Structure (based on Lessons in Play, Chapter 6)

Simon Heijungs

April 27, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- The greatest game born by day *n* is *n*.
- The least positive number born by day n + 1 is 2^{-n} .
- The least positive game born by day n+2 is \mathbf{F}_n .
- ► The maximal infinitesimals born by day n + 1 are $n \times \uparrow$ and $n \times \uparrow *$.

Theorem: The greatest game born by day n is n. *Proof:* Let G be any game born by day n. Then, its game tree is at most n deep, so any player can do at most n moves. Since left can do n moves in n, she can win n - G by only playing in n. Therefore, $G \le n$. Since this applies to any G, n has to be the greatest.

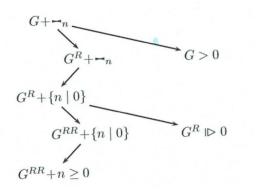
Least positive number

Theorem: The least positive number born by day n + 1 is 2^{-n} . *Proof:* For n = 0, this gives $2^0 = 1$, which is indeed the least positive game born on day 1. For n > 0, we can, without loss of generality, assume the least positive number born on day n to be in its canonical form, being in the form $\{y|z\}$. This is the smallest if y = 0 and z is the smallest number born on day n - 1, which by induction is 2^{1-n} . We get $\{0|2^{1-n}\} = 2^{-n} \blacksquare$

Least positive game

Theorem: The least positive game born by day n+2 is \mathbf{F}_n . *Proof:* Let G be any positive game born by day n. In the game $G - \mathbf{F}_n$, Right going first can either move to G or to some $G^{R} - \mathbf{I}_{n}$. Left can win in G because G > 0 and in $G^{R} - \mathbf{I}_{n}$. Left can move to $G^R + \{n|0\}$. Again, Right hast two options: he can play to G^R or to $G^{RR} + \{n|0\}$. If Right plays to G^R , left has to have a winning move there because G > 0. If black moves to $G^{RR} + \{n|0\}$, Left can move to $G^{RR} + n$. G^{RR} is born on day n, so by Theorem 6.3, Left wins on $G^{RR} + n$. We can conclude that Left wins on $G - \mathbf{A}_n$ going second, so $G \leq \mathbf{A}_n$ Therefore, \mathbf{A}_n is the smallest positive game born on day n + 2.

Least positive game (cont.)



イロト イポト イヨト イヨト

æ

(strong) Number Avoidance

Theorem: If x is a number in canonical form with a left option and G is a game that's not a number, then there is a G^L such that $G^L + x > G + x^L$.

(日) (日) (日) (日) (日) (日) (日) (日)

Number-Translation

Theorem: If X is a number and G is a game that's not a number, then $G + x = \{\mathcal{G}^L + x | \mathcal{G}^R + x\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Negative incenctives

Theorem: If all of G's incentives are negative, then G is a number.

Cold, tepid and hot games

A game G is called:

- Cold if LS(G) < RS(G). Then, G is a number.
- ► Tepid if LS(G) = RS(G). Then, G is a number plus a non-zero infinitesimal.
- Hot if LS(G) > RS(G). Games written as $\pm n$ are hot games.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A lattice is a partial ordered set where for each pair of elements a and b, we have the following:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► Least upper bound/supremum/join, denoted *a* ∨ *b*
- Greatest lower bound/infimum/meet, denoted $a \wedge b$

Lattice (cont.)

Theorem: The games born by day n form a lattice

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Distributive lattice

A distributive lattice is a lattice in which the meet distributes over join, i.e. $a \land (b \lor c) = (a \land b) \lor (a \land b)$. This is equivalent to join distributing over meet.

Distributive lattice(cont.)

Theorem: The games born by day n form a distributive lattice

Group structure

- As we discussed, games form a group.
- Linear combinations of a subset of group elements form a subgroup. We say the elements generate this subgroup.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Group structure day 0

- ▶ 1 element: 0.
- Generates the trivial group: only 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Group structure day 1

- ▶ 4 elements: 1, *, 0, -1.
- Independent generating set: {1, *}
- Generate a group ismorphic to $\mathbb{Z} \times \mathbb{Z}_2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Group structure day 2

- 22 elements.
- ▶ Independent generating set: $\{\frac{1}{2}, *2, \{1|0\} - \{1|*\} \uparrow, \{1|0\} - \{1|0,*\}, \pm \frac{1}{2}, \pm 1\}$

• Generate a group ismorphic to $\mathbb{Z}^3 \times \mathbb{Z}_4 \times \mathbb{Z}_2^3$

Conclusion

We have previously structured games based on their birthday, but lots of games have the same birthday. We can now structure games further within a birthday.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ