Orson R. L. Peters, Universiteit Leiden.



## **Impartial games**

1 | 8

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

- Both Left and Right have the same options in any game state.
- Examples: Geography, Nim.
- Is CONNECT-FOUR impartial?
- What about outcome classes  $\mathcal{L}$  and  $\mathcal{R}$ ?

# Proof by induction, $\mathcal{L} \cup \mathcal{R} = \emptyset$ 2 | 8

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

- All leaves are in  $\mathcal{P}$ .
- $G^L = G^R$
- Outcome table:

|                                             | Some $G^R \in \mathcal{R} \cup \mathcal{P}$ | All $G^R \in \mathcal{L} \cup \mathcal{N}$ |
|---------------------------------------------|---------------------------------------------|--------------------------------------------|
| Some $G^L \in \mathcal{L} \cup \mathcal{P}$ | ${\mathcal N}$                              | $\mathcal{L}$                              |
| All $G^L \in \mathcal{R} \cup \mathcal{N}$  | $\mathcal{R}$                               | ${\mathcal P}$                             |

## Partition Theorem

3 | 8

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

If we partition a finite game in mutually exlusive sets  $\boldsymbol{A}$  and  $\boldsymbol{B}$  such that

- 1. every option of a position in  $\boldsymbol{A}$  is in  $\boldsymbol{B}$ , and
- 2. every position in  $\boldsymbol{B}$  has at least one option in  $\boldsymbol{A}$ ,

then  $\boldsymbol{A} \subset \boldsymbol{\mathcal{P}}$  and  $\boldsymbol{B} \subset \boldsymbol{\mathcal{N}}$ .

## Partition Theorem

3 | 8

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

If we partition a finite game in mutually exlusive sets  $\boldsymbol{A}$  and  $\boldsymbol{B}$  such that

- 1. every option of a position in  $\boldsymbol{A}$  is in  $\boldsymbol{B}$ , and
- 2. every position in **B** has at least one option in **A**, then  $A \subset \mathcal{P}$  and  $B \subset \mathcal{N}$ .

Proof by mutual induction.

- 1. Assuming  $B \subset \mathcal{N}$ , prove  $a \in A \implies a \in \mathcal{P}$ .
- 2. Assuming  $\boldsymbol{A} \subset \boldsymbol{\mathcal{P}}$ , prove  $\boldsymbol{b} \in \boldsymbol{B} \implies \boldsymbol{b} \in \boldsymbol{\mathcal{N}}$ .
- 3. Find a base case and do induction (but on what?).

# Partition Theorem conclusion 4 | 8

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

### A position is

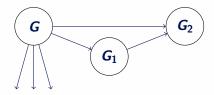
- a  $\mathcal{P}$ -position if all of its options are  $\mathcal{N}$ -positions, and
- an  $\mathcal{N}$ -position if at least one of its options is a  $\mathcal{P}$ -position.

Exercise:  $\mathbf{3} \times \mathbf{3}$  CRAM.

## Bottleneck Principle 5 | 8

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

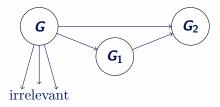
Let **G** be an impartial game with options  $G_1$  and  $G_2$  (it could have more options), and  $G_2$  is the only option of  $G_1$ .



# Bottleneck Principle 5 | 8

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Let G be an impartial game with options  $G_1$  and  $G_2$  (it could have more options), and  $G_2$  is the only option of  $G_1$ , then G is an  $\mathcal{N}$ -position.

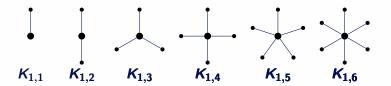


## **Cutthroat Stars**

6 | 8

590

In CUTTHROAT STARS you can remove a vertex and all adjacent edges. At least one edge must be removed this way. Or, *shrink* and *supernova*.



## Subtraction

7 | 8

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

In SUBTRACTION(S) you have n counters, and can subtract any  $s \in S$  (assuming enough counters are left), leaving n - s counters.

1. If  $G_n$  is a game of SUBTRACTION( $\{1, 3, 4\}$ ) with *n* counters left, which  $G_n$  are in  $\mathcal{P}$ ?

## Subtraction

7 | 8

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

In SUBTRACTION(S) you have n counters, and can subtract any  $s \in S$  (assuming enough counters are left), leaving n - s counters.

- 1. If  $G_n$  is a game of SUBTRACTION( $\{1, 3, 4\}$ ) with *n* counters left, which  $G_n$  are in  $\mathcal{P}$ ?
- 2. What about SUBTRACTION( $\{2^n : n = 0, 1, 2, ... \}$ )?

### Two more games

8 | 8

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

- 1. GREEDY NIM is just like NIM, except you can only take from the largest heap (or any of them if there are multiple).
- 2. The COMMON DIVISOR game is played with multiple heaps, and at any point you may remove from one heap a common divisor of all heaps. Here gcd(0, n) = n. Who wins on the two-heap game?