Games Form a Group with a Partial Order (based on Lessons in Play, Chapter 4.2)

Simon Heijungs

March 31, 2020

(中) (문) (문) (문) (문)

Partial Order

A partial order is a binary relation (\succeq) with the following properties:

- Transitivity: if $x \succeq y$ and $y \succeq z$, then $x \succeq z$
- Reflexivity: for all $x, x \succeq x$
- Antisymmetry: if $x \succeq y$ and $y \succeq x$, then x = y

Partial Order (cont.)

Theorem: The relation \geq is a partial order on games.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Transitivity
- Reflexivity
- Antisymmetry

Theorem: The relation \geq is a partial order on games.

► Transitivity: given G, H and J such that G ≥ H and H ≥ J, then Left can win playing second on G − H and on H − J. By Lemma 3.3, left wins moving second on (G − H) + (H − J), which, by Theorem 4.5 and Corollary 4.15 equals G − J, so G ≥ J

Partial Order (cont.)

Theorem: The relation \geq is a partial order on games.

▶ Reflexivity: by Corollary 4.15, G - G = 0, so by Theorem 4.12, it is a second player win, so G ≥ G

Partial Order (cont.)

Theorem: The relation \geq is a partial order on games.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Antisymmetry: Exercise 4.20

Groups

A group is a set (S) equipped with a binary operation (\bullet) that satisfies the following properties:

- Closure: for all x and y in S, $x \bullet y \in S$
- Associativity: for all x, y and z in S, $(x \bullet y) \bullet z = x \bullet (y \bullet z)$
- Identity: there is a neutral element (e) in S such that for all x in S, x • e = e • x = x
- Inverse: For each x in S, there is an inverse element (x⁻¹) in S such that x • x⁻¹ = x⁻¹ • x = e

A group is called Abelian if the operation is commutative $(x \bullet y = y \bullet x \text{ for all } x, y).$

Groups (cont.)

Theorem: Games equipped with + form an Abelian group.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Closure: by definition
- Associativity: Theorem 4.5
- Identity: neutral element 0, by Theorem 4.4
- Inverse: inverse of x is -x, by Corollary 4.15
- Commutativity: Theorem 4.5

A partially ordered group is a group whose elements form a partial ordering with the following extra property.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► Translation-invariance: If $x \succeq y$ then $x \bullet z \succeq y \bullet z$ and $z \bullet x \succeq z \bullet y$

A partially ordered group is a group whose elements form a partial ordering with the following extra property.

▶ For games: If $G \ge H$ then $G + J \ge H + J$

Games have this property by Theorem 4.23.

Impartial games are games where both players have the same options at all times, like Cram and Nim. They have a few special properties:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Impartial games are their own inverse.
- Unequal impartial games are incomparable.

Impartial Games (cont.)

Impartial games are their own inverse: given an impartial game G, G + G allows either player playing second to win by copying the other player's moves, so G + G ∈ P. Now, by Theorem 4.12, G + G = 0. Because inverses in groups are unique, this implies that G = -G.

Impartial Games (cont.)

▶ Unequal impartial games are incomparable: given impartial games *G* and *H* such that $G \neq H$. Because of the possibility of strategy stealing, G - H can't be in *L* or *R*, so it is in either *P* or *N*. Because $H \neq G = -G$ and inverses in groups are unique $G - H \neq 0$, so $G - H \notin P$. Therefore $G - H \in N$ and $G \parallel H$.

Order and Sums of 0, 1, -1 and *

Exercise: what games can we make by adding 0, 1, -1 and *, and how are they ordered?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion

- Games form a partially ordered group.
- This allows us to use the many theorem already proven for this structure.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?