology. The resulting stems have only a small chance
to conflate with other stemmed irregular forms. However, some of them will probably
conflate with stems of regular wordforms.

5 Conclusion

The results of our evaluation can be summarised as follows:

� The Dutch Porter stemmer performs rather well taking into account the limitations
of the algorithm. We expect that Porter stemming will be effective for Dutch Text
Retrieval.

� The qualitative evaluation method based on the over- and understemming indexes
introduced by Paice in combination with the lexical information in the CELEX

179



database offers valuable support for the development and comparison of stemming
algorithms.

Further research:

� In the next phase of our project we intend to compare the Porter stemmer with
a stemmer based on morphological analysis, using the CELEX database. Both
techniques will be tested in an IR environment with a collection of Dutch texts.

References

Baayen, R. H., Piepenbrock, R., and van Rijn, H., editors (1993). The CELEX Lexical
Database (CD-ROM). Linguistic Data Consortium, University of Pennsylvania,
Philadelphia (PA).

de Haas, W. and Trommelen, M. (1993). Morfologisch Handboek van het Nederlands,
volume 7 of Aan het Woord. SDU Uitgeverij, ’s-Gravenhage.

Frakes, W. B. and Baeza-Yates, R., editors (1992). Information Retrieval: Data strutures
& Algorithms. Prentice Hall.

Geerts, G., Haeseryn, W., de Rooij, J., and van der Toorn, M., editors (1984). Algemene
Nederlandse Spraakkunst. Wolters Noordhoff, Groningen.

Harman, D. (1991). How effective is suffixing. Journal of the American Society for
Information Science, 42(1):7–15.

Krovetz, R. (1993). Viewing morphology as an inference process. In Proceedings of
ACM-SIGIR93, pages 191–203.

Lovins, J. B. (1968). Development of a stemming algoritm. Mechanical Translation and
Computational Linquistics, 11:22–31.

Paice, C. D. (1994). An evaluation method for stemming algoritms. In Proceedings of
ACM-SIGIR94, pages 42–50.

Popovic̆, M. and Willett, P. (1992). The effectiveness of stemming for natural-language
access to slovene textual data. Journal of the American Society for Information
Science, 43(5):384–390.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

Uit den Boogaart, P. C., editor (1975). Woordfrequenties in Geschreven en Gesproken
Nederlands. Oosthoek, Scheltema en Holkema, Utrecht.

180


