Maze Traversals

In this short note we will describe how we can solve every “maze”, without using any
graph properties.

A maze is an undirected connected graph, with two special nodes: the unique entrance
node and the unique ezit node. Furthermore, for each node its neighbours will be sorted in
a circular way. This means that if a path reaches a node, we can enumerate in a clockwise
way the edges that leave from this node, starting from the edge we just arrived from (which
is referred to as the 0" edge; in the entrance node we just fix some order). This can be
achieved by ordering the edges through their target number, in the case of a graph where
the nodes are labelled with unique integers. Each node also has a counter for its degree.
Using modular arithmetic, we can uniquely identify the k" edge (k € Z) when we arrive
at some node.

We consider a maze to be solved, if we can find a path, starting at the entrance node,
that visits the exit node. In that case, the path ends at this exit node, neglecting possible
further edges.

An ordered finite series S of integers (in Z) can be viewed as a path in any maze in the
following way. Suppose we have S = (s1,82,...,5) with s; € Z for ¢ = 1,2,...,k, and
s1 # 0. Then we start our path in the entrance node of the given graph, and take the
sth edge. For the following nodes we proceed in a similar way. If for some i > 0 we have
s; = 0, the path proceeds by using the edge just traversed in backward direction — which
corresponds with the 0 edge. In this way we traverse any maze, perhaps even solving it.
If some s-value happens to be 0 when we are in the entrance node, we just stay there.
We now note that this construction allows for paths to return to the entrance node, in any
graph. As an example, consider S = (2,3,7,0,—7, —3). Suppose for the moment that all
nodes have sufficiently large degrees, then the —7 causes the path to use the same edge
(in backward direction) as it did on the way out. If the degrees are too small, this same
phenomenon holds! If a sequence ends, the path also halts.

Next we observe that we can implement a sort of iterative deepening depth first traversal.
Indeed, fix a depth d > 1 and a width w > 1. Now concatenate — in some order — all
sequences (s1, 82, ..,84,0,—Sq, ..., —S2) where 0 < s; < w for all ¢ with 1 < ¢ < d, giving
a sequence Sq,,. Concatenate, for a fixed d, all Sy, with w < d, giving S;. Finally, build
an infinite sequence & by concatenating all sequences Sy for d = 1,2, ... This sequence
then solves all possible mazes. Note that we can even omit prefixes (consisting of complete
Saw’s). The sequence can be made finite by imposing an appropriate upper bound on the
d-values.

The sequence S begins with (use S; = (1,0)):

(1,0,1,1,0,—1,...)

Walter Kosters, August 19, 2015, w.a.kosters@liacs.leidenuniv.nl



