
Sokoban: Reversed Solving

Frank Takes (ftakes@liacs.nl)
Leiden Institute of Advanced Computer Science (LIACS), Leiden University

June 20, 2008

Abstract

This article describes a new method for at-

tempting to solve Sokoban puzzles by means

of an efficient algorithm, a task which has

proven to be extremely difficult because of

both the huge search tree depth and the large

branching factor. We present a way of solving

Sokoban puzzles that, using several heuris-

tics, starts from the final state of a puzzle,

and from there works its way back to the

initial state. This method makes the time-

consuming checking for a large portion of the

undesired deadlocks unnecessary, giving some

interesting results.

1 Introduction

We will start with a description of the game of
Sokoban and the obstacles that arise when attempt-
ing to solve a Sokoban puzzle by means of an efficient
algorithm. We will then discuss several solving meth-
ods, and finally present a new way of solving these
puzzles, eliminating some of the discussed obstacles.
The basic idea behind this method is to “reverse” the
puzzle: we work back from the final state to the ini-
tial state of the puzzle. This article ends with some
results of our solving method and several possible fu-
ture challenges when it comes to fine-tuning our solv-
ing method.

This paper is a condensed version of the Bachelor
Thesis [7].

2 Sokoban

Sokoban is a single player game that was created
around 1980 in Japan. Sokoban is Japanese for “ware-
house keeper”, which is a pretty straightforward name
judging from the fact that the goal of Sokoban is to
push boxes around in a room with obstacles. Other
than being a funny game, Sokoban has been an object
of study for those in the field of Computer Science and
Artificial Intelligence for quite some time. The reason

for this interest comes from the fact that humans can
often solve these puzzles in a few minutes doing sev-
eral hundreds of moves. However, solving a Sokoban
puzzle by means of an efficient algorithm has turned
out to be very hard, because of both the huge search
tree depth and the large branching factor.

Figure 1: Puzzle 1 from the original set.

2.1 The game

Sokoban has relatively simple rules. The game is
played on a two-dimensional field, usually of size
20 × 20 or smaller. We will describe the field’s cells
(squares) with coordinates (x, y), where the top left
corner corresponds to (0, 0). A cell contains one of the
following things: an empty square, a target square, a
wall, a box, the man, the man on a target square
or a placed box (combination of a target square and
a box). The amount of boxes is always equal to the
amount of target squares. The man, of which there
is only one, can move in four directions (tradition-
ally up, down, left or right), and he can only move to
target squares and empty squares. Additionally, the
man has the ability to push one box at a time. For-
mally, pushing a box from position (x, y) while the
man is standing at position (x − 1, y) is only allowed
if position (x+1, y) is either empty or a target square.
The same of course applies for the y-direction. As one
may have guessed, the man cannot be moved through

1



walls, neither can the boxes. Usually the playing field
is surrounded by walls, so that we will always be
bounded by walls and cannot reach the edge of the
field. In each puzzle the man starts at a certain fixed
position. Traditionally, the goal of Sokoban is to use
the man to push all of the the boxes onto the target
squares. While doing that, one could also try to mini-
mize the number of moves, or alternatively, minimize
the number of boxes pushed. In this article we will
just focus on trying to solve the puzzle.

Upon the its release in 1980, the original game
consisted of a set of 90 puzzles. The first puzzle, which
is shown in Figure 1, takes the average human proba-
bly less than five minutes to solve, while the last puz-
zle can most likely keep one busy for several hours.
While in the easy levels all target squares are grouped
together in some seemingly separate room, more dif-
ficult puzzles often have target squares all over the
playing field, which is one of the factors responsible
for an increase in difficulty.

2.2 Previous work

So far, the best known algorithm, developed at the
University of Alberta, is called Rolling Stone [3]. This
algorithm uses the IDA* algorithm along with sev-
eral domain-dependent improvements. The IDA* al-
gorithm on its own is not able to solve any puzzles,
but the domain-dependent improvements are respon-
sible for a large increase in performance, enabling
Rolling Stone to solve 59 out of 90 puzzles from
the original set. An interesting subclass of Sokoban
puzzles has been introduced [5], of which all puzzles
can be solved by means of a specialized algorithm
in a finite amount of time. More about this subclass
later. There has also been some research [8] on find-
ing the shortest Sokoban solutions for certain puzzles.
Japanese researchers claim [9] to have an algorithm
that can solve all 90 puzzles, however, neither papers
nor program specifications have been released.

3 Obstacles

3.1 Deadlocks

One of the biggest obstacles any human or algorithm
solving a Sokoban puzzle will experience is the pres-
ence of deadlocks.

A deadlock is a position that can not re-
sult in a correct solution of the puzzle.

We can roughly distinguish two kinds of dead-
locks. The first kind of deadlock is related solely to
the position of the boxes. For example, the player

could push a box next to a box that is adjacent to
a wall. Assuming the boxes are not both at a target
position, this would be an undesired and irreversible
position. Other examples are boxes in a corner, or 4
boxes aligned in a 2× 2 position, or other more com-
plex derived positions. Checking for these deadlocks
can be extremely difficult for an algorithm, as we may
have placed a box at the entrance of a very long tun-
nel with a dead end, so just looking in a 1, 2 or 3
block radius of the box is not near enough. We can
conclude from the above that it is extremely vital to
detect these deadlocks as they arise, but considering
that this can be very hard, it would be better if there
was a way to completely avoid these deadlocks. We
will present a solution for this problem later.

Other than deadlocks that solely depend on the
position of the boxes, one can also imagine states in
which the man is at a certain position from which
he cannot reach the other still unplaced boxes any-
more. Obviously we do not want this second form of
a deadlock to occur either, and have to find some way
to check for these situations as well, which can be even
harder than checking for the deadlocks that are solely
caused by the position of one or more boxes.

3.2 Amount of moves

During the execution of an algorithm that is attempt-
ing to solve a Sokoban puzzle, we will want to know
how close we are to a solution, and whether or not
the current state will likely lead to a correct solution.
Therefore it would be nice to have an indication of
the amount of moves that is necessary to solve the
puzzle. If we are trying to find an optimal solution,
this would be a nice upper bound to use. Nevertheless,
when looking for just some solution, we can still use
this bound as an indication. It is however extremely
hard to derive this upper bound, given some Sokoban
puzzle.

3.3 PSPACE-completeness

Sokoban has been proven to be PSPACE-complete
[1], which is the hardest set of problems in PSPACE.
PSPACE is the set of decision problems that can be
solved by a deterministic or nondeterministic Turing
machine using a polynomial amount of memory and
unlimited time. To put this into context, observe that
PSPACE is a superset of NP.

2



4 Solving Methods

4.1 Single-Agent brute-force

The first idea that comes to mind of any algorithm
designer is a brute-force approach. The theoretical
branching factor in a single-agent search algorithm
for solving Sokoban is 4 (up, down, left and right),
but with a little reasoning we can reduce this to an
average factor somewhere in between 2 and 3, as we
will rarely want to move a step back (unless we pre-
viously moved a box, and want to walk away from it
again), and cannot move through walls or boxes. If,
for the sake of simplicity, we assume that the branch-
ing factor is about 2.5, and the length of an average
solution is about 200 moves, we would end up with a
complexity in the order of 2.5200, an astronomically
large number. That is, assuming we find the right so-
lution, as we may just push a box in a corner, cause
a deadlock, and then consider another 1000 moves
before noticing we did something wrong. Even with
some heuristics preventing these rather dumb mis-
takes, this single-agent approach is obviously not the
most efficient because of the huge complexity.

Figure 2: Puzzle 13 of the original set, with unsafe
box positions (× and +).

4.2 Multi-Agent brute-force

We can also look at the game in a multi-agent way,
an approach that is already quite a bit smarter. We
see each box as an individual that is trying to move
towards a target square. In order to be able to move,
the boxes need to get the man to move behind them,
and get the man to push them towards their target
positions. Ignoring the checking for whether or not
the man can actually reach the box (and how he can
reach it), with n boxes, this method actually increases
the branching factor to 4n (or 2.5n), as at any time
during the solution we may want to start moving an-
other box, or just keep moving the box we previously

moved. With an average number of moves of 200, of
which maybe 50 are box moves, this approach would
lead to a complexity of about (2.5n)50, which would
still not be near good enough. This major branching
factor and search tree size obstacle clearly also rules
out a pure brute-force approach. We will have to do
better.

4.3 Heuristics

While solving a puzzle, several heuristics can be ap-
plied to both the single-agent and multi-agent ap-
proach. One of these heuristics is marking unsafe posi-
tions. Places where we never want a box to be placed,
can be marked using a simple algorithm, which starts
by marking corners. Note that a corner is defined
by its two direct neighbours, a position (x, y) is a
bottom-left corner if positions (x−1, y) and (x, y−1)
are walls. We can mark these corners in advance, we
do this with a + symbol in Figure 2. For each pair of
marked corners, we can now check if the squares on
the line between these corners are positioned along a
wall. All positions along this wall, assuming they are
not target squares, are also dangerous and marked
with an × symbol in Figure 2.

Never considering the positions discussed above is
an obvious improvement. However, consider the posi-
tion marked with the ∗ symbol in Figure 2. For the
current setup of boxes, moving a box to that posi-
tion will lead to a deadlock. We can however not
detect this in advance, so during the execution of
an algorithm there will have to be frequent checks
for these deadlocks to make sure they do not occur.
Other heuristics for Sokoban that have been intro-
duced are pattern search, move ordering, deadlock ta-
bles (to quickly on the fly detect local deadlocks), and
macro moves. All of these have been implemented in
the Rolling Stone [3] algorithm.

5 Multi-Agent Reversed Solv-

ing with Heuristics

As described in the previous sections, deadlocks can
be extremely annoying and are therefore never de-
sired. The solving methods above all have to deal
with these deadlocks, and have to apply some kind
of deadlock detection. Our method, Reversed Solving,
reverses the game, working from the solution back to
the original puzzle. The man no longer pushes boxes,
but pulls them instead. Pulling is defined as follows:

A box at position (x − 1, y) can be pulled

to (x, y) if the man is standing at posi-
tion (x, y) and position (x + 1, y) is either

3



empty or a target square.
A similar condition of course applies for
pulling in the y-direction.

Figure 3: Pushing and pulling in three situations.
This method completely eliminates the need for

box deadlock detection and prevention, as undesired
states related to the position of the boxes can never
be reached. In Figure 3, in the first situation, the man
can push the box to the right and create a deadlock.
Imagine in the second situation that the man can only
pull. He can pull the box to his right to the left, but
no further. The 2 × 2 deadlock can never occur. The
third situation illustrates how, when the man can only
pull, the box can never be positioned next to walls or
in corners. It is of course still possible to lock the man
at some position. This is often easily detected as in
the next state(s) there will not be any more feasible
moves.

Our algorithm, ReversedSolving, proceeds as fol-
lows. First the Sokoban puzzle is loaded, and “re-
versed”: all boxes are placed at target positions.
While the boxes are not all back at their original po-
sition and the man cannot reach his original starting
position, we repeat:

While Condition X is not satisfied
Pull the box to unvisited positions.

Change to another box, guided by Condition Y .

This algorithm is still rather general, it just states
that we are solving the puzzle in a reversed order.
Condition X and Y together define the complexity
of the algorithm and also determine which puzzles
can and which puzzles can not be solved using our
algorithm. In the next two subsections we will give
an overview of the conditions that could be used in
our algorithm, after which we will discuss how to use
these conditions together to create a good algorithm.

5.1 Condition X: When to stop mov-

ing a box?

We can define several possibilities for determining
when to stop moving a box:

X1 After each step.

X2 After n steps.

X3 Until a box is at a final position.

X4 Until a box is k steps away from a final position
(where k is any integer between 0 and n, and
n some integer that defines how complex this
condition is).

X5 After a random number of moves.

5.2 Condition Y: Which box is next?

After deciding to stop moving a certain box, we will
want to pick a new box to start moving. We again
present several possible choices:

Y1 Every box.

Y2 Every unplaced box.

Y3 “Serve” the boxes in a lexicographical order.

Y4 “Serve” the boxes in some predefined order, for
example determined by the sum of their current
distances to the target squares.

Y5 The box that is currently closest to some target.

Y6 A random box.

5.3 Combining the conditions

If we take X1Y1 (we denote the combination of Xi

and Yj by XiYj) as condition, we clearly end up with
a brute-force multi-agent approach, but in this case
by pulling the boxes instead of pushing them. This
approach should theoretically always lead to correct
solutions, however, especially for larger puzzles, this
approach would still be way too complex.

A special subclass of Sokoban puzzles, referred to
as the Lishout subclass, and defined in [5], allows so-
lutions where boxes can be moved to their targets one
by one. These puzzles can exactly be solved by taking
condition X3Y2. An example of such a puzzle is the
one in Figure 4, referred to as “the” Lishout puzzle.

We found X4(n)Y2 to be a very interesting con-
dition. Several values can be used for n. If we take
n = 0, we get X4(0)Y2 and are just doing the same as
X3Y2, we are solving puzzles in the Lishout subclass.
If a puzzle is almost in the subclass, meaning that we
will have to keep one or more boxes one step away
from its target position, then consider some other
moves, and then put the box at its target, the puzzle
will be solved easily with n = 1. Even though com-
plexity will increase when we increase the value of n,
and for large values of n (formally n ≥ S, where S is
the largest possible distance between any two squares)
results in a brute-force approach, this condition ap-
peared to perform quite well.

4



Figure 4: Lishout puzzle.

6 Experimental Results

We implemented Reversed Solving in C++. All game-
dependent operations such as checking what a square
contains, checking if a box can be moved, moving a
box, finding a box or moving the man, are imple-
mented in O(1), meaning these operations do not de-
pend on the size of the puzzle or the amount of boxes.
A relatively small amount of time is spent checking if
the man can reach a certain position. This operation
is often needed when switching to another box, as it
of course has to be possible for the man to reach it.

The complexity of the algorithm comes from the
amount of generated states, and constantly checking
if these states have not been explored before. There-
fore we think the amount of inequivalent generated
states is a good measurement for the performance.
We can define state equivalence as follows:

One state is equivalent to another state
if the positions of the boxes are equal,
and the man is in the same part of the
reachable space, meaning the man in the
one state can walk to the position of the
man in the other state without moving
any boxes.

In Figure 5 the man is in the space marked with
number 1. Leaving the boxes at their current posi-
tions, but moving the man anywhere within this space
(over empty squares or target squares) remains the
same state. However, if the man were to be located
somewhere in the space marked with number 2 or
3, then these would be actual different states. This
brings the total amount of possible states for this con-
figuration of the boxes to 3, as there is no other iso-
lated space in which the man can be located. A hash
function is used to quickly compare states.

We have determined how many possible set-ups

exist for a certain puzzle: the possible inequivalent

configurations (states) that could have been initial
positions. This amount was easily obtained by run-
ning our algorithm with condition X1Y1, without any
stopping condition when the puzzle would normally
be back in its original position. The table below shows
this value and also gives an overview of which puzzles
were solved (denoted by Y, unsolved: N), as well as
the amount of generated states for a brute-force ap-
proach (Condition X1Y1), Lishout’s approach (Con-
dition X3Y2) and Condition X4(n)Y2. In this last con-
dition, we used the largest possible value of n to the-
oretically always obtain a solution.

Set-ups X1Y1 X3Y2 X4(n)Y2

Lishout 28276 2212 Y 54 Y 54 Y
Orig. 1 148501 82922 Y 6331 N 11001 Y
Orig. 78 30+ min 30+ min 2197 Y 2197 Y
micro1 39 33 Y 19 N 33 Y
micro7 2103 786 Y 13, Y 13 Y
micro10 374 323 Y 33 N 208 Y
micro25 96 77 Y 34 Y 34 Y
micro35 6721 920 Y 757 N 920 Y
micro75 1625 204 Y 114 N 204 Y
micro78 11270 2441 Y 114 N 215 Y
micro106 8466 5157 Y 25 N 1296 Y

As we expected, the Lishout approach (X3Y2)
solves the Lishout puzzle (see Figure 4) quite eas-
ily, but for example not Puzzle 1 from the original
set (see Figure 1), because simply not all states are
generated. Condition X1Y1 also solves the Lishout
puzzle, but generates a considerably larger amount of
states in the progress. The brute force approach also
solves Puzzle 1, but again generating a lot of states
in the process. Even though all this is still rather
complex, it seems nearly impossible to solve Puzzle
1 non-reversed without any heuristics, because of all
the possible deadlocks that can occur. A relatively
big puzzle from the original set, Puzzle 78, which is
shown in Figure 5, was solved quite fast with condi-
tion X3Y2, as it was in the Lishout subclass, while
a brute force approach fails, analyzing over 200,000
different states, running over 30 minutes on a 2.4GHz
machine. This shows how seemingly complex puzzles
can be solved quite fast with the Lishout approach,
but take way too much time with the brute force ap-
proach. The drawback is of course that it does not
solve all puzzles, as opposed to condition X1Y1. We
will have to do a little better.

Quite some puzzles appear to be almost in the
Lishout subclass, e.g., Puzzle 1 from the original set
(Figure 1), again shown in Figure 6, after pushing two
boxes once. The puzzle is now in the Lishout subclass,
and can easily be solved with condition X3Y2. Condi-
tion X4(n)Y2 comes in handy: it tries to put puzzles in
the Lishout subclass. Observe that this method does
solve Puzzle 1 in a reasonable amount of time.

5



The numbered micro-puzzles (puzzles from a big
set of puzzles called Microban [6]), all solved in less
than a second with X4(n)Y2, were added to illus-
trate the difference between the discussed approaches
and how well the conditions perform compared to the
amount of possible set-ups.

Figure 5: Puzzle 78 from the original set.

7 Conclusion and Future Work

Sokoban puzzles are an extremely interesting subject
for the field of Game Theory and Artificial Intelli-
gence, as a perfect algorithm has never been — and
can probably never be — found. In this thesis we have
presented a new method for solving Sokoban puzzles,
called Reversed Solving. The basic idea behind this
method is already a big improvement compared to a
regular brute force approach, but it has to be adjusted
with smart heuristics to give decent results. We have
defined two conditions that determine both the solv-
ability and the complexity of the algorithm, and can
be used to specify heuristics. We experimented with
several conditions and have shown how they perform,
and found one of particular interest, a method which
basically “tries” to get the puzzle into the Lishout
subclass, a quickly solvable type of puzzles.

For our algorithm, the complexity lies within
checking whether or not states have been visited be-
fore, and the amount of states is therefore a good
complexity indication. An interesting piece of future
work would be to speed up this checking process, to
make the algorithm run faster. Currently, the biggest
open problem lies within the fine-tuning of Condition
X and Y . What is the best heuristic, where lies the
best trade-off between solvability and complexity?

Figure 6: Puzzle 1 from Figure 1, after moving up,
left, left, left, up, up, up, left, up, left, left, down.

Acknowledgements

This article (and the corresponding Bachelor Project)
was written under supervision of dr. W.A. Kosters
from LIACS, Leiden University. Many thanks to Wal-
ter for all the support.

References

[1] J. Culberson, Sokoban is PSPACE-complete,
Proceedings in Informatics 4, Fun with algo-
rithms, pp. 65–76, Carleton Scientific, Water-
loo, 1999.

[2] D. Dor, U. Zwick, Sokoban and other motion
planning problems, Computational Geometry
13 (215–228) 1999.

[3] A. Jungmans, Pushing the limits: New develop-
ments in single-agent search, PhD Thesis, Uni-
versity of Alberta, 1999.

[4] A. Jungmans, J. Schaeffer, Sokoban: A chal-
lenging single-agent search problem, Proceed-
ings, IJCAI-97, pp. 27–36, 1997.

[5] F. van Lishout, Single-player games: Introduc-
tion to a new solving method, Master Thesis,
University of Liège, 2006.

[6] D. Skinner, Microban [accessed May 9, 2008],
http://members.aol.com/SokobanMac/

levels/microbanText.html.

[7] F. Takes, Sokoban: Reversed solving, Bachelor
Thesis, Leiden University, 2007.

[8] W. Wesselink, H. Zantema, Shortest solu-
tions for Sokoban, Proceedings 15th Nether-
lands/Belgium Conference on Artificial Intelli-
gence (BNAIC ’03), pp. 323–330, 2003.

[9] Sokoban, Wikipedia [accessed May 9, 2008],
http://en.wikipedia.org/wiki/Sokoban.

6


