
Bioinformatics: Fragment Assembly

Walter Kosters, Universiteit Leiden

IPA—Algorithms&Complexity, 29.6.2007

www.liacs.nl/home/kosters/

1

Fragment assembly Problem

We study the following problem from bioinformatics:

Given several strings of DNA, construct the “best”

superstring that contains them all.

Here, “contains” means “as (consecutive) substring”.

Note that concatenation does this job — but not so well.

Sometimes the approximate total length is known.

Literature: J. Setubal and J. Meidanis, Introduction to

Computational Molecular Biology, PWS Publishing Com-

pany, Boston, 1997; and D. Gusfield, Algorithms on Strings,

Trees and Sequences, Cambridge Universtiy Press, 1997.

2

Intermezzo Tools

3

Fragment assembly Background

The problem originates from the so-called shotgun me-

thod, that breaks a given piece of DNA (or rather many

copies of that) into several smaller pieces, that can be

“sequenced”. The goal is to reconstruct the original DNA-

string.

There are many practical problems. We focus on some

theoretical issues.

Another approach to obtain this goal is sequencing by hy-

bridization (SBH), see later.

4

Fragment assembly Example

We start with the strings ACCGT, CGTGC, TTAC and TACCGT

over the 4-base alphabet {A, C, G, T}. One possible way to

assemble them is by the following layout:

ACCGT --ACCGT--

CGTGC ----CGTGC

TTAC TTAC-----

TACCGT -TACCGT--

TTACCGTGC

We use the overlaps as much as possible. The sequence

below the is called the consensus (sequence),

obtained from a majority vote among the bases in each

column.

5

Fragment assembly Complications — Errors 1

There can be errors in the fragments. The simplest on-

es are base call errors: base substitutions, insertions and

deletions (and so also transpositions). A first example:

ACCGT --ACCGT--

CGTGC ----CGTGC

TTAC TTAC-----

TGCCGT -TGCCGT--

TTACCGTGC

The first G in the last fragment should have been an A. Note

that majority voting still produces the right consensus.

6

Fragment assembly Complications — Errors 2

Here we see an incorrect A present in the second fragment:

ACCGT --ACC-GT--

CAGTGC ----CAGTGC

TTAC TTAC------

TACCGT -TACC-GT--

TTACC-GTGC

Again, majority voting produces the right consensus, also

using spaces (-’s) in the multiple alignment. The - in the

consensus is discarded later on.

7

Fragment assembly Complications — Errors 3

This time there was a deletion in the third (or fourth) base

of the last fragment:

ACCGT --ACCGT--

CGTGC ----CGTGC

TTAC TTAC-----

TACGT -TAC-GT--

TTACCGTGC

And again, majority voting produces the right consensus.

Other errors are chimeras (fragments sometimes stick to-

gether) and contamination. Unfortunately, there usually is

not much you can do about these. 8

Intermezzo Some biology

DNA has two oriented strings (strands) consisting of bases

A/C/G/T, paired through A–T and C–G.

So this looks like:

------->

5’ ...AATACCCG... 3’

||||||||

3’ ...TTATGGGC... 5’

<-------

If we blow the thing to pieces, we (might) get AATACCCG and

CGGGTATT. The second is called the reverse complement of

the first.

We only need to reconstruct one of the two strands.

9

Fragment assembly Compl’s — Unknown orientation

So fragments can also be used “backward”. In that case we

employ the reverse complement of the string, e.g., CGTAGT

for ACTACG (use A–T and C–G). An example:

CACGT ---> CACGT--------

ACGT ---> -ACGT--------

ACTACG <--- --CGTAGT-----

GTACT <--- -----AGTAC---

ACTGA ---> --------ACTGA

CTGA ---> ---------CTGA

CACGTAGTACTGA

Note that we suddenly have 2n possible combinations for

a set of n fragments — or a few less.

10

Fragment assembly Compl’s — Repeated regions

Repeated regions or repeats are sequences that appear two

or more times in the target molecule. There are many com-

plications, in particular if repeats are long (single bases are

also repeats :-). We mention:

• where to put fragments totally contained in a repeat?

• the target aXbXcXd can be assembled as aXcXbXd

• and aXbYcXdY e can be assembled as aXdYcXbY e

• “inverted repeats”, . . .

11

Fragment assembly Compl’s — Inverted repeats

An example of an inverted repeat is the following:

TGCCTA----- -----TAGGCA

----TAGCTCA TGAGCTA----

AACTGCCTAGCTCAGTT AACTGAGCTAGGCAGTT

12

Fragment assembly Compl’s — Lack of coverage

Some parts of the target may be weakly covered, or even

uncovered. In that case, the best you can hope for is a

layout for every one of the contiguously covered regions,

called contigs.

Perhaps the mean coverage gives an indication of the qua-

lity.

There are many formulas that connect the lengths of the

actors, the number of contigs, . . . , using probability mo-

dels, under (simplifying) assumptions.

13

Fragment assembly Models — SCS 1

The simplest model for our problem is:

Shortest Common Superstring (SCS)

Input: A collection F of strings.

Output: A string S, as short as possible, such that

for every f ∈ F, S is a superstring of f .

Example: let F = {ACT, CTA, AGT}. The sequence S = ACTAGT

is the (unique) shortest common superstring of F.

14

Intermezzo Shortest Common Superstring

The Shortest Common

Superstring (SCS)

problem is also useful

for Pokemon.

According to Mark Stamp

and Austin E Stamp,

booster packs are

created by selecting

5 common cards from

a length 122 superstring.

15

Fragment assembly Models — SCS 2

Practical shortcomings of this model are the following.

Suppose the target looks like aXbXc with some large repeat

X. The SCS model could give a consensus aXbX ′c with X ′

shorter than X, where all fragments totally contained in

the rightmost X are moved to the leftmost X, and left

and right part of X ′ are unlinked:

X X X X ′

The model allows no errors; orientation must be known.

It is proven to be NP-hard, even in the binary case, when

using a maximum on the length of the superstring.

16

Fragment assembly Models — Reconstruction 1

For a refinement we define the substring edit distance of
two strings a and b:

ds(a, b) = min
s∈Sub(b)

d(a, s),

where Sub(b) is the set of all substrings of b, and d is the
“classical” edit distance: the minimum number of substi-
tutions, insertions and deletions needed to change the first
argument into the second. Note that ds(a, b) 6= ds(b, a) in
general.

If a = GCGATAG and b = CAGTCGCTGATCGTACG, the best align-
ment is

-----GC-GATAG----

CAGTCGCTGATCGTACG

with distance ds(a, b) = 2.

17

Fragment assembly Models — Reconstruction 2

The second model for our problem is:

Reconstruction

Input: A collection F of strings and an error tole-

rance ǫ with 0 ≤ ǫ ≤ 1.

Output: A string S, as short as possible, such that

for every f ∈ F we have min(ds(f, S), ds(f̄ , S)) ≤

ǫ|f |, where f̄ is the reverse complement of f and

|f | is the length of f .

This means that we allow 100 × ǫ errors per 100 bases.

The problem is also NP-hard. No repeats, . . .

18

Fragment assembly Models — Multicontig 1

We now also reward good linkage. Let us start with some

examples:

Let F = {GTAC, TAATG, TGTAA}.

We can produce two solutions with 2 contigs:

--TAATG GTAC TAATG--- GTAC

TGTAA-- ---TGTAA

The left one has an overlap of width 3, the right one of 2.

There is also a 1-contig solution, with smallest overlap 1:

TGTAA-----

--TAATG---

------GTAC

19

Fragment assembly Models — Multicontig 2

The third model for our problem is:

Multicontig

Input: A collection F of strings, an integer t ≥ 0

and an error tolerance ǫ with 0 ≤ ǫ ≤ 1.

Output: A partition of F in the minimum number

of subcollections Ci (1 ≤ i ≤ k), such that every Ci

admits a t-contig with an ǫ-consensus.

(See Setubal-Meidanis for precise definitions.)

A t-contig is a (“connected”) layout where the smallest

“linking” overlap has width at least t. Again: NP-hard.

20

Fragment assembly Algorithms — Greedy 1

A greedy algorithm for the Shortest Common Superstring

problem is easily conceived:

Repeatedly find the two strings with the largest

overlap, and replace them with their shortest su-

perstring.

This is an approximating algorithm. Its solution can be

proved to be of length at most 4/. . . /2.75/. . . times the

optimal length. (Technical proofs. Several variations of the

algorithm. Conjectured: 2.)

21

Fragment assembly Algorithms — Greedy 2

An example of the greedy algorithm: we start with the four

strings TCAGT, CATCAG, GTG and GCA.

The two most overlapping ones are CATCAG and TCAGT; they

are replaced with CATCAGT, leaving us with CATCAGT, GTG and

GCA.

Both GTG and GCA have a 2 base overlap with CATCAGT. Choo-

se GTG (say), giving CATCAGTG and GCA.

The final solution is GCATCAGTG, which happens to be opti-

mal.

22

Fragment assembly Algorithms — Greedy 3

Another example of the greedy algorithm: we start with

the three strings GCC, ATGC and TGCAT.

The two most overlapping ones are ATGC and TGCAT; they

are replaced with ATGCAT, leaving us with ATGCAT and GCC.

These two strings have no overlap, so the final solution

is their concatenation: either ATGCATGCC or GCCATGCAT, both

of length 9. The optimal solution, TGCATGCC, has length 8

however!

23

Fragment assembly Algorithms — Greedy 4

More general: starting from

{C(AT)k, (TA)k, (AT)k
G}

for fixed k ≥ 1, the algorithm outputs C(AT)k
G(TA)k of

length 4k + 2, whereas the optimal string C(AT)k+1
G has

length 2k + 4.

This shows that the output string of the greedy algorithm

can be twice as long as the correct one — and that the

algorithm can be easily improved in a heuristic way.

24

Fragment assembly Algorithms — Others

There are also quite different approaches:

• evolutionary algorithms

individuals, i.e., candidates, have fitness given by the

maximal number of overlapping characters

• DNA-computing

encode all strings as suitable DNA(!) strands, generate

all strands of fixed length, and step by step discard all

wrong ones

25

Fragment assembly Algorithms — Overlap graph 1

Finding common superstrings of the strings in a set F is

the same as finding certain paths in a corresponding graph:

the overlap (multi)graph.

The set of nodes V is just F. A directed edge from a ∈ F

to a different b ∈ F with weight t ≥ 0 exists if the last t

characters of a (its length t suffix) coincide with the length

t prefix from b. Usually you only consider the largest t per

pair (a, b).

We normally assume that the set F is substring-free: we

do not allow different elements of F to be a substring of

one another. (We just remove such substrings.)

26

Fragment assembly Algorithms — Overlap graph 2

Let F = {TACGA, ACCC, CTAAAG, GACA}. The overlap multigraph

is (without edges with weight 0):

vCTAAAG @
�

1

vTACGA @
�

1
@

@
@

@
@

@
@

@
@

@
@

@

2

vGACA

�@

1

vACCC�
�

�
�

�
�

�
�

�
�

�
�

1

Any path in the graph gives an alignment. A solution to

the Shortest Common Superstring problem translates into

a Hamiltonian path of maximum weight (visit all nodes).

Or a Traveling Salesman Problem — if you want.

27

Fragment assembly Algorithms — Problems

AGTATTGGCAATC---AATCGATG------------

---------------------ATGCAAACCT-----

----TTGGCAATCACT------------CCTTTTGG

AGTATTGGCAATCACTAATCGATGCAAACCTTTTGG

AGTATTGGCAATC--------CCTTTTGG--------

---------AATCGATG--------TTGGCAATCACT

--------------ATGCAAACCT-------------

AGTATTGGCAATCGATGCAAACCTTTTGGCAATCACT

solution of

length 36,

“weakest link” 0

greedy algorithm

solution of

length 37,

“weakest link” 3

topological sorting

v @
�

4

' $

@�

9

v @
�

3
v @

�

3
v @

�

4
v

28

Fragment assembly Sequencing by hybridization

Yet another technique, as mentioned before, is sequencing

by hybridization (SBH). This technique uses a DNA-array,

consisting of many small

pieces of DNA (say, all

46 = 212 = 4096 possible

strings of length 6,

or some subtle selection),

and determines whether

or not each string

occurs as a substring.

This information is

used for reconstruction.

29

Fragment assembly SBH and Eulerian paths

Instead of looking for Hamiltonian paths in the overlap

graph, we now focus on Eulerian paths (that traverse all

edges) in another graph — which is a simple task.

Suppose we start with strings of length ℓ. Vertices corres-

pond to (ℓ−1)-tuples, edges (!) to fragments. For example,

with fragments ATG, TGG, TGC, GTG, GGC, GCA, GCG and CGT

(ℓ = 3), we find two solutions:

ATGGCGTGCA

GT CG

AT -1 TG
@

@
@R

2
�

�
��

3

-7 -8GC CA

GG

64
?
6

� 5

ATGCGTGGCA

GT CG

AT -1 TG
@

@
@R

6
�

�
��

7

-2 -8GC CA

GG

63
?
5

� 4

30

Fragment assembly Exercises—1

Try the following exercises from pages 139–140 of the

Setubal-Meidanis book (see handouts):

3, 6, 7, 12, 13, 18, 1

Answers: www.liacs.nl/home/kosters/bio/

31

Fragment assembly Suffix Arrays

And now for some suffix arrays.

The suffix array of a string is the lexicographically sorted

array of all its suffixes. Usually we give the indexes where

the suffixes begin.

Example: the string example has 7 (non-empty) suffixes:

ample, e, example, le, mple, ple, xample.

So the array is [2,6,0,5,3,4,1].

32

Fragment assembly Some history

The story begins in the 1990s, when finally Ukkonen came

up with a linear time construction for suffix trees (see pre-

vious lecture). Full details: Dan Gusfield’s book, or Pekka

Kilpeläinen’s lecture notes:

www.cs.uku.fi/~kilpelai/BSA07/index.shtml

A depth first “lexical” suffix tree traversal easily gives the

suffix array.

In 2003 three independent algorithms to directly construct

suffix arrays (introduced by Myers and Manber) in linear

time (sometimes together with the so-called lcp-array =

lenghts of the longest common prefixes; together they

are equivalent with suffix trees) were found: Kärkkäinen-

Sanders, Ko-Aluru and Kim-Sim-Park-Park.

33

Fragment assembly Why suffix arrays?

Suffix trees and suffix arrays are great when one wants to

find, e.g., all overlaps in a large set of strings.

Often a special final character $ is attached to the string

at hand, to avoid a suffix that matches a prefix of another

suffix: xabxa.

How to find an occurrence of a substring P of a string T?

Perform a binary search on the suffix array SA: compare P

to the middle element of SA, and so on. With help of the

lcp-array, this can be done in O(n + log(m)) time, where

n = |P | and m = |T |. (Don’t forget the “preprocessing”; it

works if you have many P s.)

34

Fragment assembly Kärkkäinen-Sanders

The Kärkkäinen-Sanders algorithm is the easiest (but per-

haps not the best). It goes like this:

• recursively construct the suffix array of the suffixes

starting at positions i that are not a multiple of 3:

1,2,4,5,7,8,10,11, . . .

• construct the suffix array of the others using the result

of the first step

• merge the two suffix arrays into one

35

Fragment assembly Example

1

01234567890

mississippi

• start with ississippi (i = 1), issippi (i = 4), ippi

(i = 7), i00 (i = 10, with extra 00), ssissippi (i = 2),

ssippi (i = 5), ppi (i = 8)

we find [3,2,1,0,6,5,4] ⇒ [10,7,4,1,8,5,2]

• do mississippi, pi0, sippi, sissippi: [0,9,6,3]

• merge the two suffix arrays: [10,7,4,1,0,9,8,6,3,5,2]

The lcp value for issippi and ississippi is 4 = lcp(2,3).

36

Fragment assembly The lcp-array

How can the lcp-array help when searching for a substring?

Suppose we are looking for P = abcdemn. Suppose that we

do a binary search in L = abcdefg..., . . . , M = abcdefg...,

. . . ,R = abcdxyz... (within the suffix array). P matches the

first ℓ = 5 characters of L, and the first r = 4 of R. Here

lcp(L, M) > ℓ.

What can we conclude now? And how does this work in

general?

37

Fragment assembly Exercises—2

• Read the 2 page copy of part of the Kärkkäinen-Sanders

paper (see handout).

• Try to understand the algorithm.

• Explain why it is linear.

38

