There's just one thing I got to know Can you tell me please, who won?

- Crosby, Stills and Nash

# Lessons in Play Outcome Classes

Rintse van de Vlasakker 03-03-2020



<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 2/9

#### Fundamental theorem of combinatorial games

In a game between Albert and Bertha, with Albert moving first, either Albert can force a win moving first, or Bertha can force a win moving second (not both).

## The four outcome classes

| Class         | Name     | Definition                                            |
|---------------|----------|-------------------------------------------------------|
| $\mathcal{N}$ | Fuzzy    | Next player can force a win (First player win)        |
| $\mathcal{P}$ | Zero     | Previous player can force a win (Second player win)   |
| $\mathcal{L}$ | Positive | Left can force a win (regardless of starting player)  |
| $\mathcal{R}$ | Negative | Right can force a win (regardless of starting player) |

| Outcome class         | When right moves first |               |               |
|-----------------------|------------------------|---------------|---------------|
| Outcome class         | Right wins             | Left wins     |               |
| When left moves first | Left wins              | $\mathcal{N}$ | $\mathcal{L}$ |
| when left moves first | Right wins             | ${\cal R}$    | $\mathcal{P}$ |

Outcome Functions (of position *G*)

$$O_L(G) = \begin{cases} \textcircled{e}, & \text{if Left can force a win moving first} \\ \textcircled{e}, & \text{if Left cannot force a win moving first} \end{cases}$$

$$O_R(G) = \begin{cases} \textcircled{black}{llow}, & \text{if Right can force a win moving first} \\ \textcircled{black}{llow}, & \text{if Right cannot force a win moving first} \end{cases}$$

$$O(G) = (O_L(G), O_R(G))$$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 · 의 ۹ (\* 5/9)

### Relation to Outcome Classes

| Class         | Outcome Function                                                                                                                                                                                        |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{N}$ | $O(G) = ({\ensuremath{\overline{\bigcirc}}}, {\ensuremath{\overline{\bigcirc}}})$                                                                                                                       |
| $\mathcal{P}$ | $O(G) = ( \stackrel{\textcircled{\scriptsize{\scriptsize{\scriptsize{(C)}}}}{\scriptsize{\scriptsize{(C)}}}}{, \stackrel{\textcircled{\scriptsize{\scriptsize{(C)}}}{\scriptsize{\scriptsize{(C)}}}} )$ |
| $\mathcal{L}$ | O(G) = ( e, e)                                                                                                                                                                                          |
| $\mathcal{R}$ | $O(G) = ( \stackrel{\textcircled{\otimes}}{=}, \stackrel{\textcircled{\otimes}}{=})$                                                                                                                    |

| Outcome classes                                 | $O_R(G) = \overline{r}$ | $O_R(G) = $   |
|-------------------------------------------------|-------------------------|---------------|
| $O_L(G) = {\textcircled{\scriptsize e}}$        | $\mathcal{N}$           | $\mathcal{L}$ |
| $O_L(G) = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\mathcal{R}$           | $\mathcal{P}$ |

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 6/9

Partial order



From a game position: The moves available to Left (Left's options):  $\mathcal{G}^L$ . The moves available to Right (Right's options):  $\mathcal{G}^R$ .

Game position *G*, consists of its options  $\mathcal{G}^L$  and  $\mathcal{G}^R$ :  $\mathcal{G} = \{ \mathcal{G}^L \mid \mathcal{G}^R \}$ 

## Outcome Class from Options

| Possible moves                              | Some $G^R \in \mathcal{R} \cup \mathcal{P}$ | All $G^R \in \mathcal{L} \cup \mathcal{N}$ |
|---------------------------------------------|---------------------------------------------|--------------------------------------------|
| Some $G^L \in \mathcal{L} \cup \mathcal{P}$ | $\mathcal N$                                | $\mathcal{L}$                              |
| All $G^L \in \mathcal{R} \cup \mathcal{N}$  | ${\mathcal R}$                              | $\mathcal{P}$                              |