Orson R. L. Peters, Universiteit Leiden.

Impartial games recap

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

- Both Left and Right have the same options in any game state.
- Examples: CRAM, NIM.
- No outcome classes \mathcal{L} and \mathcal{R} , only \mathcal{N} and \mathcal{P} .
- **G** is its own negative \implies **G** + **G** = **0**.
- G's canonical form must have equal left and right sides.
- Sums of impartial games are impartial.

Impartial games are infinitesimals 2 | 14

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

- \boldsymbol{G} is all-small (either $\boldsymbol{0}$ or has both left and right options).
- Therefore \boldsymbol{G} must be an infinitesimal (or $\boldsymbol{0}$).
- A small subset, e.g. $\uparrow > 0$ therefore $\uparrow \in \mathcal{L}$ and thus not impartial.

The values of the game Nim 3 | 14

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

- Let the value of an NIM heap of size \boldsymbol{n} be the *nimber* $*\boldsymbol{n}$.
- Define *0 = 0 and *1 = *.
- In general for k > 0:

 $*k = \{0, *, *2, \dots, *(k-1) \mid 0, *, *2, \dots, *(k-1)\}$

Why? By strong induction if we assume that *k is the correct value of the heap of size k for all k < n then the above definition works for n, as it perfectly shows the options you'd have when facing a heap of size n.

The canonical forms of the game Nim 4 | 14

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

- Our earlier definition is also immediately in canonical form.
- Why? Crucial lemma $i \neq j \implies *i \parallel *j$.
- Studying *i *j we find that
 - it can't be $0 \ (*i \neq *j)$,
 - *i *j = *i + *j is a sum of two impartial games,
 - thus it must be in \mathcal{N} and *i and *j are incomparable.
- All options of *n are mutually incomparable, thus no dominated options.
- All options of *n are incomparable with *n itself, thus no reversible options.

Values of nimber games

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

- If an impartial game G's options are all nimbers we can compute its value.
- Define minimum excluded value $\max S = \min (\mathbb{N}_0 \setminus S)$.
- E.g. $mex\{1,2\} = 0$, $mex\{0,1,2,4,7\} = 3$.

Theorem 7.7

If impartial game $G = \{*l_1, *l_2, \dots, *l_k \mid G^L\}$ and $\max\{l_1, l_2, \dots, l_k\} = n$ then the value of G is *n, and thus its canonical form is $\{0, *, \dots, *(n-1) \mid 0, *, \dots, *(n-1)\}$.

Proof of values of nimber games 6 | 14

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

- 1. We prove G *n = 0. Note that G *n = G + *n.
- 2. Also note that *a is always an option of *b when a < b.
- 3. *k with k < n is an option of both **G** and *n.
- 4. *k with k = n is never an option.
- 5. *k with k > n is only an option in **G**.
- 6. If the first player moves by playing *k with k < n in either game the second player can answer with *k in the other game, giving *k + *k = 0.
- 7. If the first player moves by playing *k with k > n (which must be in G) the second player can answer locally by playing *n, giving *n + *n = 0.

All impartial games are nimber games 7 | 14

- 1. Let's assume all impartial games born on days $0, 1, 2, \ldots, n-1$ are nimber games.
- 2. All options of impartial games born on day \boldsymbol{n} are impartial games born on some day $\boldsymbol{k} < \boldsymbol{n}$.
- 3. By our assumption this means all options of all impartial games born on day **n** are nimber games.
- 4. Therefore all impartial games born on day **n** are nimber games.
- 5. $\mathbf{0}$ is a nimber game, and is the only impartial game at day $\mathbf{0}$.
- 6. Therefore we have a base case and can apply strong induction.

A massive corollary

8 | 14

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

- All impartial games are nimber games.
- All impartial games thus have a value of *n for some n.
- All impartial games are equivalent to some Nim heap of size n.
- We can find out \boldsymbol{n} by applying Theorem 7.7 in a bottom-up style.
- This value is also called the *nim-value* or *Grundy-value* of impartial game **G**.
- This is notated $\mathcal{G}(G) = n$ where G = *n.
- But what about the value of G + H?

Exclusive-or

9 | 14

The exclusive-OR (notated $\oplus)$ is an operation on non-negative integers that

- is commutative, $\mathbf{a} \oplus \mathbf{b} = \mathbf{b} \oplus \mathbf{a}$,
- is associative, $(a \oplus b) \oplus c = a \oplus (b \oplus c)$,
- has zero as its additive identity, $\boldsymbol{a} \oplus \boldsymbol{0} = \boldsymbol{a}$ and
- is its own inverse, $a \oplus a = 0$.

It's defined by creating a new number that has 1 exactly where the binary digits of a and b differ and 0 everywhere else.

Adding Nim heaps

10 | 14

- Let $G = \text{NIM}(a, b, \dots, k)$. Then G is a \mathcal{P} -position if and only if $q = a \oplus b \oplus \dots \oplus k = 0$.
- Why? We provide a winning strategy.
- If q = 0 you either already lost (all heaps are 0) or you are forced to increase the value above zero.
- When q > 0 the game is never over, and we can always bring q back to 0 in one move.
- Thus q > 0 are the \mathcal{N} -positions and q = 0 are the \mathcal{P} -positions.

Forced increase of XOR-sum 11 | 14

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

If $a \oplus b \oplus \cdots \oplus k = 0$ and it's your turn WLOG you must reduce a to a' but now the XOR-sum has value

 $a' \oplus b \oplus \dots \oplus k =$ $0 \oplus a' \oplus b \oplus \dots \oplus k =$ $(a \oplus a) \oplus a' \oplus b \oplus \dots \oplus k =$ $a \oplus a' \oplus (a \oplus b \oplus \dots \oplus k) =$ $a \oplus a' \oplus 0 =$ $a \oplus a'$

which is bigger than zero for any legal move $a \neq a'$.

Reducing the XOR-sum to zero in one 12 | 14 move

- Let $q = a \oplus b \oplus \cdots \oplus k > 0$.
- Note that there must exist a $m \in \{a, b, \dots, k\}$ such that the leftmost bit set of q is also set in m.
- Therefore that leftmost bit becomes 0 in $m \oplus q$, and thus $m \oplus q < m$.
- This means that reducing the heap of size m to $m \oplus q$ is a legal move, and that our new value is (taking into account commutativity):

```
(a \oplus b \oplus \cdots \oplus k) \oplus q =
q \oplus q =
0
```

Adding games

13 | 14

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

- We know that the game NIM $(a, b, a \oplus b)$ is always a \mathcal{P} -position since $a \oplus b \oplus (a \oplus b) = 0$.
- Going back to Nimbers this allows us to derive

 $a + b + (a \oplus b) = 0$ $a + b + (a \oplus b) + (a \oplus b) = (a \oplus b)$ $a + b = (a \oplus b).$

• Which generalizes to

 $*a + *b + *c + \cdots + *n = *(a \oplus b \oplus c \oplus \cdots \oplus n).$

Wrapping up

14 | 14

- Impartial games have a direct equivalence with NIM games.
- An impartial game has *nim-value* or *Grundy-value* G(G) = k iff G = *k.
- $\mathcal{G}(G) = \max{\mathcal{G}(H) \mid H \in G^{L}}.$
- Through adding NIM games we can see that

 $*a + *b + \cdots + *n = *(a \oplus b \oplus \cdots \oplus n).$

• If G, H, and J are impartial games, then G = H + J iff $\mathcal{G}(G) = \mathcal{G}(H) \oplus \mathcal{G}(J)$.