Lessons In Play
Canonical Form:
Reducing Games

Max Blankestijn
7-4-2020

Contents

Domination

Intuition
Theorem 4.33

Reversibility
Intuition
Formalization \& Example
Theorem 4.34

Reduction Rules

Example

Domination in Domineering

Left plays:

Right plays:

- Consider the board:
- Left moves first

Domination in Domineering

- Left always prefers B over A
- Move B dominates A
- Simplify a game through One-Hand-Tied principle
- Given the games:

$$
\begin{aligned}
G & =\{A, B, C \ldots \mid H, I, J, \ldots\} \\
G^{\prime} & =\{B, C \ldots \mid H, I, J, \ldots\}
\end{aligned}
$$

- If $B \geq A$ then $G=G^{\prime}$
- Idem for Right: if $H \leq I$ remove I

Recall

For games G and H
$G>H \Longleftrightarrow G-H \in \mathcal{L}$
$\mathrm{G}<\mathrm{H} \Longleftrightarrow G-H \in \mathcal{R}$

Recall

For games G and H

$$
\begin{aligned}
G=H & \Longleftrightarrow G-H=0 \\
& \Longleftrightarrow G-H \in \mathcal{P}
\end{aligned}
$$

Theorem 4.33

Proof
Show: if $B \geq A$, then $G-G^{\prime}=0 \Longleftrightarrow \boldsymbol{G}+\left(-\boldsymbol{G}^{\prime}\right)=0$

G

$\{A, B, C, \ldots \mid H, I, J, \ldots\}+\{-H,-I,-J, \ldots \mid-B,-C, \ldots\}$

Recall

For a game $G=\left\{\mathcal{G}^{L} \mid \mathcal{G}^{R}\right\}$:
$-G=\left\{-\mathcal{G}^{R} \mid-\mathcal{G}^{L}\right\}$

Theorem 4.33

Proof
Show: if $B \geq A$, then $G-G^{\prime}=0 \Longleftrightarrow \boldsymbol{G}+\left(-\boldsymbol{G}^{\prime}\right)=0$

G

$\{A, B, C, \ldots \mid H, I, J, \ldots\}+\{-H,-I,-J, \ldots \mid-B,-C, \ldots\}$

- Left moves to A in G Right moves to $-B$ in G^{\prime} $A-B \leq 0$

Theorem 4.33

Proof

Show: if $B \geq A$, then $G-G^{\prime}=0 \Longleftrightarrow \boldsymbol{G}+\left(-\boldsymbol{G}^{\prime}\right)=0$

- Left moves to A in G Right moves to $-B$ in G^{\prime} $A-B \leq 0$
- First player moves to m in G, Second player moves to $-m$ in G^{\prime} $m-m=0$
- Idem for any m in G^{\prime}

Theorem 4.33

Proof

Show: if $B \geq A$, then $G-G^{\prime}=0 \Longleftrightarrow \boldsymbol{G}+\left(-\boldsymbol{G}^{\prime}\right)=0$

- Left moves to A in G Right moves to $-B$ in G^{\prime} $A-B \leq 0$
- First player moves to m in G, Second player moves to $-m$ in G^{\prime} $m-m=0$
- Idem for any m in G^{\prime}
- All Second Player Wins

Reversibility

Imagine:

- A game where Right has some advantage
- Left chooses some "good" move A
- But then Right has the move A^{R}, which reverses A and Right regains the advantage
- Left "actually" chooses A^{R}

Definition: Reversible Move

Let us formalize:

- Given a game $G=\{A, \ldots \mid \ldots\}$
- $A=\left\{\mathcal{A}^{L} \mid \mathcal{A}^{R}\right\}$
- We call A reversible $\Longleftrightarrow \exists A^{R} \in \mathcal{A}^{R}: A^{R} \leq G$
- A^{R} is called a reversing move
- One-Hand-Tied: If Left moves to A, Right responds with A^{R}

Example: Reversible Move

We have a game $G=\{\quad\{2 \mid\{-8 \mid-9\}\} \quad \mid-1\}$

- $A=\{2 \mid\{-8 \mid-9\}\}$
- $A^{R}=\{-8 \mid-9\}$

Example: Reversible Move

We have a game $G=\{\quad\{2 \mid\{-8 \mid-9\}\} \mid-1\}$

- $A=\{2 \mid\{-8 \mid-9\}\}$
- $A^{R}=\{-8 \mid-9\}$
$A^{R} \leq G ?$
- $G-\{-8 \mid-9\}=G+\{9 \mid 8\}$

Example: Reversible Move

We have a game $G=\{\quad\{2 \mid\{-8 \mid-9\}\} \mid-1\}$

- $A=\{2 \mid\{-8 \mid-9\}\}$
- $A^{R}=\{-8 \mid-9\}$
$A^{R} \leq G$?
- $G-\{-8 \mid-9\}=G+\{9 \mid 8\}$
- Left can win moving first:

$$
\stackrel{\llcorner }{\mapsto} G+9 \stackrel{R}{\mapsto}-1+9>0
$$

Example: Reversible Move

We have a game $G=\{\quad\{2 \mid\{-8 \mid-9\}\} \quad \mid-1\}$

- $A=\{2 \mid\{-8 \mid-9\}\}$
- $A^{R}=\{-8 \mid-9\}$
$A^{R} \leq G ?$
- $G-\{-8 \mid-9\}=G+\{9 \mid 8\}$
- Left can win moving first:

$$
\stackrel{\llcorner }{\mapsto} G+9 \stackrel{R}{\mapsto}-1+9>0
$$

- Right cannot win moving first:

$$
\stackrel{R}{\mapsto}-1+\{9 \mid 8\} \stackrel{L}{\mapsto}-1+9>0
$$

and

$$
\begin{aligned}
& \stackrel{R}{\mapsto} G+8 \xrightarrow{\text { L }}\{2 \mid\{-8 \mid-9\}\}+8 \stackrel{R}{\mapsto}\{-8 \mid-9\}+8 \\
& \stackrel{\text { L }}{\mapsto}-8+8=0
\end{aligned}
$$

Example: Reversible Move

We have a game $G=\{\quad\{2 \mid\{-8 \mid-9\}\} \mid-1\}$

- $G-\{-8 \mid-9\} \in \mathcal{L}$
- $G-\{-8 \mid-9\}>0$
- $\{-8 \mid-9\}<G$
- $\{2 \mid\{-8 \mid-9\}\}$ is reversible

Example: Reversible Move

We have a game $G=\{\quad\{2 \mid\{-8 \mid-9\}\} \mid-1\}$

- $G-\{-8 \mid-9\} \in \mathcal{L}$
- $G-\{-8 \mid-9\}>0$
- $\{-8 \mid-9\}<G$
- $\{2 \mid\{-8 \mid-9\}\}$ is reversible

We could then say

- If Left moves to $\{2 \mid\{-8 \mid-9\}\}$, Right will move to $\{-8 \mid-9\}$
- When considering $\{2 \mid\{-8 \mid-9\}\}$, we can replace it with -8
- $G=\{-8 \mid-1\}$

Given

- A game $G=\{A, B, C, \ldots \mid H, I, J, \ldots\}$
- A reversible option A
- Some right option of $A: A^{R}=\{W, X, Y, \ldots \mid \ldots\}$

Recall

$A=\left\{\mathcal{A}^{L} \mid \mathcal{A}^{R}\right\}$
$A^{R} \in \mathcal{A}^{R}: A^{R} \leq G$

Given

- A game $G=\{A, B, C, \ldots \mid H, I, J, \ldots\}$
- A reversible option A
- Some right option of $A: A^{R}=\{W, X, Y, \ldots \mid \ldots\}$

Then $G=G^{\prime}$
With $G^{\prime}=\{W, X, Y, \ldots, B, C, \ldots \mid H, I, J, \ldots\}$

Recall

$A=\left\{\mathcal{A}^{L} \mid \mathcal{A}^{R}\right\}$
$A^{R} \in \mathcal{A}^{R}: A^{R} \leq G$

L wins:
For the first move:
$G \geq A^{R}$

- Respond to all double moves with their counterpart
- If Right starts with -W, Left wins going second

Recall
 $A^{R}=\{W, X, Y, \ldots \mid \ldots\}$

Note

$(-) W$ represents $(-)\{W, X, Y, \ldots\}$

Recall
$A^{R}=\{W, X, Y, \ldots \mid \ldots\}$

Note
$(-) H$ represents $(-)\{H, I, J, \ldots\}$

Theorem 4.34
Proof

- $G-G^{\prime} \in \mathcal{P}$, so $G-G^{\prime}=0$
- $\{A, B, C, \ldots \mid H, I, J, \ldots\}=$ $\{W, X, Y, \ldots, B, C, \ldots \mid H, I, J, \ldots\}$

Reduction Rules

Reduction Rule: Domination

If we have some game \boldsymbol{G} where a move \boldsymbol{A} is dominated by another move from the same player.
We may remove \boldsymbol{A} from \boldsymbol{G}.

Reduction Rule: Reversible Moves

If we have some game \boldsymbol{G} where a player has a move \boldsymbol{A} that is reversible, where $\boldsymbol{A}^{\boldsymbol{R}}$ is a reversing move.
A may be replaced by the moves that this player would have in $\boldsymbol{A}^{\boldsymbol{R}}$.

Example 4.42

$$
G=\{\quad\{4 \mid 1\}, 0 \mid 2\}
$$

Domination:

- $\{4 \mid 1\} \in \mathcal{L}$, so $\{4 \mid 1\}>0$
- $\{4 \mid 1\}$ dominates 0

Example 4.42

$$
G=\{\{4 \mid 1\} \mid 2\}
$$

Reversing option for Left:

- $A=\{4 \mid 1\}, A^{R}=1=\{0 \mid\}$
$\left.\left.-G-A^{R}=\left\{\left.\begin{array}{l} \\ -\end{array} \right\rvert\, 1\right\} \right\rvert\, 2\right\}+\{\mid 0\}$

Example 4.42

$$
G=\{\{4 \mid 1\} \mid 2\}
$$

Reversing option for Left:

- $A=\{4 \mid 1\}, A^{R}=1=\{0 \mid\}$
- $G-A^{R}=\left\{\left.\begin{array}{l} \\ \{\mid 1\}\end{array} \right\rvert\, 2\right\}+\{\mid 0\}$
- $\stackrel{\mathrm{R}}{\mapsto}\{\quad\{4 \mid 1\} \quad \mid 2\}+0 \Rightarrow$ Left wins going second
- $\stackrel{\text { R }}{\mapsto} 2+\{\mid 0\}=1 \Rightarrow$ Left wins going second

Example 4.42

$$
G=\left\{\left.\begin{array}{l}
\{\mid 1\}
\end{array} \right\rvert\, 2\right\}
$$

Reversing option for Left:

- $A=\{4 \mid 1\}, A^{R}=1=\{0 \mid\}$
- $G-A^{R}=\left\{\begin{array}{l}4 \mid 1\} \mid 2\}+\{\mid 0\}\end{array}\right.$
- $\stackrel{\mathrm{R}}{\mapsto}\{\quad\{4 \mid 1\} \quad \mid 2\}+0 \Rightarrow$ Left wins going second
- $\stackrel{\text { R }}{\mapsto} 2+\{\mid 0\}=1 \Rightarrow$ Left wins going second
- Left wins going second at the least
- $\{0 \mid\} \leq G$, so $G=\{0 \mid 2\}$

Example 4.42

$$
G=\{0 \mid 2\}
$$

Reversing option, now for Right:

- $G=\{0 \mid \quad\{1 \mid\} \quad\}$
- $A=\{1 \mid\}, A^{R}=1=\{0 \mid\}$

Example 4.42

$$
G=\{0 \mid 2\}
$$

Reversing option, now for Right:

- $G=\{0 \mid \quad\{1 \mid\} \quad\}$
- $A=\{1 \mid\}, A^{R}=1=\{0 \mid\}$
- Remember: $\{0 \mid\} \leq G$
- $G=\{0 \mid\}=1$

Conclusion

- Through the application of these rules, we can reduce the expressions of a game.
- More complex game expressions might now actually be readable

Reduction Rule: Domination

If we have some game \boldsymbol{G} where a move \boldsymbol{A} is dominated by another move from the same player.
We may remove \boldsymbol{A} from \boldsymbol{G}.

Reduction Rule: Reversible Moves

If we have some game \boldsymbol{G} where a player has a move \boldsymbol{A} that is reversible, where $\boldsymbol{A}^{\boldsymbol{R}}$ is a reversing move.
A may be replaced by the moves that this player would have in \boldsymbol{A}^{R}.

