
Using a Probable Time Window

for Efficient Pattern Mining

in a Receptor Database⋆

Edgar H. de Graaf and Walter A. Kosters

Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
{edegraaf,kosters}@liacs.nl

Abstract. The analysis of sequences is one of the major research areas
of bio-informatics. Inspired by this research, we investigate the discov-
ery of sequential patterns for use in classification. We will define varia-
tions of a fit function that enables us to tell if one pattern is “better”
than another. Furthermore we will show how domain knowledge can be
used for faster discovery of better sequential patterns in specific types of
databases, in our case a receptor database.

1 Introduction

Sequence analysis has many application areas, e.g., protein sequence analysis
and customer behavior analysis. We investigate extraction of features for pro-
tein sequence classification where features are sequential patterns : ordered lists
of items (for proteins the items are amino acids). As a motivating example, we
would like to know if a protein sequence, an ordered list of amino acids, belongs
to the Olfactory family or not, where the Olfactory family is a group of proteins
than deals with smell. We focus on a special group of proteins called GPCRs.
These G-protein-coupled receptors (GPCRs) play fundamental roles in regulat-
ing the activity of virtually every body cell [17]. Usually classification is done
unsupervised using alignment, however in the case of GPCRs this turned out to
be difficult. Fortunately, we know for some protein sequences whether they are
of the Olfactory family or not. These sequences can thus be divided into two dis-
joint classes: Olfactory and No-olfactory, and from these classes we can extract
sequential patterns to be used as attributes in a classification algorithm (as is
being proposed in [12]). The question we try to answer in this paper is which
sequential patterns are best used as features/patterns? And how can domain
knowledge be used to improve the search for such patterns?

Classification based on sequential patterns is also applicable in many other
areas. For example, in the case of customer behavior analysis, we might want to
characterize groups of clients based on sequential patterns in their behavior.

The “best” sequential patterns are discovered through a function that judges
patterns. In Section 2 we will discuss different instances of this function and

⋆ This research is carried out within the Netherlands Organization for Scientific Re-
search (NWO) MISTA Project (grant no. 612.066.304).

14 Edgar H. de Graaf and Walter A. Kosters

select one for our purposes. Section 3 adapts the PrefixSpan algorithm of [15]
to deal with this function. In addition, a pruning strategy is introduced in Sec-
tion 4, increasing efficiency by first searching in a certain area of the sequence,
the probable time window. Section 4 also describes how preferring small patterns
can further increase classification performance. The effectiveness of these im-
provements will be shown in Section 5. Earlier work on this subject has been
presented at BNAIC2005 [7].

Related work. Our algorithms will be based on the pattern growth approach
called PrefixSpan proposed in [15]. Classification by means of patterns has
been done before but not so much in the sequence domain. We now mention
related work in the non-sequence domain. Apriori-C [9] constructs classification
rules by extending the Apriori algorithm [2, 3]. Apriori-C discovers a large
number of rules from which a fixed number of rules with the highest support are
selected. Apriori-SD [10] solves the problem of selecting the right rules with
subgroup discovery. This algorithm selects a subgroup of rules by calculating
their weighted relative accuracy. This means that the probability of a pattern
occurring in a class is compared with the probability of its occurrence outside
the class. This is weighted with the probability of a class. Most class association
rule mining algorithms work with unordered sets of items frequently occurring
together in item sets. Classification with association rules is presented in [13] and
[14]. Furthermore CorClass [18] describes an algorithm that also works with
item sets. It introduces a new method of pruning. Specialized rules are only added
if the upper bound of its correlation is higher than the minimal correlation of k
rules. In our work we use a similar method of pruning. Much work has been done
in the field of molecular feature mining, e.g., the MolFea algorithm described
in [11]. MolFea employs a level-wise version space algorithm to discover those
molecule fragments often occurring in one data set and less often in another.
Finally some other researchers try to use domain knowledge to speed up the
search for frequent patterns, e.g., the Carpenter algorithm presented in [5]. In
this work the authors perform row enumeration instead of the standard column
enumeration done in Apriori-like algorithms. This is done because biological
data sets often have many columns/items and only a few rows.

2 The Maximal Discriminating Patterns

One would like to select the best patterns for use as attributes in a classification
algorithm. But how can we tell if one pattern is better than the other? In this
section we will first explain the notion of support and why it is less useful for
selecting the best pattern. Next we introduce the notion of confidence which
will give more useful patterns, but it also has disadvantages. Finally we will
discuss and motivate so-called maximal discriminating patterns, enabling us to
have patterns specific to one class, but without the disadvantages of confidence.

Assume given a database D with D = D1∪D2∪ . . .∪Dc, with c classes. The
Di’s (1 ≤ i ≤ c) are mutually disjoint and not empty.

Probable Time Windows for Efficient Pattern Mining 15

Each record in the database is a non-empty finite sequence (i.e., an ordered
list) of items from the set Σ = {A,B,C,. . . }, e.g., (C,B,G,A,A,A,C,B). Now fit

0
is

defined as support (as used in association rule mining algorithms like Apriori

[3]), because support can be seen as a measure of how well a pattern fits the
data. Commonly a sequence d is said to support a pattern s if the pattern is
contained (in the set sense) in the sequence:

supp
0
(s, d) =

{

1 if for all i (1 ≤ i ≤ k) there is a j (1 ≤ j ≤ ℓ) with si = dj ;
0 otherwise,

for s = (s1, s2, . . . , sk) and d = (d1, d2, . . . , dℓ). This means that s is a subset of
d. We then can define fit0:

fit0(s, Di) =
1

|Di|

∑

d∈Di

supp0(s, d)

(1 ≤ i ≤ c), where s is a pattern.
We now specialize support to sequences. A sequence d = (d1, d2, . . . , dm)

is called a super-sequence of a sequence s = (s1, s2, . . . , sk) if k ≤ m and for
each si (1 ≤ i ≤ k) there is a dji

(1 ≤ ji ≤ m) with si = dji
and ji−1 < ji

(i > 1). We denote this with s ≺ d. The sequence s is called a sub-sequence

of d. This defines sequential patterns on sequences of items. (Another definition
of sequential patterns was given by Agrawal et al. in [3], in which they define
sequential patterns on sequences of item sets). We now let

supp
1
(s, d) =

{

1 if s ≺ d;
0 otherwise,

and define fit
1

in the same way as fit
0

was defined using supp
0
.

Now fit1 or fit0 by itself is not useful for selection of features for classification.
One of the patterns of size 1 will always have the highest fit and these small
patterns are probably often present in more than one Di. Thus the presence of
such a pattern will not give a good distinction between classes.

The next most logical step is to use confidence to select the best patterns.
The patterns xr (1 ≤ r ≤ c), one for each class, are then chosen to maximize
confidence (fit1(xr, Dr)|Dr|)/(fit1(xr, D)|D|). The class t of sequence s is the t
(1 ≤ t ≤ c) where xt ≺ s. If more than one t is possible we select based on
the highest confidence. One is selected at random if more than one class t has
a pattern with the highest confidence. If there is no t where xt ≺ s then the
sequence could be said to be “undecided”.

A problem is that we only pick one pattern per class. This is plausible if a
family of a sequence is only decided by one sequence of features. However, it
is often the case that the class of a sequence is decided by multiple patterns.
Moreover there can be constraints on the pattern. This means that the class
deciding pattern xt with the constraint is not necessarily equal to the xt without

the constraint. As a consequence it is usually possible to find a combination
of patterns with a better classification performance. Finally it is possible that a

16 Edgar H. de Graaf and Walter A. Kosters

single sequential pattern xt is equal for two or more classes, and as a consequence
a classification will be done at random. This problem will occur with a lower
probability if we use multiple patterns for each class.

Another major drawback of the confidence method is that the size of the
Di’s seriously influences the classification. E.g., assume we have databases D1

and D2. Furthermore assume D1 contains 500 sequences and D2 only 100. The
pattern p1 occurs 100 times in D2 and 60 times in D1, thus a confidence with
respect to D2 of 0.625. Another pattern p2 occurs 70 times in D2 and 10 times
in D1, giving a confidence of 0.875. The pattern p2 will be used for classification
if no other pattern has a higher confidence. However p1 occurs in every sequence
of D2 and only in a small percentage of the sequences in D1. One could argue
that p1 should be preferred over p2.

Therefore we define fit2, which we use in the sequel. For a pattern s and 1 ≤
q, r ≤ c we define δ(s, Dq, Dr) = fit

1
(s, Dq)−fit

1
(s, Dr), and we let fit2 (s ,Dr) =

min{δ(s, Dr, Dq) | 1 ≤ q ≤ c ∧ q 6= r}. We then choose patterns xr (1 ≤ r ≤ c)
with maximal fit2 (xr ,Dr). We can then use them to classify sequences as before,
without the drawbacks mentioned above. We will usually find those patterns
that are characteristic for one class. With characteristic we mean that fit1 will
have a high value in Dt and a lower value in the other Di

′s, i 6= t.

Our new fit has some similarities with the concept of emerging patterns pre-
sented in [4] and [6]. In order to discover emerging patterns patterns are preferred
where the ratio fit1(s, D1)/fit1(s, D2) is the highest, where D1 and D2 are two
databases each containing one class of sequences. Bailey et al. [4] further investi-
gate jumping emerging patterns. These are patterns that have a support of zero
in D2 and a non-zero support in D1. Emerging patterns can also be defined in a
way similar to fit2, but now using fit1 (s ,Dq)/fit1 (s ,Dr) instead of δ(s, Dq, Dr).
Dong et al. [6] point out that the growth rate measure used by emerging pat-
terns doesn’t take into account the coverage, a problem they solve with a score
function. However in the case of fit2 coverage is less of a problem, a pattern with
a low fit1(s, D1) is less likely to have a high fit2 value. Also the fit2 measure
allows us to more easily explain and implement the pruning rules that will be
discussed in the remainder of this paper.

Classification algorithms usually need a limited number of attributes. In or-
der to classify a sequence s we use a finite number of n sequential patterns
pt
1
, pt

2
, . . . , pt

n per class t, where fit2(p
t
1
, Dt) ≥ fit2(p

t
2
, Dt) ≥ . . . ≥ fit2(p

t
n, Dt)

and pt
n has the n-th highest fit2 for all possible patterns. These patterns, the

so-called maximal discriminating patterns, could be used by any classification
algorithm when we first convert each sequence to a vector indicating for each
pattern if it is contained in the sequence, see [12]. However it is possible that,
e.g., pt

1
is supported by all or most of the sequences supporting pt

2
. Thus pt

2

might not improve classification. This problem could be solved by removing all
sequences containing pt

1
from Dt. The algorithm for searching the sequence with

maximal fit is then again applied to this subset of Dt in order to find pt
2
. In

this paper we do not further focus on the precise classification performance, but

Probable Time Windows for Efficient Pattern Mining 17

rather on the discovery of the discriminating patterns. Our algorithm aims at
finding the set P = P t of maximal discriminating patterns.

3 Algorithm without Domain Knowledge

Our pattern search algorithm, coined PrefixTWEAC (Time Window Explo-
ration And Cutting), is based on PrefixSpan. The algorithm does not generate
candidates, but it grows patterns from smaller patterns. This principle makes
it faster than most Apriori like algorithms [15]. PrefixSpan is a depth first
algorithm, which will be explained in more detail in Section 4 when we adapt
this algorithm to our current needs (see Algorithms 1 and 2). PrefixSpan as
described in [15] searches for those patterns with support larger than or equal to
a given support threshold minsupp, where support is defined as fit

1
. The algo-

rithm starts with all frequent sub-sequences of size one. For each sub-sequence
a projected database is created. These frequent sub-sequences are extended to
all frequent sub-sequences of size two by only looking in the projected database.
This projected database is a database of pointers to the first item occurring after
the current pattern, also called the prefix. A sequence is only in the projected
database if it contains the prefix. Again for each frequent sub-sequence of size
two a corresponding projected database is created. This process continues recur-
sively until no extension is frequent anymore.

PrefixTWEAC (Algorithm 1) is different from PrefixSpan in that it
searches for the maximal fit2 instead of the maximal support fit1 . The func-
tion fit2 is by definition not anti-monotone (so fit2(s1, Dt) > fit2(s2, Dt) might
happen, where s1 is a super-sequence of s2). However the anti-monotone prop-
erty for fit

1
can still be used in two ways, when looking for the one pattern with

maximal fit2. First of all in PrefixTWEAC we only examine an extended pat-
tern p if fit1(p, Dt) ≥ minsupp where minsupp is the support threshold. Secondly
p is not further examined if fit

1
(p, Dt) < current n-th maximal fit, where current

n-th maximal fit is the current n-th best fit of all patterns found while searching.
The value of fit

2
(p, Dt) will never become larger than the current n-th maximal

fit, because it can at most become fit1(p, Dt). Note that CorClass uses similar
methods to prune [18].

4 Domain Specific Improvements

In the previous section we stated that fit2 can be used to “prune”: certain pattern
extensions are not further examined because they can never lead to the maximal
fit2. The faster we get to a large fit2 for the n-th pattern in P = P t the better,
because all extensions with a lower fit

1
(p, Dt) can be pruned. The improved

version of PrefixTWEAC will be explained in the sequel.
If we consider protein sequences then pattern discovery might be done faster

and/or classification might improve when using certain knowledge about the
sequences:

18 Edgar H. de Graaf and Walter A. Kosters

Algorithm 1 The PrefixTWEAC algorithm

PrefixTWEACCore(prefix, projected database)
1. For all items i that can extend the prefix
2. new prefix = prefix extended with item i

3. Count w1 = fit
1

in the projected databaset for new prefix
4. Calculate f2 = fit

2
for new prefix

5. Create a projected database new projected database with new prefix
6. Get δmin , the lowest fit

2
in P

7. Get smin , fit
1

corresponding with the lowest fit
2

in P

8. if w1 ≥ minsupp and |P | < n then
9. Add new prefix to P

10. Call PrefixTWEACCore(new prefix, new projected database)
11. else if w1 ≥ minsupp and w1 ≥ δmin then
12. if f2 > δmin or
13. (f2 = δmin and w1 > smin) or
14. (f2 = δmin and w1 = smin and new prefix ≺ pn) then
15. Remove pn from P and add new prefix to P

16. Call PrefixTWEACCore(new prefix, new projected database)

– Protein sequences are sequences of amino acids. Certain parts of such a
sequence are shaped like a helix in 3D space. These helices will probably
contain most of the maximal fitting sequences since parts outside the helix
have more variation in size and content. Patterns (partially) outside the helix
are less likely to occur in most members of the protein family.

– Small patterns are preferred. Smaller patterns are less specific and biologists
prefer smaller patterns in their analysis.

For certain problems we know the approximate area of important features,
e.g., protein sequences should have most of the discriminating patterns in the
helix. Also in other problems this might be the case, for example — in the case
of customer relations — customers tend to behave differently during the night.
These probable time windows can easily be defined with an inclusion vector.
An inclusion vector is a vector v = (v1, v2, . . . , vn), vi ∈ {0, 1} (1 ≤ i ≤ n).
This vector will indicate where to search in the first phase of the algorithm, see
Algorithm 2. We then let

suppPTW

1
(s, d) =

{

1 if s ≺ d/v;
0 otherwise,

where (d/v)i = di if vi = 1 and $ otherwise ($ 6∈ Σ), so only positions with
nonzero vi are considered.

First PrefixTWEACExt (Algorihtm 2) is applied to the databases Dt,
one at a time, each time starting with an empty P = P t. After using Pre-

fixTWEACExt with the inclusion vector we apply PrefixTWEAC (Algo-
rithm 1) without the vector to the remaining states stored in the state database
S.

Probable Time Windows for Efficient Pattern Mining 19

Algorithm 2 PrefixTWEAC Extended: extension using the probable time
window
PrefixTWEACExt(prefix, projected database)
1. For all items i that can extend the prefix
2. new prefix = prefix extended with item i

3. Count fit
1

for new prefix:
4. w1 = fit

1
in the projected databaset without the inclusion vector, using supp

1

5. w2 = fit
1

in the projected databaset with the inclusion vector, using suppPTW

1

6. Calculate f2 = fit
2

for new prefix (without the inclusion vector)
7. Create new projected database (without using the inclusion vector)
8. Get δmin , the lowest fit

2
in P

9. Get smin , fit
1

of the lowest fit
2

in P

10. if w1 ≥ minsupp and |P | < n then
11. Add new prefix to P

12. Call PrefixTWEACExt(new prefix, new projected database)
13. else if (w1 ≥ minsupp and w2 < minsupp) or
14. (w2 ≥ minsupp and w1 ≥ δmin and w2 < δmin) then
15. storeState(S,new prefix, new projected database)
16. else if w2 ≥ minsupp and w2 ≥ δmin then
17. if f2 > δmin or
18. (f2 = δmin and w1 > smin) or
19. (f2 = δmin and w1 = smin and new prefix ≺ pn) then
20. Replace pn with new prefix
21. Call PrefixTWEACExt(new prefix, new projected database)

Figure 1 shows an example of the extensions made to a sequence A. The
dotted lines are extensions that do not have a high enough fit1 and fit2 inside
and outside the probable time window. These extensions and their extensions
are pruned. The dashed lines indicate extensions that are currently good enough
with regards to the entire sequence only. Finally the solid lines are already good
enough when we only count patterns inside the probable time window.

If we prefer small patterns, then we can add a new rules, using so-called
smallest maximal discriminating patterns to improve classification:

– fit1(s, Dr) = 0 for all r (1 ≤ r ≤ n, r 6= t). Then fit2 of the extended patterns
will never increase.

– fit1(s, Dt) ≤ fit2(p, Dt) where both p and s are sequences and s is created
by extending p. Then fit

2
of the extended patterns will never be better than

the fit2 of p.

These rules sacrifice some completeness for classification performance; if exten-
sions do not improve a smaller pattern then they are not always explored further.
These pruning rules will not lower classification performance because they leave
out only non-improving extensions. Rather the classification is expected to im-
prove because the set of patterns will contain less small variations of the same

20 Edgar H. de Graaf and Walter A. Kosters

Fig. 1. Extending the single item sequence A

pattern. We will from now on abbreviate the use of these rules with SP or “small
patterns”.

Protein sequences usually are very long, about 300 amino acids. However
these sequences are constructed out of only 20 types of amino acids. We need
to use constraints to make the problem tractable. It was chosen to use the time
window constraint, because the discovered patterns will be concentrated in one
area. The time window constraint means that the distance between the first and
last item of the pattern in the sequence is bounded by some constant. This is
easily implemented in the algorithm used. It was also considered to use the gap

constraint [1], that allows some gaps in the matches. However this constraint
would have required more memory, e.g., if we count fit1 of (A,C,G) and we want
to know whether the sequence (A,C,C,C,G) contains it. Furthermore assume the
maximal gap is 1, thus in the sequence one letter is allowed between two letters
of the pattern. If the algorithm only looks at the first C then the gap constraint
will be broken because the gap between the C and the G is 2. An algorithm has to
check two C’s to match (A,C,G). PrefixSpan will have to add both projections
to the projected database for at least two C’s. One other reason for not using the
gap constraint is that it would allow patterns to be spread all over the sequence
as long as it doesn’t break the gap constraint.

5 Experimental Results

The experiments are aimed at showing the effectiveness of the pruning rules we
described. The protein sequences used during our experiments where extracted
from the GPCRDB website [8]. The effectiveness was also tested on a synthetic
data set: the two classes consist of 1000 sequences of length 130, having 20 item
types. First each item is chosen with a uniform probability and then we insert
one of ten patterns at each starting position within the time window (position
20 to 60) of class one with 80% probability.

Probable Time Windows for Efficient Pattern Mining 21

The results are shown in Figure 2 and Figure 3. All experiments were done
on a Pentium 4 2.8 GHz with 512MB RAM. On the horizontal axis in the graphs
we have the number of used sequences in the data set. As both synthetic and
protein data set have two classes, we take one half of these sequences from the
first class and the rest from the second class. In the case of the GPCRDB
Olfactory data set the first class contain the Olfactory sequences and the second
class the No-olfactory sequences. Furthermore the GPCRDB Amine data set
contains Amine and Peptide sequences. With this data we want to show that
some groups of sequences are harder to distinguish. On all the vertical axis we
have the pruning effectiveness indicated by a real number between 0 and 1. This
effectiveness is calculated by dividing the search time by the worst search time
in the experimental results. During the experiments we searched for the 100
maximal discriminating patterns in the GPCRDB and 10 in the synthetic data
set, each with a time window of 8 and a minsupp of 0. Note that time window and
probable time window are different concepts. The experiments on the synthetic
data are done to indicate that the probable time window can improve pruning
efficiency. Other experiments will show the effectiveness of the method in the
case of GPCRDB data.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

800 1000 1200 1400 1600 1800

P
ru

ni
ng

 E
ffe

ct
iv

en
es

s

Number of Sequences

PTW only
Using both

Not using PTW or SP

Fig. 2. Effectiveness on the GPCRDB
Olfactory/No-olfactory data set

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

800 1000 1200 1400 1600 1800

P
ru

ni
ng

 E
ffe

ct
iv

en
es

s

Number of Sequences

Using both
PTW only

Not using PTW or SP

Fig. 3. Effectiveness on the synthetic
data set

Figure 2 shows the effectiveness of using probable time windows (PTW) of
Algorithm 2 and pruning when using “small patterns” (SP) on the GPCRDB
Olfactory data. The algorithm not using PTW or SP is shown in Algorithm 1.
Note that SP lowers pruning effectiveness with regards to the GPCRDB Olfac-
tory data, because less variations of the same pattern fill up the set of patterns.
Some of the patterns discovered with this data set were used for classification:
these two protein families (Olfactory and No-olfactory) could be correctly dis-
tinguished in more than 90% of the cases, depending on the chosen time window
size and the classification algorithm at hand.

In the synthetic data set we have most of the best patterns in the probable
time window. The n-th pattern p will get a large fit2 earlier in the search,

22 Edgar H. de Graaf and Walter A. Kosters

thus more extensions can be ignored. Figure 3 shows the effectiveness as the
number of sequences in the synthetic data set increases when searching for the
10 maximal discriminating patterns. The “small pattern” rules (SP) increase the
effectiveness even further, because in the synthetic data set many patterns are
quickly non-improving.

Table 1. Confusion matrices of Olfactory (GPCRDB) patterns without (left) and with
(right) “small patterns” (SP)

classified as classified as
no-olfactory olfactory

no-olfactory 2015 22

olfactory 16 1909

classified as classified as
no-olfactory olfactory

no-olfactory 2024 13

olfactory 22 1903

Table 2. Confusion matrices of Amine/Peptide (GPCRDB) patterns

classified as classified as
amine peptide

amine 489 16

peptide 3 1091

The confusion matrices of Table 1 and Table 2 were generated using the
C4.5 implementation by Weka [16] with the 10 (Olfactory) and 20 (Amine) best
patterns discovered in the GPCRDB data. In Table 1 we get a slightly bet-
ter classification in 10-fold cross-validation when using SP: 99.12% instead of
99.04%. This is as expected because the set of 10 patterns used in Table 1 will
contain less small variations of the same pattern. The results of Table 2 required
20 patterns instead of 10. The Amine/Peptide problem is more difficult than
the Olfactory/No-olfactory problem and it requires more patterns. The effect
of SP on classification is small, however to show that the difference in classi-
fication performance is significant a two-tailed unpaired t-test was performed.
Ten-fold crossover with 1999 sequences was done 100 times with two groups of
50 Amine/Peptide patterns, with and without SP, and a time window of 4. The
t-value of 6.420 with a probability of less than 0.001 of happening by chance
shows that the patterns found with SP classify significantly better when using
the C4.5 algorithm with these patterns as attributes.

Figure 4 shows less improvement of the pruning effectiveness. This is be-
cause the patterns in the probable time window of the Amine sequences are less
discriminating compared to the patterns in the probable time window of the
Olfactory sequences. We still need to evaluate many patterns if the δmin stays
low, even though we might find the maximal discriminating patterns quickly.

Probable Time Windows for Efficient Pattern Mining 23

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 550 600 650 700 750 800 850 900 950 1000

P
ru

ni
ng

 E
ffe

ct
iv

en
es

s

Number of Sequences

PTW only
Using both

Not using PTW or SP

Fig. 4. Effectiveness on the GPCRDB Amine/Peptide data set

6 Conclusion

In this paper we introduced and compared two sequential pattern mining algo-
rithms by using knowledge from the application area of protein sequence analysis.
Given some assumptions, we can improve mining for the maximal discriminating
patterns. The effectiveness depends on the quality of the assumptions, e.g., how
probable a discriminating pattern is within a certain time window. Our method
also depends on the discriminative power of the patterns. Pruning will be less
effective if this is low, even though we might find the maximal discriminating
patterns quickly. It is shown that using probable time windows in protein se-
quences can speed up the search. Protein sequences are long but contain only a
few types of items; constraints are required to make the discovery of patterns in
these sequences tractable.

In future research we will further investigate methods for automatically dis-
covering the probable time window. Furthermore we plan to use maximal dis-
criminating patterns in other application areas like workflow analysis.

References

1. Antunes, C., Oliveira, A.L.: Generalization of Pattern-Growth Methods for Se-
quential Pattern Mining with Gap Constraints. In Machine Learning and Data
Mining in Pattern Recognition (MLDM 2003), Lecture Notes in Computer Science
2734, Springer, pp. 239–251.

2. Agrawal, R., Imielinski, T., Srikant, R.: Mining Association Rules between Sets of
Items in Large Databases. In Proc. of ACM SIGMOD Conference on Management
of Data (1993), pp. 207–216.

3. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In Proc. International Con-
ference Data Engineering (ICDE 1995), pp. 3–14.

24 Edgar H. de Graaf and Walter A. Kosters

4. Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast Algorithms for Mining
Emerging Patterns. In Proc. 6th European Conference on Principles of Data Min-
ing and Knowledge Discovery (PKDD 2002), Lecture Notes in Artificial Intelligence
2431, Springer, pp. 39–50.

5. Cong, G., Pan, F., Yang, J., Zaki, M.J.: CARPENTER: Finding Closed Patterns
in Long Biological Datasets. In Proc. Conference on Knowledge Discovery in Data
(SIGKDD 2003), pp. 637–642.

6. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by Aggregating Emerg-
ing Patterns. In Proc. International Conference on Discovery Science (DS-1999),
pp. 30–42.

7. Graaf, E.H. de, Kosters, W.A.: Efficient Feature Detection for Sequence Classifi-
cation in a Receptor Database, to appear in the Proceedings of the Seventeenth
Belgium-Netherlands Conference on Artificial Intelligence, BNAIC2005.

8. GPCRDB: Information System for G Protein-Coupled Receptors (GPCRs), Web-
site http://www.gpcr.org/7tm/.

9. Jovanoski, V., Lavrac̃, N.: Classification Rule Learning with APRIORI-C. In Proc.
10th Portuguese Conference on Artificial Intelligence (EPIA 2004), pp. 44–51.

10. Kavsẽk, B., Lavrac̃, N., Jovanoski, V.:APRIORI-SD: Adapting Association Rule
Learning to Subgroup Discovery. In Proc. International Symposium on Intelligent
Data Analysis (IDA 2003), Lecture Notes in Computer Science 2810, Springer, pp.
230–241.

11. Kramer, S., Raedt, L. De, Helma, C.: Molecular Feature Mining in HIV Data. In
Proc. Conference on Knowledge Discovery in Data (SIGKDD 2001), pp. 136–143.

12. Lesh, N., Zaki, M.J., Ogihara, M.: Mining Features for Sequence Classification.
In Proc. International Conference Knowledge Discovery and Data Mining (KDD
1999), pp. 342–346.

13. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining.
In Proc. Conference on Knowledge Discovery in Data (SIGKDD 1998), pp. 80–86.

14. Li, W., Han, J., Pei, J.: CMAR: Accurate and Efficient Classification Based on
Multiple Class-Association Rules. In Proc. of the 2001 IEEE International Confer-
ence on Data Mining (ICDM 2001), pp. 369–376.

15. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.: Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach.
IEEE Trans. Knowl. Data Eng. 16(11) (2004), pp. 1424–1440.

16. Weka 3: Data Mining Software in Java, Website
http://www.cs.waikato.ac.nz/ml/weka/.

17. Wess, J.: G-Protein-Coupled Receptors: Molecular Mechanisms Involved in Recep-
tor Activation and Selectivity of G-Protein Recognition, FASEB Journal 11 (5)
(1997), pp. 346–354.

18. Zimmermann, A., Raedt, L. De: CorClass: Correlated Association Rule Mining for
Classification. In Proc. International Conference on Discovery Science (DS-2004),
pp. 60–72.

