Lessons In Play Stops, All-Smalls & Infinitesimals

Max Blankestijn 21-4-2020

Contents

Stops Definition 5.32

Not a Number

Infinitesimal Games Up and Down All-Small

Notation

Addition Shorthand Infinitesimal Multiplication Theorem 5.48

- Players promise to stop playing the moment a game is a number
- ► This moment is the **Stopping Position**
- Left wants to maximize
- Right wants to minimize

Definition 5.32

- Given a game G, the stopping point is recursively defined
- ► The Left Stop is the number we get when Left starts $LS(G) = \begin{cases} G & \text{if } G \text{ is a number} \\ max(RS(G^L)) & \text{if } G \text{ is not a number} \end{cases}$

The Right Stop when Right starts

 $\mathbf{RS}(G) = \begin{cases} G & \text{if } G \text{ is a number} \\ min(\mathbf{LS}(G^R)) & \text{if } G \text{ is not a number} \end{cases}$

Definition 5.32 $\mathsf{LS}(G) = \begin{cases} G & G \in \mathbb{Q} \\ max(\mathsf{RS}(G^L)) & \mathsf{RS}(G) = \begin{cases} G & G \in \mathbb{Q} \\ min(\mathsf{LS}(G^R)) & G \notin \mathbb{Q} \end{cases}$

Definition 5.32 $\mathsf{LS}(G) = \begin{cases} G & G \in \mathbb{Q} \\ max(\mathsf{RS}(G^L)) & \mathsf{RS}(G) = \begin{cases} G & G \in \mathbb{Q} \\ min(\mathsf{LS}(G^R)) & G \notin \mathbb{Q} \end{cases}$

Definition 5.32 $\mathsf{LS}(G) = \begin{cases} G & G \in \mathbb{Q} \\ max(\mathsf{RS}(G^L)) & \mathsf{RS}(G) = \begin{cases} G & G \in \mathbb{Q} \\ min(\mathsf{LS}(G^R)) & G \notin \mathbb{Q} \end{cases}$

Solution

Definition 5.32 $LS(G) = \begin{cases} G & G \in \mathbb{Q} \\ max(RS(G^{L})) & RS(G) = \begin{cases} G & G \in \mathbb{Q} \\ min(LS(G^{R})) & G \notin \mathbb{Q} \end{cases}$

Infinitesimal Games and *

Definition

A game **G** is called *infinitesimal* $\iff -x < \mathbf{G} < x$ for all positive numbers x

* is infinitesimal

•
$$* = \{0 \mid 0\}, \text{ and } -* = \{0 \mid 0\}$$

- We only need to show: * < x for any positive number x (since this implies: -* > -x ⇒ -x < *)</p>
- Consider x * = x + *
- Left can move to x + 0 = x and wins
- By Weak-Number-Avoidance: if Right can win going first, it is with a move in ∗. But x + 0 ∈ L

Up and Down

$$\uparrow \stackrel{\text{\tiny def}}{=} \{ 0 \mid * \}, \text{ and } \downarrow \stackrel{\text{\tiny def}}{=} \{ * \mid 0 \}$$

Take some number x > 0

► $-x < \uparrow < x \iff \uparrow$ is infinitesimal

► Idem for ↓

Positive and Negative Infinitesimals

▶ In fact, \uparrow is a positive and \downarrow a negative *infinitesimal*

So now we know: $0 < \uparrow < x$ and $-x < \downarrow < 0$, for all positive numbers x

Multiple Ups and Downs

We write sums of ups and downs using *double*, *triple*, and *quadruple* arrows:

We call a game G all-small if for every position H in G: Left has a move from $H \iff$ Right has a move from H

Alternatively, \boldsymbol{G} is all-small \iff :

▶ \mathcal{G}^L and \mathcal{G}^R are non-empty and every element is *all-small*

All-Small Examples

- ▶ 0 is the only *all-small* number.
- For example: 1 = {0 | } is not all-small, Left has move 0 but Right has nothing.

$$\blacktriangleright \uparrow = \{0 \mid *\} = \{0 \mid \{0 \mid 0\}\} \text{ is all-small}$$

Some Up & Down comparisons

Notation: Addition

Instead of writing down entire sums, we concatenate the summands:

 \blacktriangleright \uparrow s and \downarrow s, then

▶ *

So 2 $+\uparrow+\uparrow+*=2\Uparrow*$

Notation: \uparrow and $\uparrow *$ Multiplication

The canonical form of $\uparrow, \Uparrow, \Uparrow$... and $\uparrow *, \Uparrow *, \Uparrow *$... :

$$\begin{split} \uparrow &= \{0 \mid *\} & \uparrow * &= \{0, * \mid 0\} \\ \uparrow &= \{0 \mid \uparrow *\} & \uparrow * &= \{0 \mid \uparrow\} \\ \uparrow &= \{0 \mid \uparrow *\} & \uparrow * &= \{0 \mid \uparrow\} \\ \uparrow &= \{0 \mid \uparrow *\} & \uparrow * &= \{0 \mid \uparrow\} \\ \uparrow &= \{0 \mid \uparrow *\} & \uparrow * &= \{0 \mid \uparrow\} \\ \end{split}$$

To further investigate this pattern, we denote the multiplication of game \boldsymbol{g} , by a scalar \boldsymbol{n} :

$$\boldsymbol{n} \cdot \boldsymbol{g} = \begin{cases} 0 & \text{if } \boldsymbol{n} = 0\\ \overbrace{\boldsymbol{g} + \boldsymbol{g} + \dots + \boldsymbol{g}}^{\boldsymbol{n} \text{ times}} & \text{if } \boldsymbol{n} > 0\\ (-\boldsymbol{n}) \cdot (-\boldsymbol{g}) & \text{if } \boldsymbol{n} < 0 \end{cases}$$

For example:

$$3 \cdot \uparrow = \Uparrow -3 \cdot \uparrow = \Downarrow$$

For $n \ge 1$, the canonical forms of $n \cdot \uparrow$ and $n \cdot \uparrow * = (n \cdot \uparrow) + *$ are given by:

$$\boldsymbol{n} \cdot \uparrow = \{ 0 \mid (\boldsymbol{n} - 1) \cdot \uparrow * \} \quad \text{if } \boldsymbol{n} \ge 1$$
 (1)

$$\boldsymbol{n} \cdot \uparrow * = \begin{cases} \{0 \mid (\boldsymbol{n} - 1) \cdot \uparrow\} & \text{if } \boldsymbol{n} > 1\\ \{0, * \mid 0\} & \text{if } \boldsymbol{n} = 1 \end{cases}$$
(2)

Proof — Assumption

We assume the provided definitions to hold, so the given canonical form equals the naive representation:

(1): For
$$n > 0$$
:

$$\begin{array}{c}
n \cdot \uparrow \\
0 \quad (n-1) \cdot \uparrow * \\
\end{array} = \begin{array}{c}
n \cdot \uparrow \\
(n-1) \cdot \uparrow & (n-1) \cdot \uparrow * \\
\end{array}$$
(2): For $n > 1$:

$$\begin{array}{c}
n \cdot \uparrow * \\
0 \quad (n-1) \cdot \uparrow & (n-1) \cdot \uparrow * \\
\end{array}$$

$$\begin{array}{c}
n \cdot \uparrow * \\
n \cdot \uparrow & (n-1) \cdot \uparrow * \\
\end{array}$$

Proof — (2) for n = 1

This is an easily proven special case for (2)

Proof — Base Cases

Check $(n-1) \cdot \uparrow * \leq (n+1) \cdot \uparrow$: (n+1) $\cdot \uparrow - (n-1) \cdot \uparrow *$ 2 $\cdot \uparrow - * = \uparrow - * > 0$ (n-1) $\cdot \uparrow * < (n+1) \cdot \uparrow$ n $\cdot \uparrow$ is *Reversible*, replace with 0:

Proof — (1) for
$$(n+1)$$

Recall	
$\uparrow = \{0 \mid *\}$	}

 $\downarrow < * < \uparrow$

From (1) (2) $\mathbf{n} \cdot \uparrow = \{0 \mid (\mathbf{n} - 1) \cdot \uparrow\}$ $\mathbf{n} \cdot \uparrow * = \{0 \mid (\mathbf{n} - 1) \cdot \uparrow\}$

$$n \cdot \uparrow * < (n+1) \cdot \uparrow *$$

$$(n-1) \cdot \uparrow < (n+1) \cdot \uparrow *$$

$$n < (n+1)$$

$$0 < \uparrow * \iff * < \uparrow$$

Proof — (2) for (n + 1)Recall $\uparrow = \{0 \mid *\}$ H) \uparrow Recall $\downarrow < * < \uparrow$

> From (1) (2) $\boldsymbol{n} \cdot \uparrow = \{0 \mid (\boldsymbol{n} - 1) \cdot \uparrow\}$ $\boldsymbol{n} \cdot \uparrow * = \{0 \mid (\boldsymbol{n} - 1) \cdot \uparrow\}$

Canonical n + 1 case $(n+1) \cdot \uparrow *$ \bigwedge 0 $n \cdot \uparrow$

Proof — Conclusion

Assuming the following holds for
$$n \ge 1$$
:
 $n \cdot \uparrow = \{0 \mid (n-1) \cdot \uparrow *\}$

$$n \cdot \uparrow * = \begin{cases} \{0 \mid (n-1) \cdot \uparrow\} & \text{if } n > 1\\ \{0, * \mid 0\} & \text{if } n = 1 \end{cases}$$

- We have proven the former holds for n = 1
- We have proven the latter holds for n = 1 and n = 2
- We have proven both then hold for n+1

Proof by Induction

A similar situation for \downarrow , with a similar proof.

$$n \cdot \downarrow = \{(n-1) \cdot \downarrow * \mid 0\}$$

$$n \cdot \downarrow * = \begin{cases} \{(n-1) \cdot \downarrow \mid 0\} & \text{if } n > 1\\ \{0 \mid 0, *\} & \text{if } n = 1 \end{cases}$$

Conclusion

- Use stop points to give a value to any game
- Definition of all-small games
- ▶ Infinitesimals: Up, Down, Star
- Infinitesimal addition and multiplication