There's just one thing I got to know Can you tell me please, who won?

- Crosby, Stills and Nash

Fundamental theorem of combinatorial games

In a game between Albert and Bertha，with Albert moving first，either Albert can force a win moving first，or Bertha can force a win moving second（not both）．

The four outcome classes

Class	Name	Definition
\mathcal{N}	Fuzzy	Next player can force a win (First player win)
\mathcal{P}	Zero	Previous player can force a win (Second player win)
\mathcal{L}	Positive	Left can force a win (regardless of starting player)
\mathcal{R}	Negative	Right can force a win (regardless of starting player)

Outcome classes		When right moves first	
		Right wins	Left wins
When left moves first	Left wins	\mathcal{N}	\mathcal{L}
	Right wins	\mathcal{R}	\mathcal{P}

Outcome Functions（of position G）

$$
\begin{gathered}
O_{L}(G)= \begin{cases}\Theta_{0}, & \text { if Left can force a win moving first } \\
\otimes_{0}, & \text { if Left cannot force a win moving first }\end{cases} \\
O_{R}(G)= \begin{cases}\Theta, & \text { if Right can force a win moving first } \\
\left.\otimes_{\infty}\right), & \text { if Right cannot force a win moving first }\end{cases} \\
O(G)=\left(O_{L}(G), O_{R}(G)\right)
\end{gathered}
$$

Relation to Outcome Classes

Class	Outcome Function
\mathcal{N}	$O(G)=(\Theta), \theta)$
\mathcal{P}	$O(G)=(\otimes, \otimes)$
\mathcal{L}	$O(G)=(\Theta), \otimes)$
\mathcal{R}	$O(G)=(\otimes), \Theta)$

Outcome classes	$O_{R}(G)=\Theta$	$\left.O_{R}(G)=\right)^{2}$
$\left.O_{L}(G)=\Theta\right)$	\mathcal{N}	\mathcal{L}
$O_{L}(G)=\%$	\mathcal{R}	\mathcal{P}

Partial order

Positions and Options

From a game position:
The moves available to Left (Left's options): \mathcal{G}^{L}.
The moves available to Right (Right's options): \mathcal{G}^{R}.

Game position G, consists of its options \mathcal{G}^{L} and \mathcal{G}^{R} : $G=\left\{\mathcal{G}^{L} \mid \mathcal{G}^{R}\right\}$

Outcome Class from Options

Possible moves	Some $G^{R} \in \mathcal{R} \cup \mathcal{P}$	All $G^{R} \in \mathcal{L} \cup \mathcal{N}$
Some $G^{L} \in \mathcal{L} \cup \mathcal{P}$	\mathcal{N}	\mathcal{L}
All $G^{L} \in \mathcal{R} \cup \mathcal{N}$	\mathcal{R}	\mathcal{P}

