Reduction to Canonical form

Kelvin Kleijn, Leiden University.

Reduction to Canonical form
Table of Contents

1 | 21

Introduction

Dominated Options

Reversible Options

Reduction Process

Proofs

Some Examples

Reduction to Canonical form Introduction

Introduction

2 | 21

For every game G, there is a unique smallest (in terms of size and birthday) game that is equal to it. This game is G's canonical form. G is said to be in canonical form if:

- 1. G and all of its positions have no dominated options
- 2. G has no reversible options

Reduction to Canonical form Introduction

Introduction

3 | 21

Thus, in order to reduce a game G to its unique canonical form:

- All dominated options must be removed
- All reversible options must be by-passed.

Reduction to Canonical form Dominated Options

Recall: Theorem 4.33

4 | 21

Theorem 4.33

If $G = \{A, B, \dots | H, I, \dots\}$, then A and H are dominated left and right options, respectively, if $B \ge A$ and $I \le H$, and $G' = \{B, \dots | I, \dots\}$, then G = G'.

Important Note: G''s game tree is of smaller size than G's game tree since it can be obtained from G by pruning the subtree of which the dominated option is the root

Reduction to Canonical form Reversible Options

Recall: Theorem 4.34

5 | 21

Theorem 4.34

Suppose that some game $G = \{A, B, ..., |H, I, ...\}$ and A has some right option A^R such that $G \ge A^R$ with $A^{R'}$'s left options given by $\{W, X, Y, ...\}$. Define $G' = \{W, X, Y, ..., B, C, ..., |H, I, J, ...\}$, and we have G = G'. The same case can be made for reversible right options.

Important Note: G' is of smaller size than G since its game tree can be obtained by pruning the subtree of G of which A is the root and adding the left-options of A^R as left-descendants (left-options) of G

Reduction to Canonical form Reduction Process

Reduction Process

6 | 21

In summary, in order to obtain the canonical form of a game G, one must remove all dominated options and bypass all reversible options. Note that this process is necessarily finite, since both sub-procedures (removal of dominated options and bypassing of reversible options) yield a new game that has a game tree that is smaller than G's game tree in terms of size or birthday or both.

Theorem 4.36

7 | 21

Theorem 4.36

If **G** and **H** are in canonical form and $\mathbf{G} = \mathbf{H}$, then $\mathbf{G} \cong \mathbf{H}$.

Some comments on Theorem 4.36:

- The theorem essentially states that **G** and **H** must have identical game trees
- The previous point implies that every game *G* has a unique canonical form, since it follows that every game that is equal to *G* and that is in canonical form must be isomorphic to *G* as well.

Proof of Theorem 4.36

8 | 21

Proof Theorem 4.36

If **G** and **H** are in canonical form and G = H, then $G \cong H$. <u>*Proof:*</u>

- 1. $\mathbf{G} = \mathbf{H} \rightarrow \mathbf{G} \mathbf{H} = \mathbf{0} \rightarrow \mathbf{G} \mathbf{H}$ is a P-position
- 2. Thus, Left can win moving second on G H and Left will have a winning response to $G^R - H$ for any right-option G^R of G
- 3. Suppose Left's winning response is in G^R , and we have $G^{RL} H \ge 0 \rightarrow G^{RL} \ge H \rightarrow G^{RL} \ge G$.

Proof of Theorem 4.36 (Continued) 9 | 21

Proof Theorem 4.36 (Continued)

If **G** and **H** are in canonical form and G = H, then $G \cong H$. <u>Proof:</u>

- 4. Point 3 implies that **G** has a reversible option which contradicts the fact that **G** is in canonical form. Hence, Left's winning response to $G^R H$ must be in H
- 5. Since Left's winning response to $G^R H$ must be in H, we find that $G^R H^R \ge 0$, and thus $G^R \ge H^R$ for some H^R .
- 6. Point 1 and 5 shown above imply that for each right-option G^R of G for some right-option H^R of H, $G^R \ge H^R$ holds true.

Proof of Theorem 4.36 (Continued) 10 | 21

Proof Theorem 4.36 (Continued)

If **G** and **H** are in canonical form and G = H, then $G \cong H$. <u>Proof:</u>

- 7. Repeating this argument, we can deduce that for each right-option H^R of H for some right-option $G^{R'}$ of G, $H^R \ge G^{R'}$ holds true.
- 8. From 7 it follows that for each G^R , $G^R \ge H^R \ge G^{R'}$ for some H^R and some G^R .
- 9. In point 8, G^R and $G^{R'}$ must be identical (otherwise at least one of G's right options would be dominated, which contradicts that G is in canonical form). Thus, $G^R = G^{R'}$ and $G^R = H^R = G^{R'}$

Proof of Theorem 4.36 (Continued) 11 | 21

Proof Theorem 4.36 (Continued)

If **G** and **H** are in canonical form and G = H, then $G \cong H$. <u>Proof:</u>

- 10. It follows from point 9 that every right-option G^R of G matches up with some (one or multiple) right-option(s) H^R of H. That is, $\mathcal{G}^R \subseteq \mathcal{H}^R$.
- 11. Repeating the previous argument (points 1 10), starting from the game H G, Right playing first on H, one can verify that $\mathcal{H}^R \subseteq \mathcal{G}^R$ holds true.

Proof of Theorem 4.36 (Continued) 12 | 21

Proof Theorem 4.36 (Continued)

If **G** and **H** are in canonical form and G = H, then $G \cong H$. <u>Proof:</u>

- 12. From point 10 and 11 it follows that $\mathcal{H}^{R}=\mathcal{G}^{R}$
- 13. Repeating the previous argument (points 1 12), but with Left playing first, one can verify that we have that $\mathcal{H}^{L} \subseteq \mathcal{G}^{L}$ and $\mathcal{G}^{L} \subseteq \mathcal{H}^{L}$ which implies that $\mathcal{H}^{L} = \mathcal{G}^{L}$
- 14. We now have that $\mathcal{H}^{L} = \mathcal{G}^{L}$ and $\mathcal{H}^{R} = \mathcal{G}^{R}$ which implies that $\mathbf{G} \cong \mathbf{H}$.

Lemma 4.38

13 | 21

Lemma 4.38

If G = H and G is in canonical form, then each option of G is dominated by an option of H; i.e,

- 1. $(\forall \mathbf{G}^{\mathbf{L}})(\exists \mathbf{H}^{\mathbf{L}})$ such that $\mathbf{H}^{\mathbf{L}} \geq \mathbf{G}^{\mathbf{L}}$, and
- 2. $(\forall \mathbf{G}^{\mathbf{R}})(\exists \mathbf{H}^{\mathbf{R}})$ such that $\mathbf{H}^{\mathbf{R}} \leq \mathbf{G}^{\mathbf{R}}$.

On the next two slides, separate proofs are given for both parts of the Lemma. (Part 1 and Part 2). Note that the proofs of both parts are similar to one another and similar to the proof of Theorem 4.36.

Proof Lemma 4.38

14 | 21

Proof Lemma 4.38 (Part 1)

1. $\mathbf{G} = \mathbf{H} \rightarrow \mathbf{G} - \mathbf{H} = \mathbf{0} \rightarrow (\mathbf{G} - \mathbf{H})$ is a P-position.

- 2. If Left plays first and plays to any left-option G^{L} of G, the resulting position will be $G^{L} H$.
- 3. Right has a winning move on H (not on G^L , for then G^L would be a reversible option of G which contradicts the assumption that G is in canonical form)
- 4. Thus, Right can move to some H^L of H, such that $G^L H^L \leq 0 \rightarrow G^L \leq H^L$

Proof Lemma 4.38

15 | 21

Proof Lemma 4.38 (Part 2)

1. $\mathbf{G} = \mathbf{H} \rightarrow \mathbf{G} - \mathbf{H} = \mathbf{0} \rightarrow (\mathbf{G} - \mathbf{H})$ is a P-position.

- 2. If Right plays first and plays to any right-option G^{L} of G, the resulting position will be $G^{R} H$.
- 3. Left has a winning move on H (not on G^R , for then G^R would be a reversible option of G which contradicts the assumption that G is in canonical form)
- 4. Thus, Left can move to some H^R of H, such that $G^R H^R \ge 0 \rightarrow G^R \ge H^R$

Exercise 4.40

16 | 21

Exercise 4.40

Suppose that G = 0 with $\mathcal{G}^{L} \neq \emptyset$, that is, G is not in canonical form. Show that if $G^{L} \in \mathcal{G}^{L}$, then G^{L} is reversible.

In light of Exercise 4.40, the following observations are worth mentioning:

- The canonical form of any game G = 0 is obviously the empty game, since it has the smallest possible game-tree.
- In order to prove the previous point, we can repeat the argument that proves that $\mathcal{G}^{L} \neq \emptyset$ to prove that $\mathcal{G}^{R} \neq \emptyset$.

Exercise 4.40 - Proof

17 | 21

Exercise 4.40 Proof

- 1. $\mathbf{G} = \mathbf{0} \rightarrow \mathbf{G}$ is a P-position.
- 2. Since \boldsymbol{G} is a P-position, Right can win playing second on \boldsymbol{G} .
- 3. Should L play to some left-option G^{L} of G, G^{L} must have at least one right-option, for otherwise Left could win playing first on G which contradicts that G = 0.
- 4. Since Right can win playing second, there exists some option G^{LR} of G^{L} , such that $G^{LR} \leq 0 = G$ (equivalently, $G \geq G^{LR}$), which implies that G^{L} is a reversible option.

Example 4.41

18 | 21

Example 4.41

Find the canonical form of the 4×1 Domineering strip. Solution: Observe that the game is given by $\{1, 0|\}$. Clearly, left-option 0

is dominated by left-option 1, hence the game can be simplified to $\{1|\}$

Example 4.43

19 | 21

Example 4.43

Show that the canonical form of $G = \{-5|-2\}$ is G = -3. Solution:

G's right option -2 is not reversible, since it has no left-options. However, **G**'s left-option -5 has right-option $G^{LR} = -4$ Note that $G - G^{LR} \ge 0$, and thus $G \ge G^{LR}$. Thus, -5 is a reversible option and -4 is the reversing option. -4 has no left-options, therefore the replacement set is empty, and we have that $G = \{|-2\} = -3$

Example 4.46

20 | 21

Example 4.46

Show that the canonical form of $\{2, \{20| - 10\}|1\}$ is $\{2|1\}$. Solution:

The game is positive and the right option of $\{20| - 10\}$ is negative, thus it reverses out and is replaced by the Left option of -10, which does not exist and so $\{20| - 10\}$ disappears.

Conclusions

21 | 21

Conclusions

To conclude this presentation:

- For each set of games that are mutually equal, there exists a unique smallest version (e.g. the canonical form).
- Given any game **G** it is possible to obtain the canonical form by removing its dominated and reversible options, one by one.