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Abstract

Nonograms, also known as Japanese puzzles, are in fact image reconstruction problems

that can be solved by logic reasoning. Nonograms can have widely varying difficulty

levels. Although the general Nonogram problem is NP-hard, the instances that occur

in puzzle collections can usually be solved by hand.

This paper focuses on a subclass of Nonograms that can be solved by a sequence of

local reasoning steps. A difficulty measure is defined for this class of so-called simple

Nonograms, which corresponds to the number of steps required to reconstruct the

image. In the first part of this paper, we investigate the difficulty distribution among

this class, analyze the structure of Nonograms that have lowest difficulty, and give

a construction for the asymptotically most difficult problems. We also provide some

graphs to give insight into the search spaces of the problems at hand. The second part

of the paper deals with the task of constructing Nonograms, based on a given gray

level image. We propose an algorithm that generates a set of Nonograms of varying

difficulty that all resemble the input image. Finally we mention some issues for non-

simple Nonograms.

1 Introduction

A Nonogram, also known as a Japanese puzzle in some countries, is a type of logic puzzle
which can be considered as an image reconstruction problem. The goal is to find an image
on a rectangular pixel grid that adheres to certain row and column (briefly: line) constraints.
Usually, the image is black-and-white, although Nonograms with more than two gray values
exist as well. In addition to elementary logic, solving Nonograms requires some elementary
integer calculations. The combination of a logic problem with integer calculations results in
a combinatorial problem that can be approached using methods from combinatorial opti-
mization, logical reasoning or both, which makes Nonograms highly suitable for educational
use in Computer Science [13, 16].

From a more general point of view, Nonograms fit into the concept of Discrete Tomogra-
phy. This is an extensive research area, closely related to the field of Computed Tomography,
with applications ranging from medicine to crystallography. For more information, the in-
terested reader is referred to [6, 7, 4, 5].

Figure 1(a) shows an example of a small Nonogram. Its (unique) solution is shown
in Figure 1(b). The Nonogram description for each row and column indicates the order
and length of consecutive unconnected black segments along those lines. For example, the
Nonogram description “2 1” in the first row indicates that from left to right, the row contains
a black segment of length 2 followed by a single black pixel. The black segments are separated
by one or more white pixels and there may be additional white pixels before the first segment,
and after the last segment.

Several implementations of Nonogram solvers can be found on the Internet; see, e.g.,
[14, 19]. In [2, 10, 15, 16], evolutionary algorithms are described for solving Nonograms; and
in [18] neural networks are used. A heuristic algorithm for solving Nonograms is proposed in
[12]. The related problem of constructing Nonograms that are uniquely solvable is discussed
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Figure 1: A small Nonogram and its unique solution.

in [9]. In [3], a reasoning framework is proposed for solving Nonograms that uses a 2-SAT
model for efficient computation of reasoning steps.

In [17], it was first proved that the general Nonogram problem is NP-hard. This also
follows from the fact that Nonograms can be considered as a generalization of the recon-
struction problem for hv-convex sets in discrete tomography, which is NP-hard [20]. On the
other side of the difficulty spectrum are the Nonograms that can be found in puzzle collec-
tions, which can usually be solved by hand, applying a sequence of elementary reasoning
steps. In this paper, we focus on this latter class of Nonograms, referred to as the simple
type in [3]. Such Nonograms can be solved without resorting to branching, yet there can
still be a large variance in the number of steps required to find solutions. In [1] a difficulty
measure for this class is proposed and analyzed. In particular, a construction for a family of
Nonograms that have asymptotically maximal difficulty, up to a constant factor, is provided.

This paper, based on [1, 3], is structured as follows. In Section 2, notation is introduced
to describe the objects of this paper and their properties. We provide an efficient algorithm
to process single lines, leading to a Nonogram solver that deals with so-called simple Nono-
grams. Both the simple class and the difficulty measure are defined in Section 3, where
also further motivation is provided for studying this particular difficulty measure, and its
distribution is analyzed for small Nonograms. Section 4 considers the question what the max-
imum difficulty can be, as a function of Nonogram size. A construction is given that obtains
asymptotically maximal difficulty for Nonograms of arbitrarily large size. Section 5 deals
with an application of this difficulty concept: constructing Nonograms of varying difficulty
that resemble a gray level input image. An algorithm is proposed for this task, illustrated
by some computational experiments. In Section 6 we mention some results (taken from [3])
that extend beyond those for simple Nonograms. Section 7 concludes this paper.

2 Basic notions and algorithms

We first define notation for a single line (i.e., row or column) of a Nonogram. After that, we
combine these into rectangular puzzles. Let Σ = {0, 1}, the alphabet of pixel values (more
general alphabets are also allowed). We usually refer to 1 as black and 0 as white. While
solving a Nonogram, the value of a pixel can also be unknown. Let Γ = Σ ∪ {?} = {0, 1, ?},
where the symbol ? refers to the unknown pixel value.

A (general) description d of length k > 0 is an ordered series (d1, d2, . . . , dk) with dj =
σj{aj , bj}, where σj ∈ Σ and aj , bj ∈ {0, 1, 2, . . .} with aj ≤ bj (j = 1, 2, . . . , k). The curly
braces are used here in order to stick to the conventions from regular expressions; so, in
σj{aj , bj} they do not refer to a set, but to an ordered pair. Any such dj will correspond
with between aj and bj characters σj , as defined below. Without loss of generality we will
assume that consecutive characters σj differ, so σj 6= σj+1 for j = 1, 2, . . . , k − 1. We will
sometimes write σ∗ as a shortcut for σ{0,∞} (for σ ∈ Σ) and σ+ as a shortcut for σ{1,∞},
where ∞ is suitably large number. We use σa as a shortcut for σ{a, a} (a ∈ {0, 1, 2, . . .}),



and we sometimes omit parentheses and commas; also σ0 is omitted. A finite string s over
Σ adheres to a description d (as defined above) if s = σc1

1 σc2
2 . . . σck

k , where aj ≤ cj ≤ bj for
j = 1, . . . , k. As an “example”, consider the following description:

d = (0{0,∞}, 1{a1, a1}, 0{1,∞}, 1{a2, a2}, 0{1,∞}, . . . , 1{ar, ar}, 0{0,∞})

with ai > 0 (i = 1, 2, . . . , r). This is exactly what we consider to be a Nonogram descrip-
tion a1a2 . . . ar for a line (row or column), where we only mention the lengths of consec-
utive non-touching series of 1s. Note that it has length 2r + 1 and can also be written as
0∗1a10+1a20+ . . . 1ar0∗.

A string s ∈ Γℓ (ℓ ≥ 0) can be (fully) fixed to a string t ∈ Σℓ (referred to as a fix )
if sj = tj whenever sj ∈ Σ (1 ≤ j ≤ ℓ). Loosely speaking, one should replace the ?s, or
unknowns, with pixel values; we also say that we fix these string elements. If s ∈ Γℓ can be
fixed to a string in Σℓ that adheres to a given description d, s is called fixable with respect
to d; in that case the Boolean function value Fix (s, d) is defined to be true, and otherwise
false. The formal operation Settle (s, d) constructs a (unique) string from a fixable string s
and a description d by replacing all ? symbols in s for which all strings in Σℓ that adhere to
the description d have the same unique value, by this value. In other words, all pixels that
must have a certain value in order to adhere to the description, are set to that value. As an
example, for s = ?1?1?0????? (with ℓ = 11) and Nonogram description d = 3 2 1 (so general
description 0∗130+120+110∗), we have Settle (s, d) = 011100?1???.

In [3], an efficient, polynomial-time algorithm is described for performing the Settle
operation on a string, by using dynamic programming. Before we elaborate on this, we
introduce some more general notations, also because it makes it easier to formulate our
results. For a string s = s1s2 . . . sℓ of length ℓ over Γ, define its prefix of length i by
s(i) = s1s2 . . . si (1 ≤ i ≤ ℓ), so s = s(ℓ); s(0) is the empty string. Similarly, for a description
d = (d1, d2, . . . , dk), put d(j) = (d1, d2, . . . , dj) for 1 ≤ j ≤ k, so d = d(k); d(0) = ǫ is the

empty description. Furthermore, let Aj =
∑j

p=1 ap and Bj =
∑j

p=1 bp; put A0 = B0 = 0. We
note that a string of length ℓ < Ak is certainly not fixable with respect to d, simply because
it has too few elements; similarly, a string of length ℓ > Bk is not fixable with respect to d.
Finally, for σ ∈ Σ, s ∈ Γℓ and 1 ≤ i ≤ ℓ, let Lσ

i (s) denote the largest index h ≤ i such that
sh /∈ {σ, ?}, if such an index exists, and 0 otherwise. We will put Fix (i, j) = Fix (s(i), d(j)).
The value Fix (ℓ, k) then determines whether s is fixable with respect to d.

The value Fix (i, j) can be expressed recursively using only terms Fix (i′, j′) with i′ < i
and j′ < j. This allows for efficient evaluation of Fix (i, j) by dynamic programming. As
boundary values we note that Fix (0, j) = true if and only if Aj = 0 (j = 0, 1, 2, . . . , k); and
Fix (i, 0) = false for i = 1, 2, . . . , ℓ. We clearly have Fix (i, j) = false if i < Aj or i > Bj

(0 ≤ i ≤ ℓ, 0 ≤ j ≤ k), as indicated above.
The main recursion, valid for general alphabets Σ, is:

Proposition 1 The function Fix satisfies

Fix (i, j) =

min(i− aj , Bj−1)∨

p = max(i− bj , Aj−1, L
σj

i (s))

Fix (p, j − 1) (1)

This holds for i and j with 1 ≤ i ≤ ℓ, 1 ≤ j ≤ k and Aj ≤ i ≤ Bj.

Note that an empty disjunction is false; this happens for example if L
σj

i (s) ≥ i − aj + 1.
For j = 1 we have Fix (i, 1) = true if and only if Lσ1

i (s) = 0.

Proof The validity of the recursion can be shown as follows. The last part of s(i) must
consist of between aj and bj characters σj ; say we want σj at positions p + 1, p + 2, . . . , i.
We then must have aj ≤ i − p ≤ bj . Also note that all elements sp+1, sp+2, . . . , si must be
either ? or σj ; this holds exactly if L

σj

i (s) ≤ p. Finally, the first part of s(i), i.e., s(p), must
adhere to d(j−1). Clearly, p must be between Aj−1 and Bj−1, otherwise this would not be
possible. �



Note that the Aj and Bj terms can be considered to represent general tomographic
restrictions. It is natural to implement this recursive formula by means of dynamic pro-
gramming, using lazy evaluation: once a true Fix (p, j − 1) is found, the others need not be
computed.

Now given a string s over Γ that is fixable with respect to a description d, it is easy to
find those unknowns that have the same value from Σ in every fix: these elements are then
set at that value. Indeed, during the computation of Fix (s, d) (which of course yields true),
one can keep track of all possible values that lead to a fix. In Equation (1) those Fix (p, j−1)
that are true correspond with a fix, where the string elements sp+1, sp+2, . . . , si are all equal
to σj . Now one only has to verify, for each string element of s, whether precisely one element
from Σ is allowed. In practice this can be realized by using a separate string, whose elements
are filled when “specifying” s, and where those elements that are filled only once are tagged.
(Here the fact that |Σ| = 2 comes in handy.) Note that for this purpose lazy evaluation is
not an option, since we need to examine all fixes.

The complexity of the computation of Fix (ℓ, k) is bounded by k · ℓ2: at most k · ℓ values
of Fix (i, j) must be computed, and each such computation can be performed in O(ℓ) time,
including the evaluation of L

σj

i (s). In practice, especially when using lazy evaluation, the
complexity is much lower.

An m× n Nonogram puzzle description D consists of m > 0 row Nonogram descriptions
r1, r2, . . . , rm and n > 0 column Nonogram descriptions c1, c2, . . . , cn. An image P = (Pij) ∈
Σm×n adheres to the description if all lines adhere to their corresponding description. A
Nonogram N consists of a pair (D,P ), where D is a Nonogram puzzle description and P is
an image in Γm×n. Usually we will assume that all lines in P are still fixable with respect to
their corresponding Nonogram descriptions. Solving such a puzzle means finding an image
P ′ ∈ Σm×n that adheres to D, and where every line in P is fixed to the corresponding line
in P ′. The image P can be viewed as a partial solution.

3 The difficulty of simple Nonograms

A Nonogram puzzle description is called simple if it can be (uniquely) solved by applying a
sequence of Settle operations, each time using only information from a single row or column,
starting from an image with only ?s. In other words, it is never necessary to consider infor-
mation from several rows and columns simultaneously. Nearly all Nonograms that appear in
puzzle collections satisfy this property. From this point on, we focus on the class of simple
Nonograms. Note that for Nonograms of the simple type, there is a bijective map between
the set of images and their descriptions. Therefore, we sometimes use the term Nonogram
to refer to either the image, or its description.

Even though the order of applying the Settle operations does not affect whether or not
a solution can be found, the required number of operations depends heavily on the order in
which rows and columns are selected. We define the following operations:

• The operation h-sweep (N) applies the Settle operation to all rows of the Nonogram
N : a horizontal sweep.

• The operation v-sweep (N) applies the Settle operation to all columns of the Nonogram
N : a vertical sweep.

Both operations return the “updated” Nonogram, usually having fewer unknowns.
Now the difficulty of a Nonogram of the simple type is determined by starting with an

image N for which all pixel values are unknown, and running the algorithm in Figure 2. The
algorithm starts with a horizontal sweep, intertwines horizontal and vertical sweeps, and
counts the total number of sweeps until the Nonogram is solved. It is clear that any m× n
Nonogram of simple type has complexity at most equal to mn+1, since every sweep (except
perhaps the first one) must at least fix one unknown pixel. By definition, the algorithm
terminates if and only if N is of the simple type.



Difficulty (N) :
diff ← 0;
while N is not solved do

if diff is even then N ← h-sweep (N);
else N ← v-sweep (N); fi

diff ← diff + 1;
od

return diff ;

Figure 2: Algorithm that solves a simple Nonogram and determines its difficulty.

We remark that our definition of “difficulty” is rather subjective. Quantifying the amount
of work required to solve a particular Nonogram is not straightforward, as it depends on the
particular solution strategy employed. In Section 5, we will consider the task of constructing
Nonograms of varying difficulty that resemble a gray level input image. As these Nonograms
are intended to be solved by human puzzlers, it is important that the difficulty measure
corresponds to the amount of work required by a puzzler to solve the Nonogram. We observed
that while solving Nonograms, people rarely combine information from several rows and
columns simultaneously, which motivates studying the simple class. A major advantage of
the proposed measure is that it does not depend on the order in which individual rows and
columns are considered. The only degree of freedom in this strategy is whether one starts
with the rows or columns. This choice can make a difference of at most 1 in the resulting
difficulty. An interesting property of Nonograms is that small local changes in the image
can have a profound impact on the solution process for the corresponding Nonogram. The
difficulty can vary wildly, by changing just a single pixel.
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Figure 3: Number of Nonograms of a given size as a function of difficulty level. In (d), the
vertical axis has logarithmic scaling.

The proposed difficulty measure can be computed efficiently, by using the Settle algorithm
from Section 2. This allows for enumeration of a large set of Nonograms, to perform a
statistical analysis of the difficulty distribution. Figure 3(a-c) shows the difficulty histogram
for all simple square Nonograms of size 4×4 up to 6×6, obtained by a complete enumeration.



Note that all these Nonograms have a unique solution. It can be observed that a large fraction
of all simple n×n Nonograms (4 ≤ n ≤ 6) has low difficulty (close to n), while high difficulty
Nonograms (difficulty close to 1

2n
2) occur rarely. For n = 6, out of 236 ≈ 7 · 1010 images,

70.76% yields a Nonogram of the simple type. (In Section 6 we will discuss the remaining
ones.) Figure 3(d) shows the same histogram using a logarithmic scale. It can be observed
that the average difficulty is 4.51, whereas the difficulty can be as large as 26.

Similar trends can be observed for larger Nonograms, but an exhaustive search is no
longer easily possible in that case. An interesting question is how the maximum possible
difficulty varies with Nonogram size. A Nonogram of high difficulty should satisfy two prop-
erties:

• In each consecutive h-sweep and v-sweep only a few new pixels should be determined.
Ideally, this number of newly discovered pixel values should be bounded by a constant.

• In each consecutive h-sweep and v-sweep the value of at least one new pixel should be
determined, as otherwise the Nonogram is not of the simple type.

For a Nonogram of size n×n, n2 + 1 is obviously an upper bound on its difficulty. However,
it is not clear at all that the maximum difficulty that can be reached increases linearly with
the number of pixels. In the next section, we will show how to construct arbitrarily large
Nonograms for which the asymptotic difficulty is 1

2n
2, which demonstrates that the upper

bound can be attained up to a constant factor.
Before we examine these Nonograms of high difficulty, we will consider two boundary

cases; proofs can be found in [3]. We first note that it is easy to see whether a line can be
fully fixed by a single application of the Settle operation. Indeed, let d = a1a2 . . . ak be a
Nonogram description with

∑k
i=1 ai+k− 1 ≤ ℓ (which means that ?ℓ is fixable with respect

to d). Then we have Settle (?ℓ, d) ∈ Σℓ if and only if
∑k

i=1 ai + k− 1 = ℓ. This property can
be easily used to characterize Nonograms of difficulty 1: all rows should have it. Finally, we
characterize those situations where the Settle operation cannot infer any information:

Lemma Let d = a1a2 . . . ak again be a Nonogram description with
∑k

i=1 ai + k − 1 ≤ ℓ.

Then we have Settle (?ℓ, d) = ?ℓ if and only if
∑k

i=1 ai + k − 1 ≤ ℓ−max1≤i≤k ai. �

4 Difficult Nonograms

In this section we will construct certain m × n Nonograms of the simple type that require
approximately 1

2mn sweeps, thereby attaining a very high difficulty. More precisely, we show:

Theorem Let m satisfy m = 8k+2 for some integer k ≥ 1, and take an even integer n with
n ≥ 14. Then there exists an m×n Nonogram that requires A(m,n) = (m+2)(2n−15)/4+10
sweeps (if k > 1). If k = 1, so m = 10, the Nonogram requires 6n−37 sweeps. For square n×n
Nonograms of this special type (so n = 8k + 2 with integer k ≥ 2) we need (n2 − 11

2 n+ 5)/2
sweeps.

The remaining part of this section is devoted to the construction of these special m × n
Nonograms, and to the proof that the number of sweeps is equal to A(m,n), as mentioned
in the theorem. Slightly abusing notation, we will employ regular expressions for Nonogram
descriptions, e.g., we will use 2(13)2 instead of the “official” 2 1 3 1 3; and we will write
“description” instead of the more formal “Nonogram description”.

Figure 4 shows the construction for m = n = 18. It is possible to give similar construc-
tions for slightly varied values of m and n, for instance for odd width, but we will not go
into detail on this. The slightly different value (2 less than the general formula predicts) if
k = 1 is explained by a small case difference in the construction, see below.

The construction proceeds as follows. There are k rows with description n, i.e., consisting
of only 1s. These rows, the so-called split rows, being the (8i − 1)th rows (1 ≤ i ≤ k), are
fully fixed in the first h-sweep. Furthermore, all columns, except for the first, second and
last one, have description 13k+1 (where σr denotes a sequence of r copies of a sequence σ).
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Figure 4: Overview of the construction of an 18 × 18 Nonogram with difficulty 115. The
construction can be extended in the vertical direction by inserting consecutive copies of the
marked block. Extension in the horizontal direction is straightforward.
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Figure 5: Contents of a 3-strip after the third sweep (n = 18). Gray squares denote unknown
pixels.

After the first v-sweep, the rows immediately above and below the split rows are therefore
filled with 0s in all these columns, referred to as the middle columns. Any three such rows
together, i.e., split row and rows immediately above and below it, form a so-called 3-strip.
Each row above a split row has description 1, each row below a split row has description 12.
The second 1 can in the third sweep also be fixed easily at the end of the row. So together
any 3-strip will —after the third sweep— look like Figure 5.

Now the Nonogram is in fact separated by the 3-strips into k parts of height 5, called
the 5-strips, and a final part consisting of the bottom two rows, called the 2-strip. All these
parts must be solved in turn, as will be clear from the sequel.

Note that the 5-strips are all alike, except for the first one, which is used for bootstrapping
the solver procedure. Within each 5-strip, the middle row will be filled with 10n−1 after the
third sweep (its description is a single 1), and then the top two rows of the 5-strip will
be solved, largely pixel by pixel, from right to left; after that the bottom two rows of the
5-strip will be solved in a similar fashion, from left to right, again largely pixel by pixel. The
traversals from the top two rows to the bottom two rows within each 5-strip, and from each
5-strip to the next 5-strip or the final 2-strip, require special care. These traversals, combined
with 5-strip solving, all invert the direction in which pixels are fixed, thereby constituting a
zig-zag pattern.

The descriptions for the first, second and last columns are (32)k1, (112)k1 and 2(13)k,
respectively.

Let us, to begin with, concentrate on the first (and special) 5-strip. The descriptions of its
rows are 121n/2−3, 21n/2−32, 1 (as said above), 21n/2−7(21)2 and 1n/2−6213, respectively. The
other 5-strips have a slightly different description for the first two rows, namely (12)21n/2−72



and 1321n/2−6. The row descriptions for the final 2-strip are the same: these two rows can be
viewed as the top part of a regular 5-strip. In Figure 4 the resulting solved 18×18 Nonogram
is shown; note the two split rows.

One can verify that after the first three sweeps, the following pixels are fixed: most pixels
from the 3-strips (as mentioned above, cf. Figure 5; the five remaining unknown pixels are
used for the traversals within and between the 5-strips), the bottom right pixel of the
Nonogram (at 0), the two topmost pixels of the second columns from the left and right (at
01), and the entire middle row from each 5-strip (at 10n−1, as said above). This last filling
has the important property that in the middle columns, all 1s are now almost pinned: they
must be in either first or second row, fourth or fifth row, and so on. This enforces that all
5-strips must be solved in order, and really after one another.

Concentrating on the first two rows, one can see that after the fourth sweep, only six
pixels are fixed. The order, or rather the number of the sweep in which the pixels are found
(again for n = 18; circles denote black pixels) is shown in Figure 6. Here, for each two
unknown pixels immediately above one another (except for the leftmost two, where this fact
is not known yet), exactly one must be 1. This is inferred pixel by pixel, coming from the
right, and alternating between top and bottom row, thus contributing to the large number of
sweeps needed. The 2s in the descriptions are necessary for the construction of the traversal;
this also holds, in several variations, for other rows in 5-strips. Note that in the third sweep
no new pixel values are found for these rows.

31 2 30jkl27 27jkl26jkl23 22jkl19 18jkl15 14jkl11 10jkl 7 6jkl 2 4jkl

29jkl 1jkl29 28jkl28 25 24jkl21 20jkl17 16jkl13 12jkl 9 8jkl 5 1jkl 4jkl

Figure 6: Order in which pixel values are found for the first two rows.

Finally, let us examine the number of sweeps. From the construction it is clear that the
addition of two new columns (among the middle columns) increases the number of sweeps
by m + 2. Indeed, in every 5-strip we need an extra 8 sweeps, and the final 2-strip adds
another 4; together we get 8k + 4 = m + 2 of them. Therefore, A(m,n) should satisfy
A(m,n+ 2) = A(m,n) +m+ 2.

Furthermore, it is easy to see that every extra 5-strip and its accompanying 3-strip (as
shown in Figure 4) adds 4n+c sweeps, for some integer constant c. Careful inspection shows
that c = −30. We conclude that A(m,n) should satisfy A(m + 8, n) = A(m,n) + 4n − 30.
Using A(18, 18) = 115 we arrive at the closed formula.

Note that the traversal within the first 5-strip, that reverses the right-left direction into
a left-right direction, slightly differs from those in the other 5-strips. This causes the small
difference in the number of sweeps for k = 1. �

5 Generating simple Nonograms

In this section we describe an algorithm that produces a series of Nonograms of the simple
type of varying difficulty. The algorithm is rather flexible and offers many options that can
be customized. We only sketch these options here. The website [8] offers an implementation.

The generated Nonograms should resemble a given gray value image P ∈ {0, . . . , 255}m×n

We want these Nonograms not to look alike, and therefore maintain a set L of Nonograms
from which a newly generated Nonogram should differ. The newly found Nonogram is then
appended to L.

As a subroutine, the algorithm for generating Nonograms uses a straightforward gener-
alization of the Difficulty algorithm from Figure 2, referred to as FullSettle: instead of the
difficulty, the FullSettle operation returns the set of unknown pixels, where we let the sweeps
continue until they make no further progress. (This is equivalent to saying that there is no
single Settle operation that reveals an unknown pixel.) Note that in Section 2 the Difficulty



algorithm was applied to Nonograms of the simple type, where the algorithm terminates
by definition, whereas in the current application the Nonograms may not be solved, and
termination of FullSettle is effected when a sweep does not yield any new fixed pixels.

Furthermore, a function Init (P ) is used, that returns a 0–1 Nonogram that somehow
resembles P , e.g., by applying a threshold operation or a binary edge detection filter to the
gray level input image.

Generate (P,L) :
p← Init (P ); U ← FullSettle (p);
while U 6= ∅ do p← Adapt (p, U, P,L); U ← FullSettle (p); od
return (p,Difficulty (p));

Figure 7: Algorithm that generates a uniquely solvable Nonogram and its difficulty.

Pseudo-code for the algorithm Generate is shown in Figure 7. The main ingredient is
the function Adapt (p, U, P,L) that returns a Nonogram p′ that is equal to p, except for
(at least) one pixel that is 0 in p but is 1 in p′. Note that, since the number of black pixels
strictly increases, the loop in Generate indeed terminates: an all black Nonogram is certainly
uniquely solvable. Also note that upon entering Adapt at least one (i, j) ∈ U satisfies pij 6= 0;
indeed, if FullSettle (p) 6= ∅, it cannot be the case that all the unknown pixels must be 1.
The function Adapt proceeds as in Figure 8.

Adapt (p, U, P,L) :
min ←∞;
for all (i, j) ∈ U (in random order) do

if pij = 0 then

pij ← 1; % try new image, that differs in one pixel

value ← α · |FullSettle (p)|+ β · Pij + γ ·
∑

L∈L Lij ;
if value < min then min ← value; (k, ℓ)← (i, j); fi
pij ← 0; % restore original image

fi

od

pkℓ ← 1;
return p;

Figure 8: Algorithm that slightly adapts an image p.

Here suitable non-negative parameters α, β and γ must be chosen. So we want the
Nonogram to have a small amount of unknowns, we would like the changed pixel to be dark
in the original image, and many Nonograms from L to be white in that particular pixel. If
α = γ = 0, the final Nonogram will resemble the original P , but will usually be quite dark.
However, if β = 0, resemblance will be worse. High γ-values ensure diversity. Clearly, in
particular if L is large, it might be hard or even impossible to guarantee that the generated
Nonogram sufficiently differs from those in L.

In this way we get Nonograms of different difficulty, but usually quite hard ones. In
order to obtain Nonograms of more varying and usually lower difficulty, the algorithm from
Figure 9 can be used. It returns a set of at most depth uniquely solvable Nonograms together
with their difficulties, whose sets of black pixels strictly include that of the original p, and
can therefore in general be expected to have lower difficulty. Note that each Nonogram added
to M has at least one black pixel more than its predecessor. In fact, in practice uniquely
solvable Nonograms are encountered in nearly every iteration.

Figure 10 contains some examples. All pictures are of size 30 × 38. The first picture is
the original gray value image, from which the second is obtained by thresholding (aiming at
35% black pixels). For the third picture, an edge detection filter is applied. For the fourth
picture, empty lines were addressed (in Figure 10 this visible near the ear). The pictures in
the middle row are Nonograms of the simple type that have been generated consecutively
by the Generate algorithm starting from the third picture in the top row, and can therefore



Vary (p, P,L, depth) :
M← ∅; d← 0;
while d < depth and p has white pixels do

min ←∞; U ← {white pixels in p};
for all (i, j) ∈ U (in random order) do

pij ← 1; value ← α · |FullSettle (p)|+ β · Pij + γ ·
∑

L∈L Lij ;
if value < min then min ← value; (k, ℓ)← (i, j); fi
pij ← 0;

od

pkℓ ← 1; d← d+ 1;
if |FullSettle (p)| = 0 thenM←M∪ {(p,Difficulty (p))}; fi

od

returnM;

Figure 9: Algorithm that generates Nonograms of varying difficulty.

expected not to look alike entirely; the numbers indicate the difficulties; the parameters of
Generate were set at α = γ = 8 and β = 1. The pictures in the bottom row are obtained from
those immediately above them by the Vary algorithm with depth = 60; the final Nonogram
generated in the main loop is depicted (other ones could also have been chosen). The set L
contains the Nonograms from the second line created so far. Note that usually the difficulty
decreases steadily during this process, but certainly not always.

61 87 65 94 76 93 92 83

43 47 47 62 48 55 34 43

Figure 10: Nonograms of Alan Turing (1912–1954). The theme “Enigma” seems appropriate.

6 . . . and beyond

In this section we will mention some issues related with non-simple Nonograms. The presen-
tation is based on [3], but here we will restrict ourselves to examples and graphs to illustrate
our points.

Let us first address other solving strategies. In the example from Figure 11a, Settle operations
do not provide any further information (note the row with the empty Nonogram description
ǫ, which is only adhered to by a string with five 0s). Therefore, the Nonogram is not of the
simple type. It is, however, uniquely solvable. This can even be proved by straightforward
logic. For the four pixels a, b, c and d in the bottom left corner one can deduce a dependency
graph as in Figure 11b, where, e.g., an arrow from d to ¬b means that if d is black, b must be
white. This follows from the description of the second column. Equivalently, one can look at
the corresponding Boolean formula, part of it being (¬d∨¬b). Indeed, we arrive at a 2-SAT
problem in this way.
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Figure 11: (a) Partially solved Nonogram; (b) (part of) its corresponding dependency graph.

We can now search for variables that must have the same truth value in all satisfying
assignments. Assume that at least one such assignment exists. Then a variable x is false
in all satisfying assignments if and only if there is a path from x to ¬x in the dependency
graph. Alternatively, x must be true in all satisfying assignments if and only if there is such
a path from ¬x to x. For the example from Figure 11a we can infer that c is false (or 0);
now a few more Settle operations suffice to solve the puzzle.

Note that existence of a cycle in the dependency graph, containing both x and ¬x, implies
that no satisfying truth assignment exists. If we can assume that a given Nonogram has at
least one solution, and that we only fix the value of pixels that must have the same value in
all solutions, such a cycle will never occur.

The dependency graph model provides a polynomial-time algorithm for finding all vari-
ables that must have the same value in all satisfying assignments of the 2-SAT problem. Note
that it is indeed possible to apply general SAT- or CSP-solvers to the problem of solving
Nonograms; see [3] for some more information.

In Section 3 all Nonograms of small sizes were enumerated, see Figure 3. Figure 11 presented
a small Nonogram of non-simple type, where its solution required some more sophisticated
arguments. However, as the example from Figure 12 shows, small Nonograms can still be
harder. The above-mentioned 2-SAT approach does not yield any progress here.

1

2

1

2

1

2 1

1

1 1 1

x

Figure 12: Partially solved 5 × 5 Nonogram, where the fact that pixel x must be white is
hard to infer. The gray pixels are still unknown.

It is clear that different levels of solvers exist, the one that by definition solves simple
Nonograms (called FullSettle in Section 5) being the easiest. Figure 13 and Figure 14 provide
some statistical information regarding this issue, where different percentages of black pixels
and puzzle sizes are addressed. Here, Solver0 applies a combination of the Settle operation
and the 2-SAT approach, as described above. And Solver1 furthermore also allows for single
“guesses” of the value of a pixel, which in case of a contradiction can be fixed to the other
value.

We finally mention some issues concerning (non-)solvability of Nonograms, and we pay spe-
cial attention to puzzles with multiple solutions. Nonograms (not those in puzzle collections,
of course) can have more than one solution. Figure 15a shows a small example, referred to
as an elementary switching component : four pixels, two black and two white, such that in-
terchanging the black and the white pixels does not change the description. However, where
the non-uniqueness problem for Discrete Tomography allows an elegant description based
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Figure 13: (a) Average number of unsolved pixels for randomly generated 30×30 puzzles, for
a varying percentage of black pixels, when using Solver1 ; error bars indicate the standard
deviation (100 runs for every percentage). (b) As (a), for FullSettle (top graph), Solver0
(middle graph) and Solver1 (bottom graph), without standard deviation.
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Figure 14: (a) Average number of unsolved pixels for randomly generated puzzles of different
size, with a fixed percentage of 50% black pixels, again using Solver1 ; error bars indicate
the standard deviation. The smooth curve is the total number of pixels. (b) As (a), but now
showing these values as percentage of the total number of pixels.
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(b) More complex types of switching components for Nonograms

Figure 15: Switching components in Nonograms, containing up to six unknowns.

on these elementary switching components [11], the non-uniqueness problem for Nonograms
appears to be much more complex. The problem of deciding whether another solution of a
Nonogram exists, given a particular solution, is NP-hard [17].

We now focus on cases, where only a small subset of the pixel values is not uniquely
determined by the Nonogram description. Suppose that we have a given Nonogram, and
that it is possible (using the approach of this paper, for example) to determine the value
of all pixels, except for a small set of u > 0 unknown pixels or unknowns. We first note



that each line with unknown pixels should contain at least 2 unknowns. This implies that
u ≥ 4 and u 6= 5. If u = 4, the unknowns form a rectangle (Figure 15b, left), similar to an
elementary switching component. However, in Nonograms the existence of such switching
components is not only determined by the value of the four corner pixels, but also by the
values of the pixels along the four sides of the rectangle and by the pixels adjacent to the four
corners. On a single line with 2 unknowns, depicted from left to right, we note that left of the
leftmost unknown we must have a 0 pixel (or the image boundary), and a similar observation
holds for the rightmost unknown. And we have precisely 2 solutions here. Between the two
unknowns we must have only 1s, or a series of solitary 1s with variable length blocks of 0s
in between: in regular expression notation (0+1)∗0+.

If we consider u = 6, we either have two lines with 3 unknowns each (and in the other
direction three lines with 2 unknowns each), or three lines with 2 unknowns each in both
directions (Figure 15b, right). In the former case we have 3 solutions, where in between two
unknowns we can only have the (0+1)∗0+ situation, in the latter case there are precisely 2
solutions — as in the u = 4 case. In all these situations, unknowns cannot touch.

7 Conclusions and further research

Nonograms are interesting study objects, due to their links with both combinatorial opti-
mization and logic reasoning, as well as their rich variety of combinatorial properties. In
this paper, we focused on the set of simple Nonograms, which can be solved by a series of
reasoning steps involving only a single column or row at a time. We proposed a difficulty
measure for this class, which corresponds roughly with the solution strategy followed by
human puzzlers and has favourable computational properties.

After studying the basic notions, we described a family of Nonograms that have asymp-
totically maximal difficulty, up to a constant factor. An interesting question remains if the
difficulty can still be increased to cn2, where c ∈ ( 12 , 1]. Next, we briefly described an al-
gorithm for generating Nonograms of varying difficulty. The basic steps of this algorithm
allow for a broad spectrum of variants, each yielding different types of Nonograms. Finally
we mentioned some issues related to non-simple Nonograms. We intend to explore these in
future work.
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