Games Form a Group with a Partial Order (based on Lessons in Play, Chapter 4.2)

Simon Heijungs

March 31, 2020

Partial Order

A partial order is a binary relation (\succeq) with the following properties:

- Transitivity: if $x \succeq y$ and $y \succeq z$, then $x \succeq z$
- Reflexivity: for all $x, x \succeq x$
- Antisymmetry: if $x \succeq y$ and $y \succeq x$, then $x=y$

Partial Order (cont.)

Theorem: The relation \geq is a partial order on games.

- Transitivity
- Reflexivity
- Antisymmetry

Partial Order (cont.)

Theorem: The relation \geq is a partial order on games.

- Transitivity: given G, H and J such that $G \geq H$ and $H \geq J$, then Left can win playing second on $G-H$ and on $H-J$. By Lemma 3.3, left wins moving second on $(G-H)+(H-J)$, which, by Theorem 4.5 and Corollary 4.15 equals $G-J$, so $G \geq J$

Partial Order (cont.)

Theorem: The relation \geq is a partial order on games.

- Reflexivity: by Corollary $4.15, G-G=0$, so by Theorem 4.12 , it is a second player win, so $G \geq G$

Partial Order (cont.)

Theorem: The relation \geq is a partial order on games.

- Antisymmetry: Exercise 4.20

Groups

A group is a set (S) equipped with a binary operation ((\bullet) that satisfies the following properties:

- Closure: for all x and y in $S, x \bullet y \in S$
- Associativity: for all x, y and z in $S,(x \bullet y) \bullet z=x \bullet(y \bullet z)$
- Identity: there is a neutral element (e) in S such that for all x in $S, x \bullet e=e \bullet x=x$
- Inverse: For each x in S, there is an inverse element $\left(x^{-1}\right)$ in S such that $x \bullet x^{-1}=x^{-1} \bullet x=e$
A group is called Abelian if the operation is commutative $(x \bullet y=y \bullet x$ for all $x, y)$.

Groups (cont.)

Theorem: Games equipped with + form an Abelian group.

- Closure: by definition
- Associativity: Theorem 4.5
- Identity: neutral element 0, by Theorem 4.4
- Inverse: inverse of x is $-x$, by Corollary 4.15
- Commutativity: Theorem 4.5

Partially ordered groups

A partially ordered group is a group whose elements form a partial ordering with the following extra property.

- Translation-invariance: If $x \succeq y$ then $x \bullet z \succeq y \bullet z$ and $z \bullet x \succeq z \bullet y$

Partially Ordered Groups

A partially ordered group is a group whose elements form a partial ordering with the following extra property.

- For games: If $G \geq H$ then $G+J \geq H+J$

Games have this property by Theorem 4.23.

Impartial Games

Impartial games are games where both players have the same options at all times, like Cram and Nim. They have a few special properties:

- Impartial games are their own inverse.
- Unequal impartial games are incomparable.

Impartial Games (cont.)

- Impartial games are their own inverse: given an impartial game $G, G+G$ allows either player playing second to win by copying the other player's moves, so $G+G \in P$. Now, by Theorem 4.12, $G+G=0$. Because inverses in groups are unique, this implies that $G=-G$.

Impartial Games (cont.)

- Unequal impartial games are incomparable: given impartial games G and H such that $G \neq H$. Because of the possibility of strategy stealing, $G-H$ can't be in L or R, so it is in either P or N. Because $H \neq G=-G$ and inverses in groups are unique $G-H \neq 0$, so $G-H \notin P$. Therefore $G-H \in N$ and $G ॥ H$.

Order and Sums of $0,1,-1$ and $*$

Exercise: what games can we make by adding $0,1,-1$ and $*$, and how are they ordered?

Conclusion

- Games form a partially ordered group.
- This allows us to use the many theorem already proven for this structure.

