Structure (based on Lessons in Play, Chapter 6)

Simon Heijungs

April 27, 2020

Extremal games

- The greatest game born by day n is n.
- The least positive number born by day $n+1$ is 2^{-n}.
- The least positive game born by day $n+2$ is Ψ_{n}.
- The maximal infinitesimals born by day $n+1$ are $n \times \uparrow$ and $n \times \uparrow *$.

Greatest game

Theorem: The greatest game born by day n is n.
Proof: Let G be any game born by day n. Then, its game tree is at most n deep, so any player can do at most n moves. Since left can do n moves in n, she can win $n-G$ by only playing in n. Therefore, $G \leq n$. Since this applies to any G, n has to be the greatest. \square

Least positive number

Theorem: The least positive number born by day $n+1$ is 2^{-n}. Proof: For $n=0$, this gives $2^{0}=1$, which is indeed the least positive game born on day 1 . For $n>0$, we can, without loss of generality, assume the least positive number born on day n to be in its canonical form, being in the form $\{y \mid z\}$. This is the smallest if $y=0$ and z is the smallest number born on day $n-1$, which by induction is 2^{1-n}. We get $\left\{0 \mid 2^{1-n}\right\}=2^{-n} \square$

Least positive game

Theorem: The least positive game born by day $n+2$ is \uplus_{n}. Proof: Let G be any positive game born by day n. In the game $G-\Psi_{n}$, Right going first can either move to G or to some $G^{R}-\Psi_{n}$. Left can win in G because $G>0$ and in $G^{R}-\boldsymbol{\Psi}_{n}$, Left can move to $G^{R}+\{n \mid 0\}$. Again, Right hast two options: he can play to G^{R} or to $G^{R R}+\{n \mid 0\}$. If Right plays to G^{R}, left has to have a winning move there because $G>0$. If black moves to $G^{R R}+\{n \mid 0\}$, Left can move to $G^{R R}+n . G^{R R}$ is born on day n, so by Theorem 6.3, Left wins on $G^{R R}+n$. We can conclude that Left wins on $G-\Psi_{n}$ going second, so $G \leq \Psi_{n}$ Therefore, Ψ_{n} is the smallest positive game born on day $n+2$.

Least positive game (cont.)

(strong) Number Avoidance

Theorem: If x is a number in canonical form with a left option and G is a game that's not a number, then there is a G^{L} such that $G^{L}+x>G+x^{L}$.

Number-Translation

Theorem: If X is a number and G is a game that's not a number, then $G+x=\left\{\mathcal{G}^{L}+x \mid \mathcal{G}^{R}+x\right\}$

Negative incenctives

Theorem: If all of G 's incentives are negative, then G is a number.

Cold, tepid and hot games

A game G is called:

- Cold if $\operatorname{LS}(G)<\mathbf{R S}(G)$. Then, G is a number.
- Tepid if $\mathbf{L S}(G)=\mathbf{R S}(G)$. Then, G is a number plus a non-zero infinitesimal.
- Hot if $\mathbf{L S}(G)>\mathbf{R S}(G)$. Games written as $\pm n$ are hot games.

Lattice

A lattice is a partial ordered set where for each pair of elements a and b, we have the following:

- Least upper bound/supremum/join, denoted $a \vee b$
- Greatest lower bound/infimum/meet, denoted $a \wedge b$

Lattice (cont.)

Theorem: The games born by day n form a lattice

Distributive lattice

A distributive lattice is a lattice in which the meet distributes over join, i.e. $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge b)$. This is equivalent to join distributing over meet.

Distributive lattice(cont.)

Theorem: The games born by day n form a distributive lattice

Group structure

- As we discussed, games form a group.
- Linear combinations of a subset of group elements form a subgroup. We say the elements generate this subgroup.

Group structure day 0

- 1 element: 0.
- Generates the trivial group: only 0 .

Group structure day 1

- 4 elements: $1, *, 0,-1$.
- Independent generating set: $\{1, *\}$
- Generate a group ismorphic to $\mathbb{Z} \times \mathbb{Z}_{2}$

Group structure day 2

- 22 elements.
- Independent generating set:

$$
\left\{\frac{1}{2}, * 2,\{1 \mid 0\}-\{1 \mid *\} \uparrow,\{1 \mid 0\}-\{1 \mid 0, *\}, \pm \frac{1}{2}, \pm 1\right\}
$$

- Generate a group ismorphic to $\mathbb{Z}^{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2}^{3}$

Conclusion

We have previously structured games based on their birthday, but lots of games have the same birthday. We can now structure games further within a birthday.

