# reference

Games, Puzzles, & Computation Robert A. Hearn Erik D. Demaine

E. Demaine and R.A. Hearn. Constraint Logic: A Uniform Framework for Modeling Computation as Games. In: Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, June 2008. http://www.dartmouth.edu/~rah/constraint-logic.pdf

> R.A. Hearn. Games, Puzzles, and Computation PhD thesis, MIT, 2006. <u>http://www.dartmouth.edu/~rah/</u>

# Games, Puzzles, & Computation Robert A. Hearn Erik D. Demaine

# 1.1 what is a game?

## complexity of

- board games (2p) *chess*
- puzzles (1p) *rush hour*
- simulation (0p) game of life
- teams
- bounded state
- moves
- players, goal









combinatorial game theory algorithms mathematical theory



### economic game theory von Neumann, Nash strategy, optimization expected profit

computational complexity
 models of computation
 turing machine

# outline



1.2 computational complexity classes (turing machine) resources time polynomial Ρ exponential 2<sup>p(n)</sup> EXPTIME space **PSPACE**  $P \subseteq PSPACE$ EXPSPACE nondeterminism 3 NP VS. P PSPACE = NPSPACEalternation ∃∀∃∀...

 $\mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME} \subseteq \mathsf{EXPSPACE}$ 

X-complete X-hard vs. in X

# complexity theory

 $\mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME} \subseteq \mathsf{EXPSPACE}$ 

# NSPACE( s(n) ) $\subseteq$ TIME( 2^O(s(n)) ) NSPACE( s(n) ) $\subseteq$ SPACE( s<sup>2</sup>(n) ) Savitch's theorem

space & time hierarchy  $[N]P \subset [N]EXPTIME$ PSPACE  $\subset EXPSPACE$ 

# constraint logic



# implementing gates

intuitive meaning of vertices



p.17

# planar crossover gadget

formal proof Lemma 5.10



## game categories

#### game categories and their natural complexities

rush hour Theorem 9.20 sliding blocks Theorem 9.8

| unbounded | PSPACE               | PSPACE            | EXPTIME   | undecid           |
|-----------|----------------------|-------------------|-----------|-------------------|
| bounded   | Р                    | NP                | PSPACE    | NEXPTIME          |
|           | zero pl.<br>simulat. | one pl.<br>puzzle | two p1.   | team<br>imperfect |
|           |                      | nondeterm.        | alternat. | informat.         |

*peg solitaire* Table A.7 p.174

```
I. games in general
```

5. one-player games (puzzles)

Thm 5.9 NCL is PSPACE-complete via QBF

Thm 5.12 ..., even for *planar graphs* using restricted vertex types

II. games in particular
9. one-player games (puzzles)

Thm 9.11 Plank puzzles are PSPACE-complete via NCL