Outcome Classes in Impartial Games

Orson R. L. Peters, Universiteit Leiden.

Universiteit
Leiden
The Netherlands

Discover the world at Leiden University

Outcome Classes in Impartial Games

Impartial games

- Both Left and Right have the same options in any game state.
- Examples: Geography, Nim.
- Is Connect-Four impartial?
- What about outcome classes \mathcal{L} and \mathcal{R} ?

Outcome Classes in Impartial Games

Proof by induction, $\mathcal{L} \cup \mathcal{R}=\emptyset$

$2 \mid 8$

- All leaves are in \mathcal{P}.
- $G^{L}=G^{R}$
- Outcome table:

	Some $\boldsymbol{G}^{\boldsymbol{R}} \in \boldsymbol{R} \cup \mathcal{P}$	All $\boldsymbol{G}^{\boldsymbol{R}} \in \mathcal{L} \cup \boldsymbol{\mathcal { N }}$
Some $\boldsymbol{G}^{L} \in \mathcal{L} \cup \mathcal{P}$	$\boldsymbol{\mathcal { N }}$	\mathcal{L}
All $\boldsymbol{G}^{L} \in \mathcal{R} \cup \boldsymbol{\mathcal { N }}$	$\boldsymbol{\mathcal { R }}$	\mathcal{P}

Outcome Classes in Impartial Games

Partition Theorem

If we partition a finite game in mutually exlusive sets \boldsymbol{A} and \boldsymbol{B} such that

1. every option of a position in \boldsymbol{A} is in \boldsymbol{B}, and
2. every position in \boldsymbol{B} has at least one option in \boldsymbol{A}, then $\boldsymbol{A} \subset \mathcal{P}$ and $\boldsymbol{B} \subset \mathcal{N}$.

Outcome Classes in Impartial Games

Partition Theorem

If we partition a finite game in mutually exlusive sets \boldsymbol{A} and \boldsymbol{B} such that

1. every option of a position in \boldsymbol{A} is in \boldsymbol{B}, and
2. every position in \boldsymbol{B} has at least one option in \boldsymbol{A}, then $\boldsymbol{A} \subset \mathcal{P}$ and $\boldsymbol{B} \subset \mathcal{N}$.

Proof by mutual induction.

1. Assuming $\boldsymbol{B} \subset \mathcal{N}$, prove $\boldsymbol{a} \in \boldsymbol{A} \Longrightarrow \boldsymbol{a} \in \mathcal{P}$.
2. Assuming $\boldsymbol{A} \subset \mathcal{P}$, prove $\boldsymbol{b} \in \boldsymbol{B} \Longrightarrow \boldsymbol{b} \in \mathcal{N}$.
3. Find a base case and do induction (but on what?).

Outcome Classes in Impartial Games

Partition Theorem conclusion

A position is

- a \mathcal{P}-position if all of its options are $\boldsymbol{\mathcal { N }}$-positions, and
- an $\boldsymbol{\mathcal { N }}$-position if at least one of its options is a \mathcal{P}-position.

Exercise: 3×3 Cram.

Outcome Classes in Impartial Games

Bottleneck Principle

Let \boldsymbol{G} be an impartial game with options \boldsymbol{G}_{1} and \boldsymbol{G}_{2}（it could have more options），and $\boldsymbol{G}_{\mathbf{2}}$ is the only option of $\boldsymbol{G}_{\mathbf{1}}$ ．

Outcome Classes in Impartial Games

Bottleneck Principle

Let \boldsymbol{G} be an impartial game with options \boldsymbol{G}_{1} and \boldsymbol{G}_{2}（it could have more options），and \boldsymbol{G}_{2} is the only option of $\boldsymbol{G}_{\mathbf{1}}$ ，then \boldsymbol{G} is an $\boldsymbol{\mathcal { N }}$－position．

Outcome Classes in Impartial Games

Cutthroat Stars

In Cutthroat Stars you can remove a vertex and all adjacent edges. At least one edge must be removed this way. Or, shrink and supernova.

Outcome Classes in Impartial Games

Subtraction

In Subtraction(\boldsymbol{S}) you have \boldsymbol{n} counters, and can subtract any $\boldsymbol{s} \in \boldsymbol{S}$ (assuming enough counters are left), leaving $\boldsymbol{n}-\boldsymbol{s}$ counters.

1. If $\boldsymbol{G}_{\boldsymbol{n}}$ is a game of $\operatorname{Subtraction}(\{\mathbf{1}, \mathbf{3}, \mathbf{4}\})$ with \boldsymbol{n} counters left, which $\boldsymbol{G}_{\boldsymbol{n}}$ are in $\boldsymbol{\mathcal { P }}$?

Outcome Classes in Impartial Games

Subtraction

In Subtraction（ \boldsymbol{S} ）you have \boldsymbol{n} counters，and can subtract any $\boldsymbol{s} \in \boldsymbol{S}$（assuming enough counters are left），leaving $\boldsymbol{n}-\boldsymbol{s}$ counters．

1．If $\boldsymbol{G}_{\boldsymbol{n}}$ is a game of $\operatorname{Subtraction}(\{\mathbf{1}, \mathbf{3}, \mathbf{4}\})$ with \boldsymbol{n} counters left，which $\boldsymbol{G}_{\boldsymbol{n}}$ are in $\boldsymbol{\mathcal { P }}$ ？

2．What about $\operatorname{Subtraction}\left(\left\{2^{n}: n=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots\right\}\right)$ ？

Outcome Classes in Impartial Games

Two more games

1. Greedy Nim is just like Nim, except you can only take from the largest heap (or any of them if there are multiple).
2. The Common Divisor game is played with multiple heaps, and at any point you may remove from one heap a common divisor of all heaps. Here $\operatorname{gcd}(\mathbf{0}, \boldsymbol{n})=\boldsymbol{n}$. Who wins on the two-heap game?
