Lessons In Play
Stops, All-Smalls \& Infinitesimals

Max Blankestijn
21-4-2020

Contents

Stops

Definition 5.32

Not a Number
Infinitesimal Games
Up and Down
All-Small

Notation
Addition Shorthand
Infinitesimal Multiplication
Theorem 5.48

Stops

- Players promise to stop playing the moment a game is a number
- This moment is the Stopping Position
- Left wants to maximize
- Right wants to minimize

Definition 5.32

- Given a game G, the stopping point is recursively defined
- The Left Stop is the number we get when Left starts

$$
\mathbf{L S}(G)= \begin{cases}G & \text { if } G \text { is a number } \\ \max \left(\mathbf{R S}\left(G^{L}\right)\right) & \text { if } G \text { is not a number }\end{cases}
$$

- The Right Stop when Right starts

$$
\mathbf{R S}(G)= \begin{cases}G & \text { if } G \text { is a number } \\ \min \left(\mathbf{L S}\left(G^{R}\right)\right) & \text { if } G \text { is not a number }\end{cases}
$$

Exercise 5.33

$$
\{\{6 \mid 1\},\{4 \mid\{2 \mid-2\}\} \mid-3,\{2 \mid-4\}\}
$$

Definition 5.32

Exercise 5.33

$$
\{\{6 \mid 1\},\{4 \mid\{2 \mid-2\}\} \mid-3,\{2 \mid-4\}\}
$$

Definition 5.32

Exercise 5.33

$$
\{\{6 \mid 1\},\{4 \mid\{2 \mid-2\}\} \mid-3,\{2 \mid-4\}\}
$$

Definition 5.32
$\mathbf{L S}(G)= \begin{cases}G & \mathbf{R S}(G)=\left\{\begin{array}{ll}G & G \in \mathbb{Q} \\ \max \left(\mathbf{R S}\left(G^{L}\right)\right)\end{array} \quad \mathbf{\operatorname { L S } (G ^ { R }))} \mathbf{G \notin \mathbb { Q }} .\right.\end{cases}$

Exercise 5.33

Solution

$$
\{\{6 \mid 1\},\{4 \mid\{2 \mid-2\}\} \mid-3,\{2 \mid-4\}\}
$$

Definition 5.32
$\mathbf{L S}(G)= \begin{cases}G & \mathbf{R S}(G)=\left\{\begin{array}{ll}G & G \in \mathbb{Q} \\ \max \left(\mathbf{R S}\left(G^{L}\right)\right)\end{array} \quad \mathbf{\operatorname { L S } (G ^ { R }))} \mathbf{G \notin \mathbb { Q }} .\right.\end{cases}$

Infinitesimal Games and *

Definition

A game \boldsymbol{G} is called infinitesimal $\Longleftrightarrow-x<\boldsymbol{G}<x$ for all positive numbers x

- * is infinitesimal
- $*=\{0 \mid 0\}$, and $-*=\{0 \mid 0\}$
- We only need to show: $*<x$ for any positive number x (since this implies: $-*>-x \quad \Rightarrow \quad-x<*$)
- Consider $x-*=x+*$
- Left can move to $x+0=x$ and wins
- By Weak-Number-Avoidance: if Right can win going first, it is with a move in $*$. But $x+0 \in \mathcal{L}$
- $*<x$

Up and Down

- $\uparrow \stackrel{\text { def }}{=}\{0 \mid *\}$, and $\downarrow \stackrel{\text { def }}{=}\{* \mid 0\}$
- Take some number $x>0$

$$
x-\uparrow=x+\{* \mid 0\}
$$

$$
x>\uparrow
$$

$-x-\uparrow=-x+\{* \mid 0\}$

$$
-x<\uparrow
$$

- $-x<\uparrow<x \Longleftrightarrow \uparrow$ is infinitesimal
- Idem for \downarrow

Positive and Negative Infinitesimals

- In fact, \uparrow is a positive and \downarrow a negative infinitesimal

$$
\uparrow>0 \quad \downarrow<0
$$

- So now we know: $0<\uparrow<x$ and $-x<\downarrow<0$, for all positive numbers x

Multiple Ups and Downs

We write sums of ups and downs using double, triple, and quadruple arrows:

$$
\begin{array}{llll}
\Uparrow & =\uparrow+\uparrow & \Downarrow & =\downarrow+\downarrow \\
\Uparrow & =\uparrow+\uparrow+\uparrow & \Downarrow & =\downarrow+\downarrow+\downarrow \\
\Uparrow & =\uparrow+\uparrow+\uparrow+\uparrow & \Downarrow & =\downarrow+\downarrow+\downarrow+\downarrow
\end{array}
$$

All-Small

We call a game \boldsymbol{G} all-small if for every position \boldsymbol{H} in \boldsymbol{G} : Left has a move from $\boldsymbol{H} \Longleftrightarrow$ Right has a move from \boldsymbol{H}

Alternatively, \boldsymbol{G} is all-small \Longleftrightarrow :

- $G=0$, or
$-\mathcal{G}^{L}$ and \mathcal{G}^{R} are non-empty and every element is all-small

All-Small Examples

- 0 is the only all-small number.
- For example: $1=\{0 \mid\}$ is not all-small, Left has move 0 but Right has nothing.
- $*=\{0 \mid 0\}$ is all-small
- $\uparrow=\{0 \mid *\}=\{0 \mid\{0 \mid 0\}\}$ is all-small

Some Up \& Down comparisons

- $\downarrow\|*\| \uparrow$

- $\Downarrow<*<\Uparrow$

\mathcal{L}
\mathcal{R}

Recall

$\uparrow=\{0 \mid *\}$
Recall
$\downarrow=\{* \mid 0\}$

Recall

$$
=-
$$

$$
=\{0 \mid 0\}
$$

Recall

$*+*=0$

Notation: Addition

Instead of writing down entire sums, we concatenate the summands:

- Numbers, then
- $\uparrow s$ and $\downarrow s$, then
- *

So $2+\uparrow+\uparrow+*=2 \Uparrow *$

Notation: \uparrow and $\uparrow *$ Multiplication

The canonical form of $\uparrow, \Uparrow, \Uparrow \ldots$ and $\uparrow *, \Uparrow *, \Uparrow * \ldots$:

$$
\begin{array}{lll}
\uparrow & =\{0 \mid *\} & \uparrow * \\
\Uparrow & =\{0, * \mid 0\} \\
\Uparrow & =\{0 \mid \uparrow *\} & \Uparrow * \\
\Uparrow & =\{0 \mid \uparrow\} \\
\Uparrow & =\{0 \mid \Uparrow *\} & \Uparrow * \\
\Uparrow & =\{0 \mid \Uparrow\} \\
\Uparrow & \text { 介 } \mid \Uparrow *\} & \Uparrow *
\end{array}
$$

To further investigate this pattern, we denote the multiplication of game \boldsymbol{g}, by a scalar \boldsymbol{n} :

$$
\boldsymbol{n} \cdot \boldsymbol{g}= \begin{cases}0 & \text { if } \boldsymbol{n}=0 \\ \overbrace{\boldsymbol{g}+\boldsymbol{g}+\ldots+\boldsymbol{g}}^{\boldsymbol{n} \text { times }} & \text { if } \boldsymbol{n}>0 \\ (-\boldsymbol{n}) \cdot(-\boldsymbol{g}) & \text { if } \boldsymbol{n}<0\end{cases}
$$

For example:

- $3 \cdot \uparrow=\Uparrow$
- $-3 \cdot \uparrow=\Downarrow$

Theorem 5.48

For $n \geq 1$, the canonical forms of $\boldsymbol{n} \cdot \uparrow$ and $\boldsymbol{n} \cdot \uparrow *=(n \cdot \uparrow)+*$ are given by:

$$
\begin{align*}
& \boldsymbol{n} \cdot \uparrow=\{0 \mid(\boldsymbol{n}-1) \cdot \uparrow *\} \tag{1}\\
& \boldsymbol{n} \cdot \uparrow *= \begin{cases}\{0 \mid(\boldsymbol{n}-1) \cdot \uparrow\} & \text { if } \boldsymbol{n}>1 \\
\{0, * \mid 0\} & \text { if } \boldsymbol{n}=1\end{cases} \tag{2}
\end{align*}
$$

Proof - Assumption

We assume the provided definitions to hold, so the given canonical form equals the naive representation:

- (1): For $n>0$:

- (2): For $n>1$:

This is an easily proven special case for (2)

0

Recall

$\downarrow<0<\uparrow$
Recall

* $=$-*
$=\{0 \mid 0\}$
- 0 dominates \uparrow for Right
- \uparrow is reversible in Left:

$$
\uparrow *-*=\uparrow>0 \quad \Rightarrow \quad *<\uparrow *
$$

- $\uparrow *=\{0, * \mid 0\}$

Recall

$*+*=0$

Theorem 5.48

Proof - Base Cases

- (1) $n=1$:

- (2) $n=2$:

Recall

$\uparrow=\{0 \mid *\}$

Recall

$$
\Downarrow<*<\Uparrow
$$

From (1) (2)

$$
\begin{aligned}
& \boldsymbol{n} \cdot \uparrow=\{0 \mid(\boldsymbol{n}-1) \cdot \uparrow\} \\
& \boldsymbol{n} \cdot \uparrow *=\{0 \mid(\boldsymbol{n}-1) \cdot \uparrow\}
\end{aligned}
$$

Canonical $n+1$ case

$$
\downarrow_{0}^{(n+1) \cdot \uparrow}
$$

Theorem 5.48
For $n>2:(n+1) \cdot \uparrow *$

$$
n \cdot \uparrow *<(n+1) \cdot \uparrow *
$$

$$
(n-1) \cdot \uparrow<(n+1) \cdot \uparrow *
$$

$$
n<(n+1)
$$

$$
0<\Uparrow * \Longleftrightarrow *<\Uparrow
$$

Proof - (2) for $(n+1)$
Recall
$\uparrow=\{0 \mid *\}$

Recall

$$
\Downarrow<*<\Uparrow
$$

From (1) (2)

$$
\begin{aligned}
& \boldsymbol{n} \cdot \uparrow=\{0 \mid(\boldsymbol{n}-1) \cdot \uparrow\} \\
& \boldsymbol{n} \cdot \uparrow *=\{0 \mid(\boldsymbol{n}-1) \cdot \uparrow\}
\end{aligned}
$$

Canonical $n+1$ case

$$
\rangle_{0}^{(n+1) \cdot \uparrow *}
$$

- Assuming the following holds for $n \geq 1$:

$$
\begin{aligned}
& n \cdot \uparrow=\{0 \mid(n-1) \cdot \uparrow *\} \\
& n \cdot \uparrow *= \begin{cases}\{0 \mid(n-1) \cdot \uparrow\} & \text { if } n>1 \\
\{0, * \mid 0\} & \text { if } n=1\end{cases}
\end{aligned}
$$

- We have proven the former holds for $n=1$
- We have proven the latter holds for $n=1$ and $n=2$
- We have proven both then hold for $n+1$

Proof by Induction

Theorem 5.48

A similar situation for \downarrow, with a similar proof.

$$
\begin{aligned}
& n \cdot \downarrow=\{(n-1) \cdot \downarrow * \mid 0\} \\
& n \cdot \downarrow *= \begin{cases}\{(n-1) \cdot \downarrow \mid 0\} & \text { if } n>1 \\
\{0 \mid 0, *\} & \text { if } n=1\end{cases}
\end{aligned}
$$

Conclusion

- Use stop points to give a value to any game
- Definition of all-small games
- Infinitesimals: Up, Down, Star
- Infinitesimal addition and multiplication

