Impartial Games (cont.)

Orson R. L. Peters, Universiteit Leiden.

Discover the world at Leiden University

Impartial Games (cont.)

Impartial games recap

- Both Left and Right have the same options in any game state.
- Examples: Cram, Nim.
- No outcome classes \mathcal{L} and \mathcal{R}, only $\boldsymbol{\mathcal { N }}$ and \mathcal{P}.
- \boldsymbol{G} is its own negative $\Longrightarrow \boldsymbol{G}+\boldsymbol{G}=\mathbf{0}$.
- G's canonical form must have equal left and right sides.
- Sums of impartial games are impartial.

Impartial Games (cont.)

Impartial games are infinitesimals

- \boldsymbol{G} is all-small (either $\mathbf{0}$ or has both left and right options).
- Therefore \boldsymbol{G} must be an infinitesimal (or $\mathbf{0}$).
- A small subset, e.g. $\uparrow>\mathbf{0}$ therefore $\uparrow \in \mathcal{L}$ and thus not impartial.

The values of the game Nim

- Let the value of an Nim heap of size \boldsymbol{n} be the nimber $* \boldsymbol{n}$.
- Define $\boldsymbol{*} \mathbf{0}=\mathbf{0}$ and $* \mathbf{1}=*$.
- In general for $\boldsymbol{k}>\mathbf{0}$:

$$
* k=\{0, *, * 2, \ldots, *(k-1) \mid 0, *, * 2, \ldots, *(k-1)\}
$$

- Why? By strong induction if we assume that $\boldsymbol{*} \boldsymbol{k}$ is the correct value of the heap of size \boldsymbol{k} for all $\boldsymbol{k}<\boldsymbol{n}$ then the above definition works for \boldsymbol{n}, as it perfectly shows the options you'd have when facing a heap of size \boldsymbol{n}.

The canonical forms of the game Nim

－Our earlier definition is also immediately in canonical form．
－Why？Crucial lemma $\boldsymbol{i} \neq \boldsymbol{j} \Longrightarrow$＊i $\|$＊ ．
－Studying $\boldsymbol{* i}-\boldsymbol{*} \boldsymbol{j}$ we find that
－it can＇t be $\mathbf{0}(* \boldsymbol{i} \neq \boldsymbol{*})$ ，
－$* \boldsymbol{i}-* \boldsymbol{j}=* \boldsymbol{i}+* \boldsymbol{j}$ is a sum of two impartial games，
－thus it must be in $\boldsymbol{\mathcal { N }}$ and $\boldsymbol{* \boldsymbol { i }}$ and $\boldsymbol{* \boldsymbol { j }}$ are incomparable．
－All options of $* \boldsymbol{n}$ are mutually incomparable，thus no dominated options．
－All options of $\boldsymbol{*} \boldsymbol{n}$ are incomparable with $\boldsymbol{*} \boldsymbol{n}$ itself，thus no reversible options．

Impartial Games (cont.)

Values of nimber games

- If an impartial game \boldsymbol{G} 's options are all nimbers we can compute its value.
- Define minimum excluded value $\operatorname{mex} \boldsymbol{S}=\boldsymbol{\operatorname { m i n }}\left(\mathbb{N}_{\mathbf{0}} \backslash \boldsymbol{S}\right)$.
- E.g. $\operatorname{mex}\{1,2\}=0, \operatorname{mex}\{0,1,2,4,7\}=3$.

Theorem 7.7
If impartial game $\boldsymbol{G}=\left\{* \boldsymbol{I}_{1}, * \boldsymbol{I}_{2}, \ldots, * \boldsymbol{I}_{\boldsymbol{k}} \mid \boldsymbol{G}^{\boldsymbol{L}}\right\}$ and $\boldsymbol{\operatorname { m e x }}\left\{\boldsymbol{I}_{\boldsymbol{1}}, \boldsymbol{I}_{2}, \ldots, \boldsymbol{I}_{\boldsymbol{k}}\right\}=\boldsymbol{n}$ then the value of \boldsymbol{G} is $* \boldsymbol{n}$, and thus its canonical form is $\{0, *, \ldots, *(n-1) \mid 0, *, \ldots, *(n-1)\}$.

Proof of values of nimber games

1. We prove $\boldsymbol{G}-* \boldsymbol{n}=\mathbf{0}$. Note that $\boldsymbol{G}-* \boldsymbol{n}=\boldsymbol{G}+* \boldsymbol{n}$.
2. Also note that $* \boldsymbol{a}$ is always an option of $* \boldsymbol{b}$ when $\boldsymbol{a}<\boldsymbol{b}$.
3. $\boldsymbol{*} \boldsymbol{k}$ with $\boldsymbol{k}<\boldsymbol{n}$ is an option of both \boldsymbol{G} and $\boldsymbol{*} \boldsymbol{n}$.
4. $* \boldsymbol{k}$ with $\boldsymbol{k}=\boldsymbol{n}$ is never an option.
5. $* \boldsymbol{k}$ with $\boldsymbol{k}>\boldsymbol{n}$ is only an option in \boldsymbol{G}.

6 . If the first player moves by playing $* \boldsymbol{k}$ with $\boldsymbol{k}<\boldsymbol{n}$ in either game the second player can answer with $* \boldsymbol{k}$ in the other game, giving $* \boldsymbol{k}+* \boldsymbol{k}=\mathbf{0}$.
7. If the first player moves by playing $* \boldsymbol{k}$ with $\boldsymbol{k}>\boldsymbol{n}$ (which must be in \boldsymbol{G}) the second player can answer locally by playing $* \boldsymbol{n}$, giving $* \boldsymbol{n}+* \boldsymbol{n}=\mathbf{0}$.

Impartial Games (cont.)

All impartial games are nimber games

1. Let's assume all impartial games born on days $\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}-\mathbf{1}$ are nimber games.
2. All options of impartial games born on day \boldsymbol{n} are impartial games born on some day $\boldsymbol{k}<\boldsymbol{n}$.
3. By our assumption this means all options of all impartial games born on day \boldsymbol{n} are nimber games.
4. Therefore all impartial games born on day \boldsymbol{n} are nimber games.
5. $\mathbf{0}$ is a nimber game, and is the only impartial game at day $\mathbf{0}$.
6. Therefore we have a base case and can apply strong induction.

A massive corollary

- All impartial games are nimber games.
- All impartial games thus have a value of $* \boldsymbol{n}$ for some \boldsymbol{n}.
- All impartial games are equivalent to some Nim heap of size \boldsymbol{n}.
- We can find out \boldsymbol{n} by applying Theorem 7.7 in a bottom-up style.
- This value is also called the nim-value or Grundy-value of impartial game G.
- This is notated $\mathcal{G}(\boldsymbol{G})=\boldsymbol{n}$ where $\boldsymbol{G}=* \boldsymbol{n}$.
- But what about the value of $\boldsymbol{G}+\boldsymbol{H}$?

Exclusive－or

The exclusive－OR（notated \oplus ）is an operation on non－negative integers that
－is commutative， $\boldsymbol{a} \oplus \boldsymbol{b}=\boldsymbol{b} \oplus \boldsymbol{a}$ ，
－is associative，$(\boldsymbol{a} \oplus \boldsymbol{b}) \oplus \boldsymbol{c}=\boldsymbol{a} \oplus(\boldsymbol{b} \oplus \boldsymbol{c})$ ，
－has zero as its additive identity， $\boldsymbol{a} \oplus \mathbf{0}=\boldsymbol{a}$ and
－is its own inverse， $\boldsymbol{a} \oplus \boldsymbol{a}=\mathbf{0}$ ．
It＇s defined by creating a new number that has $\mathbf{1}$ exactly where the binary digits of \boldsymbol{a} and \boldsymbol{b} differ and $\mathbf{0}$ everywhere else．

Adding Nim heaps

- Let $\boldsymbol{G}=\operatorname{Nim}(\boldsymbol{a}, \boldsymbol{b}, \ldots, \boldsymbol{k})$. Then \boldsymbol{G} is a $\boldsymbol{\mathcal { P }}$-position if and only if $\boldsymbol{q}=\boldsymbol{a} \oplus \boldsymbol{b} \oplus \cdots \oplus \boldsymbol{k}=\mathbf{0}$.
- Why? We provide a winning strategy.
- If $\boldsymbol{q}=\mathbf{0}$ you either already lost (all heaps are $\mathbf{0}$) or you are forced to increase the value above zero.
- When $\boldsymbol{q}>\mathbf{0}$ the game is never over, and we can always bring \boldsymbol{q} back to $\mathbf{0}$ in one move.
- Thus $\boldsymbol{q}>\mathbf{0}$ are the $\boldsymbol{\mathcal { N }}$-positions and $\boldsymbol{q}=\mathbf{0}$ are the \mathcal{P}-positions.

Forced increase of XOR-sum

If $\boldsymbol{a} \oplus \boldsymbol{b} \oplus \cdots \oplus \boldsymbol{k}=\mathbf{0}$ and it's your turn WLOG you must reduce \boldsymbol{a} to \boldsymbol{a}^{\prime} but now the XOR-sum has value

$$
\begin{aligned}
& \boldsymbol{a}^{\prime} \oplus \boldsymbol{b} \oplus \cdots \oplus \boldsymbol{k}= \\
& \mathbf{0} \oplus \boldsymbol{a}^{\prime} \oplus \boldsymbol{b} \oplus \cdots \oplus \boldsymbol{k}= \\
& (a \oplus a) \oplus a^{\prime} \oplus b \oplus \cdots \oplus k= \\
& a \oplus a^{\prime} \oplus(a \oplus b \oplus \cdots \oplus k)= \\
& a \oplus a^{\prime} \oplus 0= \\
& a \oplus a^{\prime}
\end{aligned}
$$

which is bigger than zero for any legal move $\boldsymbol{a} \neq \boldsymbol{a}^{\prime}$.

Impartial Games (cont.)

Reducing the XOR-sum to zero in one

$12 \mid$	14

move

- Let $\boldsymbol{q}=\boldsymbol{a} \oplus \boldsymbol{b} \oplus \cdots \oplus \boldsymbol{k}>\mathbf{0}$.
- Note that there must exist a $\boldsymbol{m} \in\{\boldsymbol{a}, \boldsymbol{b}, \ldots, \boldsymbol{k}\}$ such that the leftmost bit set of \boldsymbol{q} is also set in \boldsymbol{m}.
- Therefore that leftmost bit becomes $\mathbf{0}$ in $\boldsymbol{m} \oplus \boldsymbol{q}$, and thus $\boldsymbol{m} \oplus \boldsymbol{q}<\boldsymbol{m}$.
- This means that reducing the heap of size \boldsymbol{m} to $\boldsymbol{m} \oplus \boldsymbol{q}$ is a legal move, and that our new value is (taking into account commutativity):

$$
\begin{array}{r}
(\boldsymbol{a} \oplus \boldsymbol{b} \oplus \cdots \oplus \boldsymbol{k}) \oplus \boldsymbol{q}= \\
\boldsymbol{q} \oplus \boldsymbol{q}= \\
\mathbf{0}
\end{array}
$$

Adding games

－We know that the game $\operatorname{Nim}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{a} \oplus \boldsymbol{b})$ is always a \mathcal{P}－position since $\boldsymbol{a} \oplus \boldsymbol{b} \oplus(\boldsymbol{a} \oplus \boldsymbol{b})=\mathbf{0}$ ．
－Going back to Nimbers this allows us to derive

$$
\begin{aligned}
* \boldsymbol{a}+* \boldsymbol{b}+*(\boldsymbol{a} \oplus \boldsymbol{b}) & =\mathbf{0} \\
* \boldsymbol{a}+* \boldsymbol{b}+*(\boldsymbol{a} \oplus \boldsymbol{b})+*(\boldsymbol{a} \oplus \boldsymbol{b}) & =*(\boldsymbol{a} \oplus \boldsymbol{b}) \\
* \boldsymbol{a}+* \boldsymbol{b} & =*(\boldsymbol{a} \oplus \boldsymbol{b}) .
\end{aligned}
$$

－Which generalizes to

$$
* a+* b+* c+\cdots+* n=*(a \oplus b \oplus c \oplus \cdots \oplus n) .
$$

Wrapping up

14 | 14

- Impartial games have a direct equivalence with Nim games.
- An impartial game has nim-value or Grundy-value $\mathcal{G}(\boldsymbol{G})=\boldsymbol{k}$ iff $\boldsymbol{G}=* \boldsymbol{k}$.
- $\mathcal{G}(\boldsymbol{G})=\operatorname{mex}\left\{\mathcal{G}(H) \mid H \in G^{L}\right\}$.
- Through adding Nim games we can see that

$$
* a+* b+\cdots+* n=*(a \oplus b \oplus \cdots \oplus n)
$$

- If $\boldsymbol{G}, \boldsymbol{H}$, and \boldsymbol{J} are impartial games, then $\boldsymbol{G}=\boldsymbol{H}+\boldsymbol{J}$ iff $\mathcal{G}(G)=\mathcal{G}(H) \oplus \mathcal{G}(J)$.

