
NEURAL NETWORKS FOR DISCRETE TOMOGRAPHY

K.J. Batenburg a W.A. Kosters b

a Mathematical Institute, Universiteit Leiden, and
CWI, Amsterdam, The Netherlands;
kbatenbu@math.leidenuniv.nl

b Leiden Institute of Advanced Computer Science (LIACS),
Universiteit Leiden, The Netherlands;

kosters@liacs.nl

Abstract

Discrete tomography deals with the reconstruction of binary images from their projections

in a small number of directions. In this paper we consider possible neural network approaches

to this tomographic reconstruction problem. In particular we are interested in methods that

can compute reconstructions in real-time and make efficient use of prior knowledge about the

images, even when this knowledge is difficult to model by hand. We propose both a feed-

forward back-propagation network method and a Hopfield network method for solving the

reconstruction problem.

1 Introduction

Tomography deals with the reconstruction of an object from its projections in several directions.
Figure 1 shows the basic principle. By measuring the attenuation of a parallel beam (e.g., X-rays)
passing through the object, one obtains a projection of the “density” distribution in the object in
the direction of the beam.

Figure 1: The basic principle of
tomography

The main problem of tomography is to compute the den-
sity of the object from the measured projections. The most
prominent use of tomography can be found in medical imag-
ing, where X-ray CT scanners are used for non-invasive imag-
ing of patients. In this application the various tissue types
exhibit a continuous spectrum of X-ray absorption coefficient
(e.g., densities), resulting in a reconstructed image that has a
fine-grained spectrum of gray levels. To obtain sufficient recon-
struction quality, more than 100 projections are required.

In discrete tomography one focuses on the reconstruction of
objects having a very small, discrete set of densities; see [6].
Many objects scanned in industry, for example, are made of a
single homogeneous material which results in a reconstruction
that uses only two gray levels. Moreover, the gray levels are
known in advance. By using this fact as a priori knowledge,
it is possible to dramatically reduce the number of projections
that is required to obtain an accurate reconstruction.

An important application of discrete tomography, which was a driving force behind initial re-
search on the subject, is atomic resolution electron microscopy. Having the ability to make 3D
reconstructions of crystalline solids at atomic resolution from electron microscopic images can be
considered the “holy grail” in materials science. Recently, microscope resolution has improved con-
siderably, making it possible to count the number of atoms in each column of a crystal, along several
directions. Discrete tomography can be used to reconstruct the position of all individual atoms,



yielding an accurate 3D reconstruction, see [2, 8]. For this application, using few projections is a
necessity, since the electron beam damages the sample after a few images have been recorded.

Reconstructing binary images from three or more projections is NP-hard [5]. Several algorithms
have been proposed for computing a reconstruction when the image satisfies certain a priori as-
sumptions, such as convexity, see, e.g., [1, 3, 6]. Although some of these algorithms are capable of
computing high quality reconstructions for certain types of images, they usually have a considerable
running time.

In this paper we focus on a specific problem in discrete tomography: reconstructing an n × n
binary (black-and-white) image from its horizontal, vertical, diagonal and anti-diagonal projections
or linesums, i.e., the total number of black pixels on those lines. Our results can be generalized to
other tomography settings.

We number the pixels sequentially from 1 to n2. There are n horizontal lines, n vertical lines,
2n − 1 diagonal lines and 2n − 1 anti-diagonal lines (see Figure 2). We denote the total number
of lines by m = 6n − 2. The problem input consists of m integers describing the number of black
pixels (having pixel value 1) on each line. The equations relating the pixel values (either 0 or 1)
to the projected linesums can be described in matrix-notation by the system Ax = b where x is
a column vector with n2 elements, and the m × n2 matrix A contains a row for each horizontal,
vertical, diagonal and anti-diagonal line of the image x: Aki = 1 if line k contains pixel i and 0
otherwise. The integer m × 1 vector b contains the number of black pixels for each line.

Figure 2: Four directions

Note that in general there are 2n2

possible n×n images. The
projections give m = 6n − 2 values in {0, 1, . . . , n}, needing at
most 6n log2 n bits to encode (some values cannot occur for the
(anti-)diagonals). Also taking into account that not all bit se-
quences originate from proper images, this shows that a lot of
information is lost during projection. Also notice that different
images might generate the same series of projections (in case of
only horizontal and vertical projections one can think of a chess-
board, and interchange white and black). So the problem is in
general underdetermined, but if we adhere to special images we
can perhaps achieve acceptable reconstructions. In this paper we
consider the reconstruction of images containing a fixed number
of filled ellipses. An ellipse is specified by its center, the lengths of its two axes and an angle. So e
ellipses in an n × n image can be encoded by some 5e log2 n bits, log2 n for each parameter.

In this paper we consider two neural network approaches for the reconstruction problem. The
first approach (see Section 2), based on feed-forward back-propagation networks, has two key ad-
vantages. Prior knowledge on the set of images is specified implicitly, as it is learned by the network.
In addition, when training of the network is complete it can compute a reconstruction extremely
fast.

The second approach (Section 3) uses a Hopfield network to solve the reconstruction problem.
The computations of the Hopfield network can be performed with a very high degree of parallelism,
resulting in fast reconstructions. There is no training involved, the weights of the network are
computed directly from the projection data. The tomography problem is solved by letting the
Hopfield network converge to a local minimum of its energy function.

In Section 4 we describe several experiments, showing the feasibility of both approaches. In
particular we show that our proposed topology for the feed-forward network is very effective. We
conclude in Section 5.

2 Back-propagation network approach

In this section we will discuss the application of feed-forward back-propagation networks (see,
e.g., [4]) to the discrete tomography problem.

The input nodes of the networks contain the values of the projections, the output nodes contain
the pixel values. So the number of input nodes equals the number of projections, i.e., m, while
the number of output nodes equals the size of the picture, i.e., n2. The projection values are
translated into equidistant points in the unit interval. For instance, the values {0, 1, 2, 3, 4} are coded



as {1/6, 2/6, 3/6, 4/6, 5/6}. Output values are interpreted as gray values, yielding the gray level
reconstruction. If necessary, these values can be rounded to 0/1-values for a crisp reconstruction.

The networks have one hidden layer, that consists of two types of nodes:

global nodes that are connected to all input nodes and all output nodes; they can keep track of
the global constraints;

local nodes that are connected to a few input nodes and output nodes; they keep track of the
constraints that affect a pixel and its immediate neighbours.

There are n2 local nodes, each corresponding with a unique pixel. Such a local node receives input
from the 4 line projections that intersect with the pixel, and is connected to the 9 output nodes
corresponding with the pixel and its immediate neighbours (6 or 4 near the boundaries). The
number of global nodes, k, plays a key role. The total number of weights, including those from the
bias nodes, is (k + 15)n2 + (6k − 12)n− (k − 4) (for the bias nodes: 2n2 + k; for the global nodes:
k(n2 +6n− 2); for the local nodes: 13n2 − 12n+4), which is approximately (k +15)n2 or (k +1)n2

if no local nodes are used. The network architecture is depicted in Figure 3.

outputs

3 *
� >

k I
Yk

global nodes

�K

–1

bias

local nodes

6o *
1Y I ��3�i Y

–1

bias inputs

Figure 3: Neural network architecture

Training is performed as follows. In each epoch, a number (50,000, say) of random pictures
with their projections are presented to the network. The pictures are sampled from a certain
distribution, see later. Note that samples are used only once, unless they are by chance regenerated.
The weights are adapted using the normal back-propagation rule. After each epoch the learning
rate α is somewhat decreased. The nodes all use the standard sigmoid σ : x 7→ 1/(1 + e−x).

3 Hopfield network approach

A Hopfield network is a fully connected recurrent neural network with neurons taking values from
the set {−1, +1}. When using the Hopfield network for discrete tomography, the network has n2

neurons; each neuron corresponds to a pixel of the image which can be either black (+1) or white
(−1).

The net input hi of neuron i (with activation si) is given by hi =
∑

j 6=i wijsj + θi, where wij is
the weight associated with the connection between neuron i and neuron j, and θi is a real constant
for neuron i: the threshold value. The weights in a Hopfield network are always symmetric, i.e.,
wij = wji for all i, j. The deterministic dynamics of the network are given by the following update
rule:

s′i =







1 if hi > 0
−1 if hi < 0
si if hi = 0

(1)

Hopfield networks are well-known for their ability to act as an associative memory when com-
bined with Hebbian learning. They are also capable of solving combinatorial optimization problems,



using the concept of an energy function E associated with the network (first proposed in [7]):

E = −
∑

i<j

wijsisj −
∑

i

θisi (2)

The energy function has the property that every single neuron update either decreases the energy
or leaves the energy unchanged. This property ensures that the network will converge to a local
minimum of the energy function in a finite number of steps regardless of the initial state, when the
neuron updates are carried out asynchronously.

For the discrete tomography problem it is possible to construct a similar energy function (con-
taining terms that are at most quadratic in the variables of the problem) such that a minimum
of the energy function over the set of possible states of the Hopfield network corresponds to an
optimal solution of the tomography problem. Let δ(i) be the 4-neighbourhood of pixel i, i.e., the
set of direct horizontal and vertical neighbours of pixel i. Define (using the notation from Section 1)

E =

m
∑

k=1

({

n2

∑

i=1

Akixi

}

− bk

)2
+ λ

n2

∑

i=1

∑

j∈δ(i)

(xi − xj)
2 , (3)

where λ is a positive constant (λ = 4 in the experiments). The variables xi in the energy function
are the binary pixel values of the image. The first term corresponds to the difference of the projec-
tions Ax of an image x to the prescribed projections b, the second term corresponds to the “local
smoothness” of the image x: as a form of regularization, we prefer reconstructions that are locally
smooth.

The network neighbourhood of neuron i, i.e., the set of all neurons j for which wij is nonzero, is
star-shaped, see Figure 4. It consists of the neurons that correspond to pixels which either share a
projected line with pixel i or are in the 4-neighbourhood of pixel i.

Figure 4: Network
topology

The pixel values xi are binary variables. These variables can be converted
to variables si having domain {−1, +1} by taking xi = (si+1)/2. This yields
an expression of the form (2), from which all weights wij and thresholds θi

of the Hopfield network can be found.
If we start the Hopfield network with the given weights and let it converge

to a local minimum of the energy function, it will find a locally optimal
solution to the tomography problem. There is no guarantee that the network
will converge to a global optimum, however.

When the updates of several neurons are carried out simultaneously (i.e.,
synchronous updates), convergence is no longer guaranteed. The network
state may also reach a cycle. In the experimental results we will show that
when the neuron activations are split into several random subsets (e.g., 10
subsets) and each subset is updated synchronously, the network converges almost as fast as for the
asynchronous case, for all test cases.

4 Experiments

In this section we present reconstruction results for images of size 10 × 10, 25 × 25 and 50 × 50.
All test images consist of 5 ellipses. Overlapping parts of ellipses can be either “or-ed” (yielding a
union of ellipses) or “xor-ed” (pixels being black when contained in an odd number of ellipses), the
latter version leading to more complex images. We performed all tests with both classes of images.

We start by giving some illustrative results for the feed-forward network of Section 2 for 25×25
images from the “or-class”. The network used had 600 global hidden nodes and 625 local hid-
den nodes. After 50 epochs, each using 50,000 random training examples, the average number of
incorrect pixels for the crisp reconstructions in a random test set of 100 pictures was 18.97, the
mean squared gray level error being 15.05. The training took around 10 hours on a Pentium 4
2.8 GHz. The best crisp reconstruction from the test set (Figure 5, left) had an error of 3 pixels,
the worst (Figure 5, right) achieved an error of 48 pixels. In Figure 6 we see two more “common”
reconstructions: left an image with crisp error 14, right an image with crisp error 15.

We used the same settings for the “xor-class”, which also led to the “same” test set, except for
the fact that the ellipses are now “xor-ed”.



Figure 5: From left to right: original and gray level reconstruction with squared error 3.09; original
and gray level reconstruction with squared error 36.81

Figure 6: From left to right: original and gray level reconstruction with squared error 12.06; original
and gray level reconstruction with squared error 14.24

Figure 7: From left to right: original and gray level reconstruction with squared error 10.67; original
and gray level reconstruction with squared error 65.96

Figure 8: From left to right: original and gray level reconstruction with squared error 33.12; original
and gray level reconstruction with squared error 45.19

After 50 epochs the average crisp error was 47.89. The mean squared error for the gray level
reconstructions was 35.21. The best crisp reconstruction from the test set (Figure 7, left) had an
error of 12 pixels, the worst (Figure 7, right) achieved an error of 92 pixels. In Figure 8 we see
reconstructions of the “same” images (now with “xor-ed” ellipses) as in Figure 6: left an image
with crisp error 48, right an image with crisp error 59.

Table 1 shows more extensive experimental results. For each test case, we performed three
training runs of the network. The table shows the average results over the three runs, using a test
set of 100 images. The column “#global” shows the number of global nodes in the network. The
column “local?” indicates if local nodes are used. The column “p.e.” shows the average error per
pixel in the unrounded network output. The column “c.p.e.” shows the average error in the crisp
output and the column “sqr.pr.e.” shows the sum over all projected lines of the squared error in
the projection of the crisp output. Note that the integer valued projections were re-scaled to reals
in [0, 1].



or xor
size #global local? p.e. c.p.e. sqr. pr.e. p.e. c.p.e. sqr. pr.e.

10× 10 10 yes 0.026 0.020 0.0018 0.084 0.061 0.0044
10 no 0.086 0.063 0.0079 0.206 0.140 0.0194
30 yes 0.018 0.014 0.0012 0.069 0.051 0.0033
30 no 0.035 0.027 0.0025 0.103 0.075 0.0066
60 yes 0.013 0.010 0.0008 0.069 0.051 0.0033
60 no 0.014 0.011 0.0009 0.065 0.048 0.0032
120 yes 0.008 0.006 0.0005 0.060 0.043 0.0029
120 no 0.012 0.009 0.0008 0.066 0.048 0.0033

25× 25 25 yes 0.051 0.038 0.0028 0.112 0.080 0.0057
25 no 0.134 0.096 0.0170 0.196 0.135 0.0210
75 yes 0.045 0.034 0.0022 0.098 0.071 0.0044
75 no 0.085 0.061 0.0077 0.143 0.101 0.0100
150 yes 0.041 0.030 0.0020 0.093 0.067 0.0037
150 no 0.068 0.050 0.0049 0.124 0.088 0.0074
300 yes 0.035 0.026 0.0017 0.083 0.060 0.0029
300 no 0.060 0.053 0.0040 0.120 0.109 0.0066
600 yes 0.035 0.026 0.0016 0.077 0.056 0.0024
600 no 0.052 0.049 0.0032 0.112 0.108 0.0058

50× 50 50 yes 0.055 0.041 0.0044 0.149 0.104 0.0165
50 no 0.271 0.180 0.0787 0.270 0.177 0.0478
150 yes 0.051 0.038 0.0035 0.128 0.092 0.0095
150 no 0.198 0.139 0.0489 0.208 0.143 0.0265
300 yes 0.049 0.037 0.0031 0.120 0.086 0.0071
300 no 0.114 0.096 0.0176 0.179 0.125 0.0178
600 yes 0.043 0.032 0.0024 0.110 0.080 0.0057
600 no 0.085 0.078 0.0095 0.146 0.139 0.0109

Table 1: Experimental results for the feed-forward network approach

Table 2 shows the results of the Hopfield network for the same test set, for the case of asyn-
chronous updates and for the case of synchronous updates. The column “parallel?” shows if neuron
updating is performed sequentially or in parallel (each time updating 1/10th of all neurons). The
column “%perfect” indicates the percentage of perfectly reconstructed images in the test set. The
number of iterations of the network (in one iteration all neurons are updated once) is shown in the
column “it.”.

or xor
size parallel? %perfect it. p.e. %perfect it p.e.

10 × 10 no 87 4.56 0.0052 28 5.96 0.0640
10 × 10 yes 87 4.56 0.0052 27 6.58 0.0594
25 × 25 no 71 8.88 0.0075 5 11.40 0.0902
25 × 25 yes 72 10.00 0.0056 1 12.34 0.0812
50 × 50 no 84 14.36 0.0028 0 18.44 0.1157
50 × 50 yes 79 17.13 0.0078 0 24.18 0.1050

Table 2: Experimental results for the Hopfield network approach

5 Conclusions and future research

For the “or-class” of test cases, both approaches perform well. The Hopfield network is even capable
of finding a perfect reconstruction in most of the test cases, due to the smoothness of the images.
The average pixel error is also extremely small for the Hopfield network.



The “xor-class” of test cases yields quite different results. For this class the Hopfield network
is not very effective, it tends to get stuck in a local optimum of the energy function. This can be
explained by the fact that images in the “xor-class” are far less smooth than those in the “or-class”.
The preference for smooth images that is used in the energy function of the Hopfield network is
hardly justified in this case. A drawback of the Hopfield approach is the inability to adjust to new
classes of images by learning. The feed-forward network, however, is capable of computing much
better reconstructions for the “xor-class”. Still, the error is significantly larger compared to the
“or-class”.

The results show clearly that using local nodes in the feed-forward network has a very positive
effect on its reconstruction performance. Adding local nodes hardly affects the training time of the
network, because each of these nodes only has a constant, small number of connections to the input
and output layer. Apparently, significant benefits can be gained by changing the network topology
from the standard, fully-connected topology. In future research, we intend to perform experiments
with several alternative topologies, and different types of real-world images. The fact that once the
network is fully trained (which may take very long), a nearly instantaneous reconstruction method
is available (no retraining is necessary), makes the approach very interesting for applications where
real-time reconstructions are important, such as medical imaging.

For the Hopfield network, the results of the sequential implementation are not very different
from those of the parallel implementation, showing that the approach allows a high degree of
parallelisation. It is well suited for a hardware implementation, where a single (simple) hardware
processor can be assigned to each neuron.

References

[1] K.J. Batenburg, An Evolutionary Algorithm for Discrete Tomography, Discrete Applied Math-

ematics, 2005 (to appear).

[2] K.J. Batenburg, J.R. Jinschek and C. Kisielowski, Atomic Resolution Electron Tomography
on a Discrete Grid: Atom Count Errors, Microscopy and Microanalysis, Vol. 11, Suppl. 2,
2005.

[3] K.J. Batenburg and W.A. Kosters, A Discrete Tomography Approach to Japanese Puzzles,
Proceedings of BNAIC 2004, 243–250.

[4] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[5] R.J. Gardner, P. Gritzmann and D. Prangenberg, On the Computational Complexity of
Reconstructing Lattice Sets from their X-rays, Discrete Math. 202, 1999, 45–71.

[6] G.T. Herman and A. Kuba, eds., Discrete Tomography: Foundations, Algorithms and Appli-

cations, Birkhäuser, Boston, 1999.

[7] J.J. Hopfield and D.W. Tank, Neural Computation of Decisions in Optimization Problems,
Biological Cybernetics 52, 1985, 141–152.

[8] J.R. Jinschek, H.A. Calderon, K.J. Batenburg, V. Radmilovic and C. Kisielowski, Discrete
Tomography of Ga and InGa Particles from HREM Image Simulation and Exit Wave Recon-
struction, MRS Proceedings 839, 2004, 4.5.1–4.5.6.


