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92 SOLUTIONS

arranged on an # X » chessboard in such a way as to control all squares
of the board is [(n + 2)/3]%

Remark. It is not hard to see from a consideration of fig. 38b that for »
divisible by 3 there is exactly one way in which (»/3)% kings can be arranged on
a board of #® squares so as to control the entire board. For values of n which
feave a remainder of 1 or 2.upon division by 3, [(n + 2)/312 kings ¢an be arranged
on the board in such a way as to control all squares of the beard in many
different ways; we leave it to the reader to compute the number of such arrange-

ments.

41a, There cannot be more than one queen in any column of the chess-
board; hence it is impossible to arrange more than eight queens on an
8 x 8 chessboard in such a way that none of them lies on a square

controlled by another.

07 v

Fig. 39

On the other hand, we can actually put 8 queens on the board so as to:
satisfy this condition; one such arrangement is shown in fig. 39. .

It can be shown that on an crdinary chessboard there are 92 differgn
arrangements of eight queens which satisfy the condition imposed. (See, for:
example, M. Kraitchik, Mathematical Recreations, New York, 1942, p. 251.)

41b. There cannot be more than one queen in any column of the chess
board (since otherwise two queens would each control the square occupied
by the other); hence it is impossible to arrange more than n queens on:2
n % n chessboard so as to satisfy the hypothesis of the problem. :

If a single queen is put on a 2 X 2 chessboard, then it will contro
all squares of the board and thus no second queen can be put o . the
board (fig: 40a). On a 3 X 3 chessboard, one can arrange two queens S
as to satisfy the hypothesis (fig. 40b), but it is impossible to do so with
three queens. On a 4 X 4 or 5 X 5 chessboard it is possible to arrange
four or five queens respectively, none of which lies .on a square controll

by another (fig. 40c and d). .
‘ B oplossingmn
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which the previous one lies; similarly with the remaining & queens..

Thus, the only way in which two of them could lie on the same positive
diagonal would be for one of the first k queens to lie on the same positive
diagenal as one of the second k queens. But this is impossible since the
first k queens lic above the diagonal which joins the lower left-hand
corner of the board to the upper right-hand corner, and the other k
queens lie below this diagonal. Hence no two of the queens lie on the
same positive diagonal. :

Tf two squares of the board lie on the same negative diagonal, then

the sum of the row number and the column number is the same for’

both of them. Conversely, if the sum of the row number and column
number is the same for two squares, then they lie on the same negative
diagonal. The row number of each of the squares on which the first
k queens lie is twice the column pumber, The remaining k queens 1
in the (k 4- 1)st through 2k-th columns; the column number of t

square in which one of these queens lies is thus of the form k& - s, where

s isa positive integer at most equal to k; itisnot hard to see that the corre
sponding row number is 25 — 1. For r = 1,2,...,k, the sum of the row

and the column numbers of the square containing the r-th queen, s

2r + r = 3r; consequently, for each of the first k queens this sum has.
different value, which means that no two of them lie on the same negativ
diagonal. Similarly, the sum of the row and column numbers for the
(k - s)th queen (s = L2,....kis@s—1D+E-+5)=3s-+k:
which takes a different value for each value of 5; consequently, no two f
the last k queens lie on the same negative diagonal. The only remaining
possibility is that of one of the first k queens (say, the r-th) lies on the AT

negative diagonal as one of the last k queens (say, the (k + s)th). This
will happen if and only if

3p =34k — 1, thatis, 3(r—s)+1=Fk=+4no0r
6(r—s)+2=mn

This js possible only when # leaves a remainder of 2 upon division by
Thus, for even » of the form 6 or 6m + 4, fig. 41 gives an arrangemen
n queens on the chessboard for which none of the queens lies ona squa;
controlled by another. , _
Forn = 6m + 2, fig. 41 leads to an arrangement in which two guee
control each other. But even in this case we can find an arrangemen
n queens, none of which lies on'a square controlled by another, altho
this arrangement is more complicated than the preceding one. One s
arrangement is shown in fig. 42 for the case of # = 14 (compare also
fig. 39). Here, in the #/2 — 3 columns starting with the 2nd and en
with the (/2 — 2)nd, a queen is put in cvery other row starting wit

3rd (that is, the queen in the 2nd column lies in the 3rd row, that in'th
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that is, if » > 6. Similarly, the queens lie respectively on the negative

diagonals whose numbers are
n—3,4,7,10,13, ..., 302 -8 nj2 —1,3n2—2,
nj2 + 2, 3n/2 + 1,12 48, 02+ 11,024 14,

:\w+:_..:n=|93+m“ ,

where the dots denote terms of an arithmetic progression with difference -
3. The numbers 4, 7, 10, 13, ..., 3nj2 — 8, 3n2 — 2, 3n/2 + 1 all give'
remainders of 1 on division by 3, nf2 -1, n2+2, nj2 + 8, 2 + 11
w2 +17,...,2n— 4 ave all divisible by 3 (recall that we are dealing with
an n of the form 6m +2); n—3 and 1 3 give remainders of 2 on.
division by 3. Itis immediately clear from this that none of the numbers
occurs more than once.
It now remains only to show that on an 7 % n board, where the
number 7 is odd and =35, it is possible to arrange n queens in such a way
that none of them lies on a squat@ which another controls. But this
becomes clear if one notes that in all the above arrangements constructed
for even n, there are no queens on the diagonal joining the lower left-hand
corner to the upper right-hand corner. Consequently, we can arrange %
queens on anz X # board (n odd) in the following way: on the leftmiost
n — 1 columns and bottom n — i rows, n — 1 gueens are arranged.in
such a way that none of them controls another according to the.aboy
scheme (this is possible since n — 1 is even), and the remaining queen .
placed in the upper fi ht-hand corner of the board. These n queen - wil

satisfy the required condition (

see, for example, fig. 44 ,whe

, fig. 44 ,where a -

Emsw, Mﬂmﬁ mco.ozm onal5 x 15 board squares is illustrated) " ATange

e WOMHMHGE@ ﬁ.w.m number of different arrangements of » queens on an
in which none of the queens lies on a square controlled by
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42a. Since 2 knight on a white square contro
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S one square of each pair can be occupied by a knight. It follows from this

that no more than four knights can be arranged in one of these rectangles

in such a way that none of them lies on a square controlled by another,

Therefore, the total number of knights which can be arranged in such a

way on the chessboard is at most 4 x 8 = 32,

. ' i ing so
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. ‘
lved problem is that of de S e a0 that

/ et unso :
e R aeen be arranged on an 7

o] 42b, We must determine how many arrangements of 32 knights on a

chessboard are such that none of them lies on a square controlled by
another. Two such arrangements present themselves immediately: we
can put the 32 knights on all the white squares of the board, or on all the
black squares of the board. Let us prove that there are no other arrange-
ments. : _

Divide the board once more into eight rectangular sections as
indicated in fig. 46. On each section we must arrange exactly four knights
(since we have 32 knights to dispose of and by the argument of part a, no
more than four can be in any one section). Consider now how four
knights can be arranged on the lower left-hand rectangle (we will call this
the first rectangle).

Let us first try putting knights in each of the bottom two squares of
this rectangle (these squares are marked by circles in fig. 47a). In this case
we nust leave empty the squares of the first rectangle which are marked by
crosses: the two squares in the third row are controlled by the two
knights, and the square in the second row marked with a cross must be
left free since otherwise the three knights would control five squares of the
second rectangle (that is, the one to the right of the first rectangle), and
consequently it would be impossible to arrange four knights in that
rectangle without one of them lying on a square controlled by another
knight. Since the 2 squares marked with asterisks in fig. 47a cannot both
be occupied, we must have a knight in the upper left-hand corner of the
first rectangle. This leaves only ‘two possible arrangements: those
indicated by the circles in fig. 47b and 47c. If we arrange the knights on
the squares of the first rectangle marked by circles in fig. 47b, then the
squares of the second rectangle marked with circles will have to be the ones
with knights on them (since the other four squares of the second rectangle

re controlled by the knights in the first rectangie); but then only two
knights could be put in the third rectangle (namely, on the squares
marked with circles), since the other six squares are controlled by the
knights in the second rectangle. Consequently, this possibility must be
discarded. Finally, if we arrange the knights as in fig. 47¢, then the
Kknights in the second rectangle can be placed only in the first and fourth
ows; then in the upper left rectangle, the knights can be placed only in
he top two rows (since the other four squares of this rectangle are
ontrolled by the four knights in the fourth row). But then the knights on
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