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For every game G, there is a unique smallest (in terms of size and
birthday) game that is equal to it. This game is G’s canonical form.
G is said to be in canonical form if:
1. G and all of its positions have no dominated options
2. G has no reversible options
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Thus, in order to reduce a game G to its unique canonical form:
• All dominated options must be removed
• All reversible options must be by-passed.
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Theorem 4.33
If G = {A, B, . . . |H, I, . . .}, then A and H are dominated left
and right options, respectively, if B ≥ A and I ≤ H , and
G ′ = {B, . . . |I, . . .}, then G = G ′.

Important Note: G ′’s game tree is of smaller size than G’s game
tree since it can be obtained from G by pruning the subtree of
which the dominated option is the root
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Theorem 4.34
Suppose that some game G = {A, B, . . . |H, I, . . .} and A has
some right option AR such that G ≥ AR with AR ’s left options
given by {W , X, Y , . . .}.
Define G ′ = {W , X, Y , . . . , B, C , . . . |H, I, J, . . .}, and we
have G = G ′. The same case can be made for reversible right
options.

Important Note: G ′ is of smaller size than G since its game tree
can be obtained by pruning the subtree of G of which A is the root
and adding the left-options of AR as left-descendants (left-options)
of G
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In summary, in order to obtain the canonical form of a game G,
one must remove all dominated options and bypass all reversible
options. Note that this process is necessarily finite, since both
sub-procedures (removal of dominated options and bypassing of
reversible options) yield a new game that has a game tree that is
smaller than G’s game tree in terms of size or birthday or both.
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Theorem 4.36
If G and H are in canonical form and G = H , then G ∼= H .

Some comments on Theorem 4.36:
• The theorem essentially states that G and H must have

identical game trees
• The previous point implies that every game G has a unique

canonical form, since it follows that every game that is equal
to G and that is in canonical form must be isomorphic to G as
well.
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Proof Theorem 4.36
If G and H are in canonical form and G = H , then G ∼= H .
Proof:
1. G = H → G − H = 0→ G − H is a P-position
2. Thus, Left can win moving second on G −H and Left will have

a winning response to GR − H for any right-option GR of G
3. Suppose Left’s winning response is in GR , and we have

GRL − H ≥ 0→ GRL ≥ H → GRL ≥ G .
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Proof Theorem 4.36 (Continued)
If G and H are in canonical form and G = H , then G ∼= H .
Proof:
4. Point 3 implies that G has a reversible option which

contradicts the fact that G is in canonical form. Hence, Left’s
winning response to GR − H must be in H

5. Since Left’s winning response to GR − H must be in H , we
find that GR − HR ≥ 0, and thus GR ≥ HR for some HR .

6. Point 1 and 5 shown above imply that for each right-option
GR of G for some right-option HR of H , GR ≥ HR holds true.
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Proof Theorem 4.36 (Continued)
If G and H are in canonical form and G = H , then G ∼= H .
Proof:
7. Repeating this argument, we can deduce that for each

right-option HR of H for some right-option GR′ of G ,
HR ≥ GR′ holds true.

8. From 7 it follows that for each GR , GR ≥ HR ≥ GR′ for some
HR and some GR .

9. In point 8, GR and GR′ must be identical (otherwise at least
one of G ’s right options would be dominated, which contradicts
that G is in canonical form). Thus, GR = GR′ and
GR = HR = GR′
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Proof Theorem 4.36 (Continued)
If G and H are in canonical form and G = H , then G ∼= H .
Proof:

10. It follows from point 9 that every right-option GR of G
matches up with some (one or multiple) right-option(s) HR of
H . That is, GR ⊆ HR .

11. Repeating the previous argument (points 1 - 10), starting from
the game H − G , Right playing first on H , one can verify that
HR ⊆ GR holds true.



Discover the world at Leiden University

Reduction to Canonical form
Proofs

12 | 21Proof of Theorem 4.36 (Continued)

Proof Theorem 4.36 (Continued)
If G and H are in canonical form and G = H , then G ∼= H .
Proof:

12. From point 10 and 11 it follows that HR = GR

13. Repeating the previous argument (points 1 - 12), but with Left
playing first, one can verify that we have that HL ⊆ GL and
GL ⊆ HL which implies that HL = GL

14. We now have that HL = GL and HR = GR which implies that
G ∼= H .
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Lemma 4.38
If G = H and G is in canonical form, then each option of G is
dominated by an option of H; i.e,
1. (∀GL)(∃HL) such that HL ≥ GL, and
2. (∀GR)(∃HR) such that HR ≤ GR .

On the next two slides, separate proofs are given for both parts of
the Lemma. (Part 1 and Part 2). Note that the proofs of both
parts are similar to one another and similar to the proof of
Theorem 4.36.
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Proof Lemma 4.38 (Part 1)
1. G = H → G − H = 0→ (G − H) is a P-position.
2. If Left plays first and plays to any left-option GL of G , the

resulting position will be GL − H .
3. Right has a winning move on H (not on GL, for then GL would

be a reversible option of G which contradicts the assumption
that G is in canonical form)

4. Thus, Right can move to some HL of H , such that
GL − HL ≤ 0→ GL ≤ HL
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Proof Lemma 4.38 (Part 2)
1. G = H → G − H = 0→ (G − H) is a P-position.
2. If Right plays first and plays to any right-option GL of G , the

resulting position will be GR − H .
3. Left has a winning move on H (not on GR , for then GR would

be a reversible option of G which contradicts the assumption
that G is in canonical form)

4. Thus, Left can move to some HR of H , such that
GR − HR ≥ 0→ GR ≥ HR
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Exercise 4.40
Suppose that G = 0 with GL 6= ∅, that is, G is not in canonical
form. Show that if GL ∈ GL, then GL is reversible.

In light of Exercise 4.40, the following observations are worth
mentioning:
• The canonical form of any game G = 0 is obviously the empty

game, since it has the smallest possible game-tree.
• In order to prove the previous point, we can repeat the

argument that proves that GL 6= ∅ to prove that GR 6= ∅.
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Exercise 4.40 Proof
1. G = 0→ G is a P-position.
2. Since G is a P-position, Right can win playing second on G .
3. Should L play to some left-option GL of G , GL must have at

least one right-option, for otherwise Left could win playing
first on G which contradicts that G = 0.

4. Since Right can win playing second, there exists some option
GLR of GL, such that GLR ≤ 0 = G (equivalently, G ≥ GLR ),
which implies that GL is a reversible option.
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Example 4.41
Find the canonical form of the 4× 1 Domineering strip.
Solution:
Observe that the game is given by {1, 0|}. Clearly, left-option 0
is dominated by left-option 1, hence the game can be simplified
to {1|}



Discover the world at Leiden University

Reduction to Canonical form
Some Examples

19 | 21Example 4.43

Example 4.43
Show that the canonical form of G = {−5| − 2} is G = −3.
Solution:
G ’s right option −2 is not reversible, since it has no left-options.
However, G ’s left-option −5 has right-option GLR = −4 Note
that G − GLR ≥ 0, and thus G ≥ GLR . Thus, −5 is a reversible
option and −4 is the reversing option. −4 has no left-options,
therefore the replacement set is empty, and we have that
G = {| − 2} = −3
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Example 4.46
Show that the canonical form of {2, {20| − 10}|1} is {2|1}.
Solution:
The game is positive and the right option of {20| − 10} is
negative, thus it reverses out and is replaced by the Left option of
−10, which does not exist and so {20| − 10} disappears.
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Conclusions
To conclude this presentation:
• For each set of games that are mutually equal, there exists a

unique smallest version (e.g. the canonical form).
• Given any game G it is possible to obtain the canonical form

by removing its dominated and reversible options, one by one.
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