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Abstract. In their paper “Tetris is Hard, Even to Approximate” [2] De-
maine, Hohenberger and Liben-Nowell show that optimally playing the
“offline” version of Tetris, where the initial board and piece sequence are
known, is NP-hard. This is done by reducing the so-called 3-Partition

problem to this “offline” Tetris problem. In this document a much sim-
pler way to accomplish the same is suggested.

1 Introduction

In this paper we are concerned with the complexity of the game of Tetris. Re-
cently, interest to the algorithmic theory of games has grown, see, e.g., [1]. The
Tetris game is played with pieces as shown below:

Starting from a given partially filled board (like the one in Section 2.3) the
problem is to exactly fill the remaining empty spaces with pieces from a given
sequence, where these pieces “fall down” from above, and where rows containing
no more empty spaces are removed.
The paper “Tetris is Hard, Even to Approximate” by Demaine, Hohenberger

and Liben-Nowell [2] drew some attention in the media. Their main result is
that optimally playing the “offline” version of Tetris, where the initial board
and piece sequence are known, is NP-hard. This is done by reducing the known
problem 3-Partition to this “offline” problem Tetris. In this document a
much simpler way to accomplish the same is suggested. By defining an easier
reduction, a smaller board and a smaller sequence of Tetris pieces it will be
easier to prove that the reduction holds for several Tetris rule-sets. By taking
‘buckets’ of two columns in width it is virtually impossible to rotate pieces and
the number of possible piece placements is reduced enormously. It is therefore
not necessary anymore to consider special rotation models.
For a precise definition of the game and the Tetris problem the reader is

referred to [2].
The authors would like to thank Siegfried Nijssen for his helpful input and

comments.



2 Reduction

To prove that Tetris is NP-hard we reduce 3-Partition to Tetris (as is done in
[2]). By proving that every instance of 3-Partition can be suitably represented
by a Tetris instance constructed in polynomial time in the size of the instance,
we show that Tetris is of the same “hardness” as 3-Partition.

2.1 The Tetris problem

In this paper we examine the “offline” Tetris problem as is described precisely
in Section 2 from [2]. In short this means:

Given An initial game board and a finite sequence of Tetris pieces.

Question Can the Tetris pieces, supplied in the order given, be translated and
rotated such that the game board will be cleared with these pieces, the last
piece of the sequence filling the final gap?

Clearly, this problem is in the class NP. Note that if the game board can be
cleared with the supplied Tetris pieces, it is easy to derive the number of cleared
rows. Therefore this definition does not differ from “max-cleared-rows” as used
in [2].

2.2 The 3-Partition problem

The problem 3-Partition can be defined as follows:

Given A sequence A of positive integer values a1, . . . , a3s and a positive integer
value T such that T/4 < ai < T/2 for all 1 ≤ i ≤ 3s, and such that
∑3s

i=1
ai = s T .

Question Can A be divided into s disjoint subsets (or rather subsequences)
B1, . . . , Bs such that:

∑

ai∈Bj
ai = T for all 1 ≤ j ≤ s? (Call (A, T ) a “yes”

instance if this is the case and a “no” instance otherwise.)

Note that because T/4 < ai < T/2 for all 1 ≤ i ≤ 3s, in a “yes” instance
|Bj | = 3 for all 1 ≤ j ≤ s.

We use the following result:

Theorem 1. (Garey and Johnson [3, p. 99]) 3-Partition is NP-complete in
the strong sense.

To reduce an instance (A, T ) of this problem to an instance of Tetris we
will define an initial game board and a sequence of Tetris pieces such that (A, T )
is a “yes” instance if and only if the corresponding Tetris game board can be
cleared with the given pieces.



2.3 The initial Tetris game board

The initial Tetris game board used in our reduction looks like this:
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Its dimensions are as follows:

– R is the space needed to rotate and translate the pieces. We consider R to
be big enough to rotate and translate Tetris pieces above the ‘buckets’ and
therefore R is of no consequence to the reduction.

– W is the width of the game board and is equal to 4s+ 6.
– H is the height of the bottom part of the game board that needs to be
cleared and is equal to 5T + 18.

Note that the board is constructable in polynomial time (measured in the
input size), since the variables in the problem definition may be given in unary
due to the strong sense of NP-completeness (Theorem 1). On its constructibility,
consult [4].
In order to explain the reduction and following [2], we call the empty columns

‘buckets’, the big rectangular space on the right ‘fill area’, the little T-shape on
the right-top of the board the ‘lock’; every ‘bucket’ has T + 3 ‘notches’ in its
right side.
Every ‘bucket’ represents a subset in 3-Partition. There are s ‘buckets’ just

like there are s subsets in 3-Partition. The ‘fill area’ and the ‘lock’ ensure that



none of the H lines of the board will be cleared before the ‘lock’ is cleared and
the ‘notches’ ensure that there is only one way to fill the ‘buckets’. The shape of
the ‘fill area’ is not very important, but its height must be H − 2 and it should
be “fillable” with every reduction.

2.4 The sequence of Tetris pieces

From an instance of 3-Partition a sequence of Tetris pieces is constructed in
the following way:

1. First for every ai ∈ A the sequence (in this order):

followed by ai times

(

, ,

)

,

‘begin’ ‘middle’

followed by

(

‘end’
,

)

2. Then to fill the top of all the s buckets the ‘subset fillers’:

s times

3. Then the T-shape to unlock the ‘lock’:

4. And to clear the whole board by filling the ‘fill area’:

5T + 16 times

3 Proof

To prove that the reduction is valid we show two things:

1. That a “yes” instance of 3-Partition reduces to an instance of Tetris

where the game board can be cleared.
2. That a “no” instance of 3-Partition reduces to an instance of Tetris

where there is no possible way to clear the game board.



3.1 A “yes” instance

To fill the game board with a sequence of Tetris pieces arising from a “yes”
instance of 3-Partition, you do the following:

– The sequence of Tetris pieces up to the ‘subset fillers’ represents the values
ai ∈ A. As A is part of a “yes” instance it can be divided into s disjoint
subsets, all of which have a sum that equals T . To fill the game board you
must put the ‘values’ in the right ‘buckets’. To put a ‘value’ in a ‘bucket’
you proceed as follows (in this example for ai = 3):

‘begin’ ‘middle’ (ai = 3) ‘end’

Note that multiple ‘values’ can be put into one ‘bucket’ in this fashion, for
the shape left after putting one ‘value’ in the ‘bucket’ is the same as in the
initial situation. Also notice that to put all the values ai ∈ Bj in ‘bucket’ j,
the height of a ‘bucket’ should be

∑

ai∈Bj

{(height of ‘begin’) + ai · (height of ‘middle’) + (height of ‘end’)}

=
∑

ai∈Bj

{3 + ai · 5 + 2} =
∑

ai∈Bj

{5ai + 5}

Note that the ‘end’ and ‘begin’ overlap in height and that this overlap
is counted in the height of ‘begin’, not in the height of ‘end’. Because
∑

ai∈Bj
ai = T and |Bj | = 3 for 1 ≤ j ≤ s in a “yes” instance the height

turns out to be 5T + 3 · 5 = 5T + 15, and because the last ‘end’ sticks out
an extra two squares, the total height needed will be 5T + 17, which is less
then H (= 5T + 18) and therefore the height of a ‘bucket’ is sufficient.



– After filling all the ‘buckets’ as described above, there will be s buckets
which look like (a). These buckets can all be filled to look like (b) using the
s ‘subset fillers’.

(a) (b)

– Now the whole board is filled except for the ‘lock’ and the ‘fill area’. Next
you put the ‘lock’-piece in the ‘lock’-space and thereby clear the top two lines
of the board. Now all that needs to be filled is the 4 by 5T + 16 rectangular
‘fill area’ with the 5T + 16 straight lined Tetris pieces. This can be done
by stacking the pieces horizontally and thus you will have cleared the Tetris
game board. 2

So we have proven that:

Theorem 2. Using the reduction proposed a “yes” instance of 3-Partition

reduces to an instance of Tetris for which the game board can be cleared.

3.2 A “no” instance

Using a series of lemmas we will show that a “no” instance of 3-Partition,
when reduced as proposed in Section 2, results in an instance of Tetris that is
impossible to clear.

Lemma 3. If there is ever placed a Tetris piece above the bottom 5T + 18 lines
then the game board can not be cleared.

Proof: Every Tetris piece has the same volume and (as proven in Theorem 2)
they fill exactly the gaps in the bottom 5T +18 lines when A is a “yes” instance.
The number of Tetris pieces is independent of A being a “yes” or a “no” instance,
because

∑

ai∈A ai = sT . If a piece is placed outside the 5T +18 lines then more
than 5T + 18 lines need to be cleared and that is simply not possible. Notice
that the rules of the game are such that pieces stick to the position where they
are left after their initial placement, even though (through line clearing) there
may exist empty spaces beneath them. 2

Lemma 4. To be able to clear the game board no other piece than the ‘lock’-piece
can be placed in the ‘lock’-space.

Proof: There is no other piece that would fit into the ‘lock’-space without sticking
out above the 5T + 18 lines and then the game board could not be cleared (as
proven in Lemma 3). 2



Lemma 5. If placement of a piece preceding the ‘lock’-piece ever creates spaces
within a ‘bucket’ that no piece can reach using translation and rotation, then the
game board can not be cleared.

Proof: No lines can be cleared before the ‘lock’ is filled (clearing the top 2 rows)
and this can only be done by the ‘lock’-piece (as proven in Lemma 4) and the
total volume of the pieces preceding the ‘lock’-piece can just fill all the space
in the ‘buckets’. Therefore, if a space is created within a bucket that can not
be filled by translating and rotating pieces, then a volume equal to the space
would stick out above the 5T + 18 lines and therefore the game board can not
be cleared (by Lemma 3). 2

Lemma 6. If one of the pieces of a ‘value’ is put into a different ‘bucket’ than
where the ‘begin’ piece of this value is put, then the game board can not be cleared.

Proof: When putting the ‘begin’ piece of a ‘value’ into a ‘bucket’ all the other
‘buckets’ have the same shape. To prove that no other piece of the ‘value’ will fit
into this ‘initial’ state of one of the other ‘buckets’ all possibilities are displayed
below:
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Every × is a space that is unreachable using translation and rotation. A number
stands for a space that can still be reached, but if filled then one of the other
numbers becomes unreachable. A ‘∗’ next to a possibility denotes that the piece
can be placed in a higher ‘notch’ in the same fashion with the same result.
Because all options for starting in a ‘bucket’ with a piece from the ‘middle’ or
the ‘end’ sequence are shown to contain unreachable spaces and can therefore
not be cleared (as proven in Lemma 5), all pieces of a ‘value’ must be put into
one single ‘bucket’ in order to be able to clear the game board.

Note that in the sixth possibility the position of the L-shaped piece may
seem unlikely. However, the rotation model of Tetris sometimes allows an in-
stantaneous “flip” by 90 degrees, making this possible. 2



Lemma 7. To clear the game board a ‘value’ should be put in a ‘bucket’ in
exactly the way that is described in Section 3.1.

Proof: To prove that there is no other way to put a ‘value’ in a ‘bucket’ all other
possibilities are displayed below:
For the ‘begin’ piece:
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Again every × is a space that is unreachable using translation and rotation. A
number stands for a space that can still be reached, but if filled then one of the
other numbers becomes unreachable. A ‘∗’ next to a possibility denotes that the
piece can be placed in a higher ‘notch’ in the same fashion with the same result.
Because all options to put a ‘value’ in a ‘bucket’ other than the one proposed
in Section 3.1 are shown to contain unreachable spaces and can therefore not be
cleared (as proven in Lemma 5), and a ‘value’ must be put in one single ‘bucket’
(as proven in Lemma 6) a ‘bucket’ must be filled in exactly the way described
in Section 3.1 in order to clear the game board. 2

Lemma 8. To clear the game board a ‘bucket’ must contain exactly three ‘val-
ues’ and the sum of these ‘values’ must be exactly T .

Proof: There are T + 3 ‘notches’ in every ‘bucket’. Because a ‘value’ must be
put into a single ‘bucket’ (as proven in Lemma 6) and there is only one way
to put this ‘value’ into the ‘bucket’ (as proven in Lemma 7), a ‘value’ ai will
always fill ai + 1 ‘notches’ (a ‘notch’ for every ‘middle’ sequence and a ‘notch’
for the ‘begin’ and ‘end’ combined). This means that the number of ‘notches’
filled in a ‘bucket’ B is equal to

∑

ai∈B ai+ |B|. To clear the game board exactly
T + 3 ‘notches’ must be filled in every ‘bucket’ so

∑

ai∈B ai + |B| = T + 3. If
|B| < 3 this means that

∑

ai∈B ai ≥ T + 1, which is impossible since ai < T/2
for 1 ≤ i ≤ 3s. If |B| > 3 it would mean that

∑

ai∈B ai ≤ T − 1, which is
impossible since T/4 < ai for 1 ≤ i ≤ 3s. Thus |B| = 3 and

∑

ai∈B ai = T . 2

Theorem 9. Using the reduction proposed a “no” instance of 3-Partition

reduces to an instance of Tetris of which the game board can not be cleared.

Proof: To clear the game board the s ‘buckets’ must have exactly three values
(as proven in Lemma 8) and the sum of all the ‘values’ in a ‘bucket’ must be
exactly T (which is also proven in Lemma 8). This can only be the case if A is
a “yes” instance. Therefore the game board can not be cleared if A is a “no”
instance. 2

4 Conclusion

By Theorem 2 and Theorem 9 the NP-complete problem 3-Partition reduces
to Tetris, so Tetris is of the same “hardness”:

Theorem 10. Tetris is NP-complete.

Hence we obtain what Demaine, Hohenberger and Liben-Nowell [2] have
proven before us, but we have simplified the task. We defined a smaller initial
game board, a smaller and less complex sequence of Tetris pieces and we do not
put limitations on the 3-Partition problems that can be reduced. One of the
benefits of this approach compared to [2] is that we do not need to prove that the
reduction holds for different rotation models. By taking ‘buckets’ of two columns
in width it is virtually impossible to rotate pieces and it reduces the complexity
of the proof enormously.



Out of the seven tetrominoes used in Tetris, the construction uses only five.
We do not know whether a further reduction in the number of different pieces
is possible. It would also be nice to further examine the complexity for different
rule sets. For instance, if — as in Cascade Tetris — pieces are allowed to fall
further down in later stages (see the proof of Lemma 3), we have a new situation.
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